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Abstract—Temporal lobe epilepsy is a serious
neurological disorder characterized by complex par-
tial seizures, which are thought to originate in
the hippocampus. Ordinary differential equation
modeling has been used to describe changes in
membrane potential of excitatory and inhibitory
cells in order to gain insight into seizure propa-
gation. In the current study, a system of ordinary
differential equations based on previous modeling
is used with distinct biologically reasonable values
for membrane capacitance in order to determine
model sensitivity to that parameter. Because delay
differential equations are used in the model, sensi-
tivity is investigated computationally by examining
the variation in output relative to various inputs.
Membrane capacitance was found to affect model
predictions and whether groups of cells exhibited the
same behavior after a certain period of time. Hence,
membrane capacitance is a critical parameter when
modeling changes in membrane potential and should
be incorporated clearly. Changes in model output as
a result of changes in a time delay parameter are
also investigated.

Keywords-epilepsy, membrane potential, sensitiv-
ity analysis, mathematical modeling

I. INTRODUCTION

Temporal lobe epilepsy is a serious neurological
disorder characterized by complex partial seizures,
which are thought to originate in the hippocam-
pus [1], [2], [3], [4], [5]. The mechanism of the
propagation of these seizures is not completely
understood, and there is no single pathology even
within temporal lobe epilepsy [2]. Surgical treat-
ments are often recommended and beneficial for
patients with epilepsy [5], but the success of these
treatments is dependent on the completeness of
the tissue removal and the surgical approach [6],
[7], [8], [9] as well as a strong understanding
of a patient’s clinical history [10]. At this time,
surgical techniques may be the most effective
treatment strategies from both cost and outcome
perspectives [11], [12]. Surgical techniques carry
inherent dangers and mathematical modeling may
aid in developing alternative treatment strategies
with positive outcomes [13], [14].

Several studies have investigated seizures and
other behavior related to epileptic events using
computer simulations [15], [16], [17], [18], [19],
Markov processes [20], [21], differential equations
[22], [23], [24], [25], [26], [27], [28], or other
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modeling techniques [14], [29], [30], [31], [32].
Much of the differential equation modeling in-
corporates changes in membrane potential and is
based on a model by Hodgkin and Huxley [33],
[34]. Understanding how membrane potentials in
excitatory cells change over time may help deter-
mine how seizures propagate and hence, how to
better prevent such seizures. Because epilepsy is
a disease that involves the recurrence of seizures,
the underlying dynamics of the disease over time
are crucial to consider when developing treat-
ment strategies [13]. Ordinary differential equation
models specifically describe dynamics over time
and therefore may be especially useful. Several
models have focused on the excitatory network
thought to be involved in seizure propagation [24]
and the behavior of both excitatory and inhibitory
neurons [15], [22], [23], [25], [26], [27], [28],
[29]. In order to be more representative of the
physiological system being modeled, some models
incorporate a lattice of multiple nodes or clusters
of neurons whose behavior are governed by spe-
cific equations [23], [25].

Often in modeling, fixed parameters are based
on actual measurements. One parameter used in
modeling based on the Hodgkin and Huxley model
[34] is membrane capacitance. Most plasma mem-
branes have a capacitance around 1 µF/cm2 [35]
which suggests that a value of C = 1 is reasonable.
Similar models have explicitly used C = 1 [23],
but there are others that use C = 1 but do
not explicitly include the parameter [24], [25].
However, a value close to (but not equal to) 1 may
result in different model output than a value of
exactly 1. The study in Gentet et al. [36] looked
specifically at membrane capacitance in different
neurons. All of their values were indeed around 1,
but those values for hippocampal neurons (from
eight Wistar rats) were 0.92±0.08 µF/cm2. The
other neuron mean values ranged from 0.85 to 1.06
µF/cm2. Additionally, the measured value of mem-
brane capacitance in neurons may depend greatly
on the measurement techniques used [37]. Hence,
a local sensitivity analysis on the model in the
current study is performed to ascertain the effect

of changes in C on the model output. If the model
output changes greatly with small changes in the
value of C, this parameter is critical to include
when making model predictions or modifying the
equations.

In the current study, a previously developed
model from Larter et al. [25] is modified to be
more defined with respect to units and to be more
consistent with previous literature. Additionally,
the revised model incorporates a more specific
time delay. In the course of modifying the model
from Larter et al. [25], a parameter denoting mem-
brane capacitance is reintroduced in the model.
This parameter, referred to as C, is expected to
have a value close to 1 µF/cm2. A sensitivity anal-
ysis is performed in order to determine if values
of C that are close to but not equal to one will
have a large impact on model predictions. Because
the model involves delay differential equations,
the sensitivity investigations will be performed
computationally. The impact of small changes in
the value of C are important since the Larter
model essentially eliminates the parameter C by
setting it equal to one [25]. Hence, this study is
intended to model membrane potential changes
in the hippocampus using foundational equations
[34], [38] in context with the addition of inhibitory
neurons in a similar way to the study in Larter
et al. [25]. Further, this study investigates the
importance on the accuracy of the value of the
membrane capacitance parameter when making
predictions using this model. The parameter for
time delay is also varied in the process of the
investigation.

II. MATERIALS AND METHODS

A. Model Structure and Development

The study in Larter et al. [25] used a system
of three ordinary differential equations to describe
membrane potentials of excitatory and inhibitory
neurons in each node of a 36×36 lattice. The
lattice was intended to represent the CA3 region of
the hippocampus because this region is a common
location of the epileptic focus. The model in Larter
et al. [25] is based on equations describing voltage
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oscillations in the barnacle giant muscle fiber [38]
which itself is based on a model by Hodgkin and
Huxley [34]. The foundation for the pyramidal
(excitatory) nerve equations in Larter et al. [25] is
a model of a single voltage-dependent conductance
in which the calcium (Ca2+) system is assumed to
be much faster than the potassium (K+) system
as described in the study by Morris and Lecar
[38]. Larter et al. [25] adds one additional dif-
ferential equation in each node for the inclusion
of inhibitory neurons.

The units of the model in Larter et al. [25]
are primarily arbitrary, but the units in the source
equations are specifically defined. The models in
earlier studies [34], [38] used a particular param-
eter, C (membrane capacitance, µF/cm2), but the
model in Larter et al. [25] essentially eliminates
this parameter by setting C = 1, which is a
reasonable value [35], [36] and has been used in
other similar models [23]. Additionally, Larter et
al. [25] did not use delay differential equations but
did incorporate a time difference when modeling
K+ transfer from surrounding nodes.

The model in the current study is similar in
concept to the model in Larter et al. [25] in that it
incorporates the effect of inhibitory neurons, but
the current model uses two equations per node
for this effect instead of one. These equations are
changed in order to model the membrane potential
of inhibitory cells the same way the potential of
the excitatory neurons are described in Larter et
al. [25] and to be more similar to previous models
[23], [34], [38]. Sodium channels, Na+, are repre-
sented (instead of calcium channels) as in [34].
Additionally, a continuous delay is used when
describing K+ transfer from surrounding nodes,
and membrane capacitance (C) is reintroduced
as an explicit parameter. Both of these changes
were made to make the model more physically
representative. The updated equations for each

TABLE I
DESCRIPTIONS AND VALUES OF PARAMETERS USED IN

EQUATIONS (1)-(4). ALL VALUES BELOW WERE USED IN
THE MODEL IN LARTER et al. [25] EXCEPT FOR VL (NOTED

WITH ∗ BELOW), WHICH WAS ALTERED TO MAKE MODEL
OUTPUT MORE CYCLIC.

Units Description Value
gVNa mS/cm2 total conductance for Na+ 1.1

channels
gVK mS/cm2 total conductance for K+ 2.0

channels
gVL mS/cm2 total conductance of leakage 0.5

channels
gZNa mS/cm2 total conductance for Na+ set as gVNa

channels
gZK mS/cm2 total conductance for K+ set as gVK

channels
gZL mS/cm2 total conductance of leakage set as gVL

channels
VNa mV equilibrium potential for 1

Na+ conductances
VL mV equilibrium potential for 0.01∗

leak conductances
ZNa mV equilibrium potential for set as VNa

Na+ conductances
ZL mV equilibrium potential for set as VL

leak conductances
I µA/cm2 applied current 0.30

node are presented below:

dVi
dt

=
1

C

[
−gVNam∞(Vi)(Vi − VNa)

−gVKWi(Vi − V K
i ) −gVL (Vi − VL) + I

]
−αinh(Zi)Zi (1)

dWi

dt
=

(w∞(Vi)−Wi)

τw(Vi)
(2)

dZi

dt
=

1

C

[
−gZNam∞(Zi)(Zi − ZNa)

−gZKNi(Zi − ZK
i ) −gZL (Zi − ZL) + I

]
+αexc(Vi)Vi (3)

dNi

dt
=

(n∞(Zi)−Ni)

τn(Zi)
. (4)

The states at each node i are Vi, the membrane
potential of the pyramidal cells; Zi, the membrane
potential of the inhibitory cells; and Wi and Ni,
relaxation factors. Descriptions of the parameters
(other than C) and their fixed values are presented
in Table I.
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Equations (1) and (2) are the same as in
the Larter model [25] with the parameter for
membrane capacitance, C (µF/cm2) explicitly in-
cluded and a temperature scaling factor removed.
Equation (1) is directly from the model from
Morris and Lecar [38] with an additional loss
term, αinh(Zi)Zi, representing the effect of the
inhibitory neurons on the membrane potential of
the pyramidal cells. The equation for Zi from
Larter et al. [25] was replaced in this study with
a differential equation (equation (3) above) that is
similar in structure to equation (1). In equation (3),
the excitatory effect on the inhibitory cells is
modeled through an additive term, αexc(Vi)Vi,
which is similar to the way that effect was modeled
by Larter et al. [25]. The rest of equation (3) is
directly from the Morris and Lecar model [38].
Both equations (1) and (3) are based on the Mor-
ris and Lecar model of single voltage-dependent
conductance in which the Ca2+ system is assumed
to be much faster than the K+ system [38], and
a similar assumption is made here for the Na+

channels. Equation (4) is similar to equation (2)
and is added in order to model a relaxation factor
for the inhibitory neurons in the same way a sim-
ilar relaxation factor is modeled for the excitatory
neurons.

The additional functions used in equations (1)-
(4) are defined below:

m∞(Xi) = 0.5

[
1 + tanh

(
Xi − x1
x2

)]
(5)

w∞(Xi) = 0.5

[
1 + tanh

(
Xi − x3
x4

)]
(6)

n∞(Xi) = w∞(Xi) (7)

αexc(Vi) = aexc

[
1 + tanh

(
Vi − x5
x6

)]
(8)

αinh(Zi) = ainh

[
1 + tanh

(
Zi − x7
x6

)]
(9)

τw(Xi) =

[
cosh

(
Xi − x3
2x4

)]−1
= τn(Xi)

(10)

where Xi is either Vi or Zi. The functions defined
in equations (5)-(10) were used the Larter model

[25] as taken from the model by Morris and Lecar
[38]. Other studies have used different functions
that are also sigmoidal [23], [24], [27]. The no-
tation of the constants in equations (5)-(10) has
been changed from the Larter model [25] in order
to avoid confusion. Lowercase letters are now
used so that constants will not be confused with
state values at particular nodes. The parameter
values used in equations (5)-(10) are presented in
Table II. The additional functions added in the
current study, τn(Zi) and n∞(Zi), are defined
identically to functions with a similar purpose.
Equations (5) and (6) represent the fraction of open
voltage-regulated Na+ channels, and the effect of
excitation or inhibition is modeled in a similar way
in equations (8) and (9). Equations (5), (6), and
(10) were also used in the Larter model [25] and
taken directly from the study by Morris and Lecar
[38]. More information on the functions used in
equations (5)-(10) can be found in the study by
Larter et al. [25].

The model in Larter et al. [25] did not use
delay differential equations but did incorporate a
time step when modeling the change in mem-
brane potential due to extracellular potassium. The
quantity V K

i in the current study and in Larter et
al. [25] models how the membrane potential of
surrounding nodes affects node i. In the current
study, however, this effect is modeled using a delay
term as described below

XK
i =

∑
j

Xj(t− τ)

6
− 1

2
(11)

where j indicates the number of a node adjacent to
node i and X represents either V or Z. Each node
is assumed to contribute equally to an adjacent
node and periodic boundary conditions are used.
Hence, Xj(t − τ)/6 is the delayed contribution
of node j to node i for either excitatory (V ) or
inhibitory (Z) neurons. The lattice used in the
current study is similar in structure to that used in
the Larter et al. study [25] in that it is composed
of hexagonal “nodes.” The current study uses a
smaller lattice as shown in Figure 1. Nodes are
numbered beginning with the upper left corner
and proceeding left to right and on to additional
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Fig. 1. Illustration of the lattice used in the simulations.

rows. This illustration also includes a closer view
of the six nodes surrounding any internal node.
Conceptually, the lattice in the current study does
differ from that of other studies [23] in that
the inhibitory cells are considered to affect other
inhibitory nodes surrounding them. The lattice is
intended to represent populations of cells (as with
[23]) which conforms to the strategy of using
variables not at a microscopic but at a macroscopic
level as used in the study by Kaneko [39].

Although the authors from Larter et al. [25]
did not use τ , their model used an integration
time period, tint, which functioned in a similar
capacity. Larter et al. discovered that the lattice
became synchronized, i.e., the difference between
node values was negligible, if tint fell below a
particular threshold (13.5 in arbitrary units) and
used various values of tint for their simulations
(including a value as high as tint = 48). Because
the current study uses a somewhat different model
framework for this time value and because τ
is specifically defined in seconds in the current
model, τ = 1, 2, 5, and 10 s were used for the

TABLE II
DESCRIPTIONS AND VALUES OF PARAMETERS USED IN

EQUATIONS (5)-(11). ALL VALUES BELOW WERE USED IN
THE MODEL IN LARTER et al [25] ALTHOUGH THE

NOTATION HAS CHANGED IN SOME CASES. VARIOUS
VALUES WERE USED FOR SOME PARAMETERS IN LARTER

et al. [25], BUT ONLY ONE WAS SELECTED FOR THIS
INVESTIGATION. THESE VALUES ARE NOTED WITH AN

ASTERIX (*).

Param. Units Description Value
x1 mV threshold value for m∞ for Vi -0.01
x2 mV steepness parameter for m∞ for Vi 0.15
x3 mV threshold value for w∞ for Vi 0.0
x4 mV steepness parameter for w∞ for Vi 0.30
x5 mV threshold value for αexc 0.0
x6 mV steepness parameter for αexc 0.6∗

and αinh

x7 mV threshold value for αinh 0.0
aexc strength of excitatory synapse 1.0∗

ainh strength of inhibitory synapse 1.0∗

simulations in order to visually evaluate sensitivity.
The leak conductance parameter VL was altered
in order to make the solutions exhibit more cyclic
behavior, i.e., so that the node potentials did not
continue to increase or to decrease.
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B. Computational Methods

Due to computational restrictions, a smaller
lattice size (20× 20) was used than in the model
from Larter et al. [25]. The differential equations
representing the system, (1)-(4) were solved nu-
merically for C = 0.8, C = 1.0, and C = 1.2
and various values of τ . All simulations were
performed using Wolfram Mathematica, version
9.0. The state values for t < 0 were set equal
to their respective initial conditions, and initial
conditions did not vary across the lattice. The
simulations were run for 350 seconds in order to
allow the curves to approach a repeated cycle. The
last 150 seconds were used for plotting and are
intended to represent a general time period of that
length.

The Larter model on which the current study
is based investigated the difference in membrane
potential between nodes as a measure of synchro-
nization of the lattice [25] because synchronization
may be an indication of epileptic phenomenon [1],
[2], [32], [27]. A similar analysis was conducted
in the current study, and nodes 43 and 358 were
chosen for investigation because they were not on
the boundary and relatively distant from each other
as is shown in Figure 1.

III. RESULTS

In order to determine how the reduction in lat-
tice size affected results, computational solutions
were generated using a 6×6, 10×10, and 20×20
lattice and compared. Values of C = 1, and τ = 1
were fixed for these solutions. Nodes 9 and 28, 23
and 78, and 43 and 358 were investigated for the
6× 6, 10× 10, and 20× 20 lattices, respectively.
Figure 2 contains graphs of the differences in
the membrane potentials between the investigated
nodes, and differences can be seen in the node
differences for both excitatory and inhibitory po-
tentials.

Selected plots of the computational solutions
to equations (1)-(4) are presented in Figures 3-
9. The solution curves correspond to membrane
potentials and their sensitivities for nodes 43 and
358 on a 20×20 lattice. The membrane potentials

of excitatory cells at nodes 43 and 358 versus
time are presented in Figure 3. (The choice of
nodes 43 and 358 for investigation is discussed in
Section II-B.) Similarly, the membrane potentials
of inhibitory nodes versus time are presented in
Figure 4. Three curves are presented in each of
these figures which represent solutions using three
different values of C. Different solution curves
are apparent for the three values of C, and the
largest range of excitatory output is present when
C = 0.8 for most of the investigated values of τ .
Additionally the largest magnitude of inhibitory
output in the investigation occurs when C = 0.8
for most investigated values of τ . For cases (such
as τ = 5) when the output ranges are larger for
simulations using other values of C, there are
visible differences in model output for various
values of C.

An examination of the results for the mem-
brane potential in excitatory neurons (presented
in Figure 3) would suggest that changes in the
membrane capacitance (C) result in changes in
the amplitude and phase of the oscillations. Also,
it appears that changes in the delay parameter (τ )
lead to a change in the period/frequency of the os-
cillations in the membrane potential, as well as the
amplitude. Variation in the membrance capacitance
and the delay parameter lead to similar changes in
the membrane potential in the inhibitory neurons
(presented in Figure 4), although changes in the
capacitance also seem to affect the baseline of the
oscillations.

Differences between predictions at node 43 and
node 358 are presented in Figure 5. These differ-
ences are plotted in order to ascertain if the two
nodes are predicted to exhibit the same behavior
with time. The magnitude of these differences is
similar in scale to model output for excitatory and
inhibitory cells, which indicates that the model
is predicting different values at the investigated
nodes when time is fixed.

The membrane potentials for the inhibitory
cells shown in Figure 4 and for the pyramidal
cells shown in Figure 3 are plotted for individual
nodes in Figures 6-9. Each individual graph in
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310 320 330 340 350
time HsL

-0.4

-0.2

0.0

0.2

0.4

V j -Vk

(a) Vi − Vj

310 320 330 340 350
time HsL

-0.4

-0.2

0.0

0.2

0.4

Z j -Zk

(b) Zi − Zj

Fig. 2. Computational solution curves for the differences in membrane potential over different lattice sizes plotted versus
time in seconds with C = 1 and τ = 1. (a) Solution curves for V9−V28(circles),V23−V78(squares), and V43−V358(triangles).
(b) Solution curves for Z9 − Z28(circles),Z23 − Z78(squares), and Z43 − Z358(triangles).

these figures represents the behavior of inhibitory
cells versus the behavior of excitatory cells at an
individual node and specific value of membrane
capacitance at a particular value of τ . The shapes
of these curves remained fairly consistent with
changes in the value of C but the cycles were
more erratic for increasing values of τ .

Differences in predictions for inhibitory nodes
and excitatory nodes are plotted in Figure 10, and
the highest differences (in magnitude) between
nodes are presented in Table III for each inves-
tigated value of C and τ .

TABLE III
THE MAXIMUM MAGNITUDE DIFFERENCE BETWEEN

NODES FOR EACH INVESTIGATION.

Type, τ C = 0.8 C = 1 C = 1.2

V , τ = 1 0.295 -0.362 -0.336
Z, τ = 1 0.078 0.093 0.104
V , τ = 2 0.251 -0.237 -0.203
Z, τ = 2 0.058 0.064 0.062
V , τ = 5 -0.675 0.572 -0.939
Z, τ = 5 0.317 -0.832 1.050
V , τ = 10 0.664 -0.427 -0.409
Z, τ = 10 0.370 0.176 0.190
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310 320 330 340 350
time HsL
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Vi

(a) V43, τ = 1

310 320 330 340 350
time HsL
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0.1

0.2
V

(b) V358, τ = 1

310 320 330 340 350
time HsL

-0.3

-0.2

-0.1

0.0

0.1

0.2
Vi

(c) V43, τ = 2

310 320 330 340 350
time HsL

-0.3

-0.2

-0.1

0.0

0.1

0.2
Vi

(d) V358, τ = 2

310 320 330 340 350
time HsL

-1.0

-0.5

0.0

0.5

V

(e) V43, τ = 5

310 320 330 340 350
time HsL

-1.0

-0.5

0.0

0.5

Vi

(f) V358, τ = 5

310 320 330 340 350
time HsL

-0.6

-0.4

-0.2

0.0

0.2

0.4
Vi

(g) V43, τ = 10

310 320 330 340 350
time HsL

-0.6

-0.4

-0.2

0.0

0.2

0.4
Vi

(h) V358, τ = 10

Fig. 3. Computational solution curves for Vi with C = 0.8 (circles), C = 1 (squares), and C = 1.2 (triangles) versus time
in seconds. Solution curves are presented for V43 and V358 for τ = 1 s (a,b), τ = 2 s (c,d), τ = 5 s (e,f), and τ = 10 s (g,h).
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300 310 320 330 340 350
time HsL0.15
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0.35

0.40
Zi

(a) Z43, τ = 1

300 310 320 330 340 350
time HsL0.15

0.20

0.25

0.30

0.35

0.40
Zi

(b) Z358, τ = 1

300 310 320 330 340 350
time HsL0.10

0.15

0.20

0.25

0.30

0.35
Zi

(c) Z43, τ = 2

300 310 320 330 340 350
time HsL0.10

0.15

0.20

0.25

0.30

0.35
Zi

(d) Z358, τ = 2

310 320 330 340 350
time HsL

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Z

(e) Z43, τ = 5

310 320 330 340 350
time HsL

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Zi

(f) Z358, τ = 5

300 310 320 330 340 350
time HsL0.0

0.1

0.2

0.3

0.4

0.5

Zi

(g) Z43, τ = 10

300 310 320 330 340 350
time HsL0.0

0.1

0.2

0.3

0.4

0.5

Zi

(h) Z358, τ = 10

Fig. 4. Computational solution curves for Zi with C = 0.8 (circles), C = 1 (squares), and C = 1.2 (triangles) versus time
in seconds. Solution curves are presented for V43 and V358 for τ = 1 s (a,b), τ = 2 s (c,d), τ = 5 s (e,f), and τ = 10 s (g,h).
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(a) V43 − V358, τ = 1
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(b) Z43 − Z358, τ = 1
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Fig. 5. Computational solution curves for the differences between nodes with C = 0.8 (circles), C = 1 (squares), and
C = 1.2 (triangles) versus time in seconds. Solution curves are presented for V43 − V358 and Z43 − Z358 for τ = 1 s (a,b),
τ = 2 s (c,d), τ = 5 s (e,f), and τ = 10 s (g,h).
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Fig. 6. Computational solution curves for the inhibitory node potentials versus pyramidal node potentials for τ = 1 for (a)
C = 0.8 at node i = 43, (b) C = 0.8 at node i = 358, (c) C = 1.0 at node i = 43, (d) C = 1.0 at node i = 358, (e)
C = 1.2 at node i = 43, and (f) C = 1.2 at node i = 358. The time periods correspond to those used in Figures 3, 4, and 5.
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Fig. 7. Computational solution curves for the inhibitory node potentials versus pyramidal node potentials for τ = 2 for (a)
C = 0.8 at node i = 43, (b) C = 0.8 at node i = 358, (c) C = 1.0 at node i = 43, (d) C = 1.0 at node i = 358, (e)
C = 1.2 at node i = 43, and (f) C = 1.2 at node i = 358. The time periods correspond to those used in Figures 3, 4, and 5.
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Fig. 8. Computational solution curves for the inhibitory node potentials versus pyramidal node potentials for τ = 5 for (a)
C = 0.8 at node i = 43, (b) C = 0.8 at node i = 358, (c) C = 1.0 at node i = 43, (d) C = 1.0 at node i = 358, (e)
C = 1.2 at node i = 43, and (f) C = 1.2 at node i = 358. The time periods correspond to those used in Figures 3, 4, and 5.
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Fig. 9. Computational solution curves for the inhibitory node potentials versus pyramidal node potentials for τ = 10 for
(a) C = 0.8 at node i = 43, (b) C = 0.8 at node i = 358, (c) C = 1.0 at node i = 43, (d) C = 1.0 at node i = 358, (e)
C = 1.2 at node i = 43, and (f) C = 1.2 at node i = 358. The time periods correspond to those used in Figures 3, 4, and 5.
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Fig. 10. Computational solution curves for the inhibitory node potential differences versus pyramidal node potential differences
for different values of τ . Note that the first column of figures contains graphs for C = 0.8, the middle column contains graphs
for C = 1, and the rightmost column contains graphs for C = 1.2. The four rows of figures correspond to the four values of
τ investigated (1, 2, 5, and 10 s). The time periods correspond to those used in Figures 3, 4, and 5.
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IV. CONCLUSIONS

A model describing the change in membrane
potential in excitatory and inhibitory neurons in
the CA3 region of the hippocampus [25] was
modified to more explicitly contain a parameter
representing membrane capacitance. The revised
model uses ordinary differential equations for both
excitatory cells (Vi) and for inhibitory cells (Zi),
and revisions included adapting equations for Zi to
be more similar to those for Vi. The revised model
also incorporates delay differential equations to
allow for signaling between nodes. A smaller
lattice size was used in the current investigation
than in the previous model [25], and variation
between nodes does appear to increase with lattice
size as shown in Figure 2.

In order to ascertain the importance of an explicitly
defined capacitance parameter, model output was
generated for various values of C and τ . As shown
in Figures 3-10, values of C above and below 1
result in different model output for values of Vi
and Zi and affect the level of synchronization of
the lattice the model predicts.

The model output is sensitive to changes in the
value of C (for various values of τ ) which in-
dicates that the accuracy of this parameter does
affect model predictions. Hence, these results show
how critical the choice of C is because C = 0.8
may be more realistic a value for C for hip-
pocampal neurons than the more commonly used
C = 1 [36]. Model output is also affected by
values of τ , with larger values of τ resulting in
more oscillation.

Assumptions were made in the process of gen-
erating simulations, such as choosing similar pa-
rameters for inhibitory and excitatory nodes. Pa-
rameters such as channel conductances may vary
and may affect model output [24]. In this study,
all parameters were fixed except for C and τ in
the local, visual sensitivity analysis. Because the
sensitivity analysis was local and visual, changes

in other fixed parameters may affect output results.
However, changes in model predictions were seen
for different values of C which shows that for
some sets of parameters, the model does depend
on the value of C, and hence, the results indicate
that C is important to accurate model output. The
model also appears to be sensitive to the parameter
τ and additional investigation on that parameter
may be necessary as well.

Another aspect of the current study that may
affect simulation output is the size of the lattice.
The lattice used in the current study had fewer
nodes than in the Larter model [25]. Because
the nodes represent groups of cells rather than
individual neurons, the 20 × 20 lattice can be
viewed as a coarser representation of the same
system. A reduced lattice was also used in the
current study for simplicity because the introduc-
tion of the delay and modeling inhibitory node
communication increased computational difficulty.

The model in the current study describes
changes in membrane potential in excitatory and
inhibitory cells in the hippocampus and is based
on previous models [25], [34], [38]. This system
of differential equations is intended to help under-
stand epileptic seizures, and innovative treatment
strategies may be developed through this under-
standing. The model is rooted in the specifics of
the Hodgkin and Huxley model [34] and later
simplifications of that model [38], but information
may be learned about the overall system by using
these simplifications [14]. Additionally, the num-
ber of elderly patients with epilepsy and seizure
disorders is likely increasing but access to relevant
tissue samples can be problematic [41]. Predic-
tive mathematical models based on physiological
mechanisms are potentially useful in identifying
changes with age that affect seizures and hence
may be useful in identifying treatment strategies
for epileptic patients of various ages. The structure
of the model may not reveal all aspects of epilepsy
at this point, but more can be learned through
refining and further investigation of this system
through mathematics.
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