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Abstract—In this paper, we propose a model
of transmission of arboviruses, which takes into
account a future vaccination strategy in human
population. A qualitative analysis based on stability
and bifurcation theory reveals that the phenomenon
of backward bifurcation may occur; the stable
disease-free equilibrium of the model coexists with
a stable endemic equilibrium when the associated
reproduction number, R0, is less than unity. We
show that the backward bifurcation phenomenon
is caused by the arbovirus induced mortality. Using
the direct Lyapunov method, we prove the global
stability of the trivial equilibrium. Through a global
sensitivity analysis, we determine the relative impor-
tance of model parameters for disease transmission.
Simulation results using a nonstandard qualitatively
stable numerical scheme are provided to illustrate
the impact of vaccination strategy in human com-
munities.

Keywords-Mathematical model; Arboviral dis-
ease; Vaccination; Stability; Backward bifurcation;
Sensitivity analysis; Nonstandard numerical scheme.

I. INTRODUCTION

Arboviral diseases are affections transmitted by
hematophagous arthropods. There are currently
534 viruses registered in the International Cat-
alogue of Arboviruses and 25% of them have
caused documented illness in humans [20], [49],
[42]. Examples of these kinds of diseases are
dengue, yellow fever, Saint Louis fever, en-
cephalitis, West Nile Fever and chikungunya. A
wide range of arbovirus diseases are transmit-
ted by mosquito bites and constitute a public
health emergency of international concern. Ac-
cording to WHO, dengue, caused by any of four
closely-related virus serotypes (DEN-1-4) of the
genus Flavivirus, causes 50–100 million infections
worldwide every year, and the majority of patients
worldwide are children aged 9 to 16 years [72],
[84], [86]. The dynamics of arboviral diseases like
dengue or chikungunya are influenced by many
factors such as humans, the mosquito vector, the
virus itself, as well as the environment which af-
fects all the present mechanisms of control directly
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or indirectly.
For all mentioned diseases, only yellow fever

has a licensed vaccine. However, some works
are underway for development of a vaccine for
dengue [10], [11], [33], [50], [73], [85], Japanese
encephalitis [73], and Chikungunya [53], [54],
[55], [46]. Moreover, the existence of different
strains of dengue virus, for example, makes the
developpement of an efficient vaccine a challenge
for scientists. However, according to the French
newspaper Le Figaro, the SANOFI laboratory
hopes to market in the second half of 2015, the
first vaccine against dengue fever, with an overall
efficacy of 61% vaccine among young people
aged 9 to 16 years and the rate of protection
against severe dengue 95.5% [39]. Therefore, it
is important to assess the potential impact of such
vaccines in human communities.

As part of the necessary multi–disciplinary re-
search approach, mathematical models have been
extensively used to provide a framework for un-
derstanding arboviral diseases transmission and
control strategies of the infection spread in the host
population. In the literature, considerable works
can be found on the mathematical modeling of
specific arboviral diseases, like West Nile Fever,
yellow fever, dengue and chikungunya, see e.g.
[2], [17], [24], [30], [35], [36], [38], [40], [56],
[60], [61], [64], [68], [79]. Although these models
highlight the means to fight against these ar-
bovirus, few papers deal with models that consider
vaccination [40], [68], [79].

In this paper, we formulate a model, described
by differential equations, in which we include two
aspects: vaccination in the human population and
the aquatic stage in the vectors population.We
perform a qualitative analysis of the model, based
on stability and bifurcation theory. In particular,
we use an approach based on the center manifold
theory [19], [31], [43] to evaluate the occurrence
of a transcritical backward bifurcation and, as a
consequence, the presence of multiple endemic
equilibria when the basic reproduction number
R0 is less than unity. Under the point of view
of disease control, the occurrence of backward

bifurcation has relevant implications for disease
control because the classical threshold condition
R0 < 1, is no longer sufficient to ensure the
elimination of the disease from the population.

The global stability of the trivial equilibrium
and the disease–free equilibrium (the equilibrium
without disease in both populations), whenever the
associated thresholds (the net reproductive number
N and the basic reproduction number R0) are
less than unity, is derived through the use of
Lyapunov stability theory and LaSalle’s invariant
set theorem, and the approach of Kamgang and
Sallet [48], respectively.

Through global sensitivity analysis, we deter-
mine the relative importance of model parameters
for disease transmission. The analysis of the model
is completed by the construction of a nonstandard
numerical scheme which is qualitatively stable.

The rest of this paper is organized as follows. In
Section II, we develop the mathematical model and
give the invariant set in which the model is defined.
In Section III, we compute two thresholds: the net
reproductive number N and the basic reproduction
number R0. Depending of the values of these
thresholds, we identify two disease–free equilibria:
the trivial equilibrium which corresponds to the
extinction of vectors, when N ≤ 1, and the
disease-free equilibrium (DFE) when N > 1 and
R0 < 1. The results concerning the local and
global stability of these two equilibria are also
given. The section IV is devoted to the existence of
endemic equilibria and bifurcation analysis. Vac-
cine impact is evaluated in Section V. Uncertainty
and sensitivity analysis and the construction of a
stable numerical scheme, are made in sections VI
and VII respectively. A conclusion completes the
paper.

II. MODEL FORMULATION, INVARIANT

REGION.

In this section we describe the mathematical
model that we shall study in this paper. The for-
mulation is mostly inspired, with some exceptions,
by the models proposed in [30], [40], [68], [80].
We assume that the human and vector populations
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are divided into compartments described by time–
dependent state variables. This said, the compart-
ments in which the populations are divided are the
following ones:

–For humans, we consider susceptible (denoted
by Sh), vaccinated (Vh), exposed (Eh), infectious
(Ih) and resistant or immune (Rh). Humans sus-
ceptible population is recruited at a constant rates
Λh. Each human subpopulation comes out from
the dynamics at natural mortality rates µh. The
human susceptible population decreased following
infection, which can be acquired via effective con-
tact with an exposed or infectious vector at a rate
λh (the incidence rate of infection for humans),
given by

λh = aβ̃hv
Nv

Nh +m

(ηvEv + Iv)

Nv
= βhv

(ηvEv + Iv)

Nh +m
,

(1)
where m denote the alternatively sources of blood
[1], [80], a is the biting rate per susceptible vector,
β̃hv denotes the probability of transmission of
infection from an infectious vector (Ev or Iv) to
a susceptible human (Sh or Vh). We obtain the
expression of λh as follows: the probability that a
vector chooses a particular human or other source

of blood to bite can be assumed as
1

Nh +m
. Thus,

a human receives in average a
Nv

Nh +m
bites per

unit of times. Then, the infection rate per suscepti-

ble human is given aβ̃hv
Nv

Nh +m

(ηvEv + Iv)

Nv
. In

expression (1), the modification parameter 0 <
ηv < 1 accounts for the assumed reduction in
transmissibility of exposed mosquitoes relative to
infectious mosquitoes. It is worth emphasizing
that, unlike many of the published modelling stud-
ies on dengue transmission dynamics, we assume
in this study that exposed vectors can transmit
dengue disease to humans. This is in line with
some studies (see, for instance [34], [40], [87],
[90]). However, it is significant to note that, in
the case of Chikungunya for example, the exposed
vectors do not play any role in the infectious
process, in this case ηv = 0.

The vaccinated population is generated by vac-
cination of susceptible humans at a rate ξ. Further,

it is expected that any future dengue vaccine
would be imperfect [40], [68]. Thus, vaccinated
individuals acquire infection at a rate (1 − ε)λh
where ε is the vaccine efficacy. Exposed humans
develop clinical symptoms of disease, and move to
the infectious class at rate γh. Infectious humans
may die as consequence of the infection, at a
disease–induced death rate δ, or recover at a rate σ.
It is assumed that individuals successfully acquire
lifelong immunity against the virus.

–Vectors population is classified into four com-
partments: susceptible (Sv), exposed (Ev), infec-
tious (Iv) and aquatic (Av). The aquatic state
includes the eggs, larvae, and pupae. The vector
population does not have an immune class, since
it is assumed that their infectious period ends with
their death. The population of vectors consists
essentially of females which reached adulthood.
A susceptible vector is generated by the adulthood
females at rate θ. The susceptible vector popula-
tion decreased following infection, which can be
acquired via effective contact with an exposed or
infectious human at a rate λv (the incidence rate
of infection for vectors), given by

λv = aβ̃vh
(ηhEh + Ih)

Nh

Nh

Nh +m
= βvh

(ηhEh + Ih)

Nh +m
(2)

where β̃vh is the probability of transmission of
infection from an infectious human (Eh or Ih) to
a susceptible vector (Sv), where the modification
parameter 0 ≤ ηh < 1 accounts for the relative
infectiousness of exposed humans in relation to
infectious humans. Here too, it is assumed that
susceptible mosquitoes can acquire infection from
exposed humans [23], [40]. Exposed vectors move
to the infectious class with the rate γv. As in the
case of the outbreak of Chikungunya on Réunion
Island, it has been shown that lifespan of the
infected mosquitoes is almost halved. This par-
ticular feature of infected mosquitoes therefore
influences the dynamics of the disease [32], [30].
Thus, following Dumont and coworkers [29], [30],
we assume in this work that the lifespan of a
vector depends on its epidemiological status. So
the average lifespan for susceptible mosquitoes is
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TABLE I
THE STATE VARIABLES OF MODEL (3).

Humans Vectors
Sh: Susceptible Av Aquatic
Vh: Vaccined Sv: Susceptible
Eh: Infected Ev: Exposed
Ih: Infectious Iv: Infectious
Rh: Resistant (immune)

1/µv days, the average lifespan of the exposed
mosquitoes is 1/µ1 days and the average adult
lifespan for infected vector is 1/µ2. Thus, we have
1/µ2 ≤ 1/µ1 ≤ 1/µv (with equality for other
arboviral diseases). We do not consider vertical
transmission in this work, so only susceptible
humans are recruited, and vectors are assumed to
be born susceptible.

We are now in position to write the model (the
meaning of the state variables and parameters are
summarized in Table I and Table II:

Ṡh = Λh − λhSh − ξSh − µhSh
V̇h = ξSh − (1− ε)λhVh − µhVh
Ėh = λh [Sh + (1− ε)Vh]− (µh + γh)Eh
İh = γhEh − (µh + δ + σ)Ih
Ṙh = σIh − µhRh
Ȧv = µb

(
1− Av

K

)
(Sv + Ev + Iv)− (θ + µA)Av

Ṡv = θAv − λvSv − µvSv
Ėv = λvSv − (µ1 + γv)Ev
İv = γvEv − µ2Iv

(3)
In model (3) the upper dot denotes the time deriva-
tive. K denote the carrying capacity of breeding
sites. The parameter K is highly dependent on
some factors such as (the location, temperature,
season). In this work, we follow Dumont and Chi-
roleu [30], and consider, in our sensitive analysis,
that K depend of the location, thus K = χNh,
where χ is a positive integer which represent the
location and Nh the human population size. For
example, in the year 2005 at Saint-Denis and
Saint-Pierre in Réunion island, χ = 2) [30]. µb
represent the number of eggs at each deposit per
capita and µA is the natural mortality of larvae.

TABLE II
DESCRIPTION OF PARAMETERS OF MODEL (3).

Parameter Description

Λh Recruitment rate of humans
ξ Vaccine coverage
ε The vaccine efficacy

ηh, ηv Modification parameters
β̃hv Probability of transmission of infection

from an infectious vector to a susceptible human
β̃vh Probability of transmission of infection

from an infectious humans to a susceptible vector
γh Progression rate from Eh to Ih
γv Progression rate from Ev to Iv
µh Natural mortality rate in humans
µv Natural mortality rate of susceptible vectors
µA Natural mortality of larvae
µ−1
1 Average lifespan of exposed mosquitoes
µ−1
2 Average lifespan of infected mosquitoes
θ Maturation rate from larvae to adult
δ Disease–induced death rate in humans
σ Recovery rate for humans
a Average number of bites
m Number of alternative source of blood
K Capacity of breeding sites
µb Number of eggs at each deposit per capita

We set π = 1− ε, k1 = µh + ξ, k2 = µh + γh,
k3 = µh + δ + σ, k4 = µ1 + γv, k6 = µA + θ.

Let Nh the total human population and Nv the
total of adult vectors, i.e. Nh = Sh + Vh + Eh +
Ih +Rh and Nv = Sv +Ev + Iv. System (3) can
be rewritten in the following way

dX

dt
= A(X)X + F (4)

with X = (Sh, Vh, Eh, Ih, Rh, Av, Sv, Ev, Iv)
T ,

A(X) = (Aij)1≤i,j≤9 were A1,1 = −(λh + k1),
A2,1 = ξ, A2,2 = −(πλh + µh), A3,1 = λh,
A3,2 = πλh, A3,3 = −k2, A4,3 = γh, A4,4 =
−k3, A5,4 = σ, A5,5 = −µh, A6,7 = A6,8 =
A6,9 = µb, A7,6 = θ, A7,7 = −(λv + µv),
A8,7 = λv, A8,8 = −k4, A9,8 = γv, A9,9 = −µ2,

A6,6 = −
(
k6 + µb

Sv + Ev + Iv
K

)
and the other

entries of A(X) are equal to zero; and F =
(Λh, 0, 0, 0, 0, 0, 0, 0, 0)T .

Note that A(X) is a Metzler matrix, i.e. a matrix
such that off diagonal terms are non negative [8],
[47], for all X ∈ R9

+. Thus, using the fact that
F ≥ 0, system (4) is positively invariant in R9

+,
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which means that any trajectory of the system
starting from an initial state in the positive orthant
R9

+, remains forever in R9
+. The right-hand side

is Lipschitz continuous: there exists an unique
maximal solution.

On the other hand, from the first four equations
of model system (3), it follows that

Ṅh(t) = Λh − µhNh − δIh ≤ Λh − µhNh. (5)

So that

0 ≤ Nh(t) ≤ Λh
µh

+

(
Nh(0)− Λh

µh

)
e−µht. (6)

Thus, at t −→∞, 0 ≤ Nh(t) ≤ Λh
µh

.

From the last three equations of model system
(3), it also follows that

Ṅv(t) = θAv − µvSv − µ1Ev − µ2Iv

≤ θAv − µvNv.
(7)

So that

0 ≤ Nv(t) ≤
θAv
µv

+

(
Nv(0)− θAv

µv

)
e−µvt.

(8)

Thus, at t −→ ∞, 0 ≤ Nv(t) ≤
θK

µv
since

Av ≤ K. Therefore, all feasible solutions of model
system (3) enter the region:

D =
{

(Sh, Vh, Eh, Ih, Rh, Av, Sv, Ev, Iv) ∈ R9 :

Sh + Vh + Eh + Ih +Rh ≤
Λh
µh

;Av ≤ K;

Sv + Ev + Iv ≤ θK/µv} .
III. THE DISEASE–FREE EQUILIBRIA AND

STABILITY ANALYSIS

Now let N the net reproductive number [25]
given by

N =
µbθ

µv(θ + µA)
. (9)

We prove the following result
Proposition 3.1: a) If N ≤ 1, then, system

(3) has only one trivial disease–free equilibrium

TE := P0 =

(
Λh
k1
,
ξΛh
µhk1

, 0, 0, 0, 0, 0, 0, 0

)
.

b) If N > 1, then, system (3) has a Disease–Free

Equilibrium P1 =
(
S0
h, V

0
h , 0, 0, 0, A

0
v, S

0
v , 0, 0

)
,

with

S0
h =

Λh
k1
, V 0

h =
ξΛh
k1µh

, A0
v = K

(
1− 1

N

)
,

S0
v =

θ

µv
K

(
1− 1

N

)
.

Proof: See Appendix A.
In Proposition 3.1, we have shown that system

(3) have at least two equilibria depending of the
value of treshold N and the basic reproduction
number R0. Precisely, we have proved that when
N ≤ 1, model sytem (3) admits only one equi-
librium called trivial equilibrium (TE := P0).
When N > 1, model sytem (3) admits additionally
the disease–free equilibrium (DFE := P1). We
prove, in the following, that the trivial equilib-
rium is locally and globally asymptotically stable
whenever N ≤ 1. Then, we prove that the trivial
equilibrium is unstable when N > 1, and the
disease–free equilibrium is locally asymptotically
stable whenever R0 < 1. Using Kamgang and
Sallet approach [48], a necessary condition for the
global stabilty of the disease–free equilibrium is
also given.

A. Local stability analysis

The local stability of the trivial equilibrium
and the disease–free equilibrium is given in the
following result:

Proposition 3.2: a) If N ≤ 1, then the trivial
equilibrium TE is locally asymptotically stable.
b) IfN > 1, then the trivial equilibrium is unstable
and the Disease Free Equilibrium P1 is locally
asymptotically stable if R0 < 1 and unstable
if R0 > 1, where R0 is the basic reproduction
number [26], [82], given by

R2
0 =

βhvβvhKθ(πξ + µh)(k3ηh + γh)

(µh + ξ)(µh + γh)(µh + δ + σ)

× Λhµh(µ2ηv + γv)

µvµ2(Λh +mµh)2(µ1 + γv)

(
1− 1

N

)
.

(10)

Proof: See appendix B.
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B. Global stability analysis

1) Global asymptotic stability of the trivial
equilibrium TE := P0:

Proposition 3.3: If N ≤ 1, then, TE := P0 is
globally asymptotically stable on D.

Proof: See Appendix C.
2) Global asymptotic stability of the disease–

free equilibrium : Following [30], we prove that
the disease–free equilibrium DFE := P1 is glob-
ally asymptotically stable under a certain threshold
condition. To this aim, we use a result obtained by
Kamgang and Sallet [48], which is an extension of
some results given in [82]. Using the property of
DFE, it is possible to rewrite (3) in the following
manner{

ẊS = A1(X)(XS −XDFE) +A12(X)XI

ẊI = A2(X)XI
(11)

where XS is the vector representing the state of
different compartments of non transmitting indi-
viduals (Sh, Vh, Rh, Av, Sv) and the vector XI

represents the state of compartments of different
transmitting individuals (Eh, Ih, Ev, Iv). Here,
we have XS = (Sh, Vh, Rh, Av, Sv)

T , XI =
(Eh, Ih, Ev, Iv)

T , X = (XS , XI) and
XDFE =

(
S0
h, V

0
h , 0, 0, 0, A

0
v, S

0
v , 0, 0

)T , with

A1(X) =


−k1 0 0 0 0
ξ −µh 0 0 0
0 0 −µh 0 0
0 0 0 −K6 K7

0 0 0 θ −µv

 ,

A12(X) =


0 0 −a13 −a14 0
0 0 −a23 −a24 0
0 σ 0 0 0
0 0 κ κ 0
−a41 −a42 0 0 0

 ,

A2(X) =


−k2 0 b13 b14

γh −k3 0 0
b31 b32 −k4 0
0 0 γv −µ2

 ,

with K6 =

(
k6 + µb

S0
v

K

)
, K7 =

µb

(
1− Av

K

)
, a13 =

βhvηvSh
Nh +m

, a14 =
βhvSh
Nh +m

,

a23 =
πβhvηvVh
Nh +m

, a24 =
πβhvVh
Nh +m

,

a41 =
βvhηhSv
Nh +m

, a42 =
βvhSv
Nh +m

, b13 =
βhvηvH

Nh +m
,

b14 =
βhvH

Nh +m
, b31 =

βvhηhSv
Nh +m

, b32 =
βvhSv
Nh +m

,

κ = µb

(
1− Av

K

)
and H = (Sh + πVh).

A direct computation shows that the eigenvalues
of A1(X) are real and negative. Thus the system
ẊS = A1(X)(XS−XDFE) is globally asymptot-
ically stable at XDFE . Note also that A2(X) is a
Metzler matrix, i.e. a matrix such that off diagonal
terms are non negative [8], [47].

Following D, we now consider the bounded set
G:

G =
{

(Sh, Vh, Eh, Ih, Rh, Av, Sv, Ev, Iv) ∈ R9 :

Sh ≤ Nh, Vn ≤ Nh, Eh ≤ Nh, Ih ≤ Nh, Rh ≤ Nh,

N̄h = Λh/(µh + δ) ≤ Nh ≤ N0
h = Λh/µh;

Av ≤ K;Sv + Ev + Iv ≤ θK/µv} .

Let us recall the following theorem [48]
Theorem 3.1: Let G ⊂ U = R5 × R4. The

system (11) is of class C1, defined on U . If

(1) G is positively invariant relative to (11).
(2) The system ẊS = A1(X)(XS − XDFE) is

Globally asymptotically stable at XBRDFE .
(3) For any x ∈ G, the matrix A2(X) is Metzler

irreducible.
(4) There exists a matrix Ā2 , which is an upper

bound of the set
M = {A2(x) ∈M4(R) : x ∈ G} with the
property that if A2 ∈ M, for any x̄ ∈ G,
such that A2(x̄) = Ā2, then x̄ ∈ R5 × {0}.

(5) The stability modulus of Ā2,
α(A2) = max

λ∈sp(A2)
Re(λ) satisfied α(A2) ≤

0.

Then the DFE is GAS in G. (See [48] for a proof).
Let us now verify the assumptions of the previous
theorem: it is obvious that conditions (1–3) of the
theorem are satisfied. An upper bound of the set
of matrices M, which is the matrix Ā2 is given

Biomath 4 (2015), 1507241, http://dx.doi.org/10.11145/j.biomath.2015.07.241 Page 6 of 30

http://dx.doi.org/10.11145/j.biomath.2015.07.241


H. Abboubakar et al., Modeling the Dynamics of Arboviral Diseases ...

by

Ā2 =


−k2 0 b̄13 b̄14

γh −k3 0 0
βvhηhS̄v
N̄h +m

βvhS̄v
N̄h +m

−k4 0

0 0 γv −µ2

 ,

where b̄13 =
βhvηv(S̄h + πV̄h)

N̄h +m
, b̄14 =

βhv(S̄h + πV̄h)

N̄h +m
, S̄h = S0

h, V̄h = V 0
h , Āv = K,

S̄v =
θ

µv
K, and N̄h =

Λh
(µh + δ)

.

To check condition (5) in theorem 3.1, we will
use the following useful lemma [48] which is the
a characterization of Metzler stable matrices:

Lemma 3.1: Let M be a square Metzler matrix

written in block form
(
A B
C D

)
with A and D

square matrices. M is Metzler stable if and only if
matrices A and
D − CA−1B are Metzler stable.
A necessary condition for a Metzler matrix to be
stable is that the elements on the diagonal are
negative. Note also that A is a Metzler stable
matrix is equivalent to A is invertible and −A−1 ≥
0. Lemma 3.1 allows to reduce the problem of
Metzler stability, by induction, to the stability of
2× 2 Metzler matrices [48]. In our case, we have

A =

(
−k2 0
γh −k3

)
,

B =

 βhvηv(S̄h + πV̄h)

N̄h +m

βhv(S̄h + πV̄h)

N̄h +m
0 0

,

C =

 βvhηhS̄v
N̄h +m

βvhS̄v
N̄h +m

0 0

, and

D =

(
−k4 0
γv −µ2

)
.

Clearly, A is a stable Metzler matrix. Then, after
some computations, we obtain D − CA−1B is a
stable Metzler matrix if and only if

R2
G ≤ 1 (12)

where

R2
G =

βhvβvhKθΛh(ηvµ2 + γv)(k3ηh + γh)

µvµ2µhk1k2k3k4

× (µh + πξ)(µh + δ)2

(Λh +m(µh + δ))2

Thus we claim the following result
Theorem 3.2: If N > 1 and R2

G ≤ 1, then the
disease–free equilibrium P1 is globally asymptot-
ically stable in G.

Remark 3.1: Note that

R2
G = R2

0

(µh + δ)2(Λh +mµh)2

µ2
h(Λh +m(µh + δ))2

(
N
N − 1

)
and condition (12) is equivalent to

R2
0 ≤

(
N − 1

N

)
µ2
h

(µh + δ)2

(Λh +m(µh + δ))2

(Λh +mµh)2

(13)
In absence of disease–induced death in human

(δ = 0), inequality (13) becomes

R2
0 ≤

(
N − 1

N

)
< 1. (14)

This shows that with the establishment of an
effective treatment, it is possible to have R0 and
RG less than 1.

Theorem (3.2) means that for R0 < RG < 1,
the DFE is the unique equilibrium (no co-existence
with an endemic equilibrium). If R0 ∈ [RG, 1],
then it is possible to have co-existence with en-
demic equilibrium. To confirm whether or not the
backward bifurcation phenomenon occurs in this
case, one could use the approach developed in
[19], [31], [82], which is based on the general
center manifold theory [43].

IV. THE ENDEMIC EQUILIBRIA AND

BIFURCATION ANALYSIS

A. Existence of endemic equilibria

We now turn to study the existence of an en-
demic equilibrium of model system (3). Let R0

the basic reproduction number [26], [82] given by
Eq. (10).

we claim the following
Proposition 4.1: LetN > 1 and µv ≤ µ1 ≤ µ2.

Then
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(i) There exists at least one endemic equilibrium
whenever R0 > 1.

(ii) The backward bifurcation phenomenon may
occurs when R0 ≤ 1.

(iii) The disease–induced death is responsible of
the backward bifurcation phenomenon.

(iv) In the absence of the disease–induced death
(δ = 0 and µv = µ1 = µ2), system (4)
have a unique endemic equilibrium whenever
R0 > 1, and the backward bifurcation phe-
nomenon not occurs whenever R0 ≤ 1 (See
remark 4.1).

Proof: See appendix D.

The backward bifurcation phenomenon, in epi-
demiological systems, indicate the possibility of
existence of at least one endemic equilibrium
when R0 is less than unity. Thus, the classical
requirement of R0 < 1 is, although necessary, no
longer sufficient for disease elimination [6], [14],
[40], [75]. In some epidemiological models, it has
been shown that the phenomenon of backward
bifurcation is caused by factors such as nonlinear
incidence (the infection force), disease–induced
death or imperfect vaccine [15], [16], [31], [40],
[70], [75].

It is important to note that case (i) of Proposition
4.1 suggests the possibility of a pithcfork (For-
ward) bifurcation when R0 = 1. Also, case (iv) of
Proposition 4.1 suggests that the principal cause
of occurence of backward bifurcation phenomenon
is the disease-induced death in both humans and
vectors.

In the following remark, we prove that, in
absence of disease–induced death in both pop-
ulations, the disease–free equilibrium is the
unique equilibrium whenever N > 1 and
R0|δ=0,µv=µ1=µ2

< 1. Using the direct Lya-
punov method, we prove the global asymptotic
stability of the disease–free equilibrium whenever
R0|δ=0,µv=µ1=µ2

< 1.

Remark 4.1: Assumed that N > 1.
Let k7 = Λh +mµh, k8 = πξ+µh, k11 = k3ηh +
γh and R1 = R0|δ=0,µv=µ1=µ2

. In the absence of
disease-induced death, i.e, δ = 0 and µv = µ1 =

µ2, Eq. (44) (see appendix D) becomes

λ∗h
[
B02(λ∗h)2 +B01λ

∗
h +B00

]
= 0 (15)

with B02 = k2k3k
2
7πµv + βvhk7k11Λhµhπ > 0,

B00 = k1k2k3k
2
7µhµv

(
1−R2

1

)
and

B01 = k1k2k3k
2
7µvπ

(
1− µhR2

1

)
+ k2k3k

2
7µhµv

+βvhk7k8k11Λhµh.
Equation (15) have only one positive solution

whenever R1 > 1. If R1 ≤ 1, then coefficients
B00, B01, B02 are always positive, and the disease-
free equilibrium is the unique equilibrium. From
this we conclude that the disease–induced mor-
tality is the possible cause for the occurrence of
multiple endemic equilibria below the classical
threshold R1 = 1.

The global stability of the disease–free equilib-
rium may be achieved by Lyapunov method. To
this aim, let us consider the following Lyapunov
function [37], [40]

Y =
4∑
i=1

giIi where I = (Eh, Ih, Ev, Iv) and gi,

i = 1, . . . , 4 are positive weights given by g1 = 1;

g2 =
k2

(k3ηh + γh)
, g3 =

k2k3(N0
h +m)

βvhS0
v(k3ηh + γh)

,

g4 =
βhv

[
S0
h + πV 0

h

]
µ2(N0

h +m)
.

Along the solutions of (3) we have:

Ẏ =
4∑
i=1

giİi = g1Ėh + g2İh + g3Ėv + g4İv

= g1 [λh [Sh + (1− ε)Vh]− (µh + γh)Eh]
+g2 [γhEh − (µh + δ + σ)Ih]
+g3 [λvSv − (µ1 + γv)Ev] + g4 (γvEv − µ2Iv)

=

(
g1
βhvηv [Sh + πVh]

N0
h +m

+ g4γv − g3k4

)
Ev

+

(
g1
βhv [Sh + πVh]

N0
h +m

− g4µ2

)
Iv

+

(
g3
βvhηhSv
N0
h +m

+ g2γh − g1k2

)
Eh

+

(
g3

βvhSv
N0
h +m

− g2k3

)
Ih

After replacing the constants gi, i = 1, . . . , 4
by their value, and using the fact that Sh ≤ S0

h,
Vh ≤ V 0

h , Av ≤ A0
v, and Sv ≤ S0

v in

D1 = {(Sh, Vh, Eh, Ih, Rh, Av, Sv, Ev, Iv) ∈ D :
Sh ≤ S0

h, Vh ≤ V 0
h , Av ≤ A0

v, Sv ≤ S0
v

}
,

Biomath 4 (2015), 1507241, http://dx.doi.org/10.11145/j.biomath.2015.07.241 Page 8 of 30

http://dx.doi.org/10.11145/j.biomath.2015.07.241


H. Abboubakar et al., Modeling the Dynamics of Arboviral Diseases ...

it follows that

Ẏ ≤
(
g1
βhvηv

[
S0
h + πV 0

h

]
N0
h +m

+ g4γv − g3k4

)
Ev

=
k2k3k4(N0

h +m)

βvhS0
v(k3ηh + γh)

(
R2

1 − 1
)
Ev

We have Ẏ ≤ 0 if R1 ≤ 1, with Ẏ = 0 if R1 =
1 or Ev = 0. Whenever Ev = 0, we also have
Eh = 0, Ih = 0 and Iv = 0 . Substituting Eh =
Ih = Ev = Iv = 0 in the first, second, fifth, sixth
and seventh equations of Eq. (3) with δ1 = 0 gives
Sh(t) → S0

h, Vh(t) → V 0
h , Rh(t) → 0, Av(t) →

A0
v, Sv(t)→ S0

v as t→∞. Thus

[Sh(t), Vh(t), Eh(t), Ih(t), Rh(t), Av(t), Sv(t), Ev(t)

, Iv(t)]→ (S0
h, V

0
h , 0, 0, 0, A

0
v, S

0
v , 0, 0) as t→∞.

It follows from the LaSalle’s invariance principle
[45] that every solution of (3) (when R1 ≤ 1),
with initial conditions in D1 converges to P1, as
t → ∞. Hence, the DFE (P1), of model (3), is
GAS in D1 if R1 ≤ 1.

B. Bifurcation analysis

Previous Analysis state that multiple endemic
equilibria may occur althougt R0 < 1. In order
to better investigate the variation of model’s pre-
diction as R0 varied, we perform a bifurcation
analysis at the criticality, i. e. at the Disease–
free Equilibrium DFE := P1 and R0 = 1.
On one hand, this will provide a rigorous proof
that the occurrence of multiple endemic equilibria
comes from a backward bifurcation. On the other
hand, we will get also information on the stability
of equilibria near the criticality. In particular, on
the stability of the endemic equilibrium points
emerging from the criticality. We study the center
manifold near the criticality by using the approach
developed in [19], [31], [82], which is based on the
general centre manifold theory [43]. In summary,
this approach establishes that the normal form
representing the dynamics of the system on the
center manifold is given by u̇ = a?u2 + b?$u,
where, u represent a real function of real variable,

a? =
v

2
·Dxxf(x0, $)w2 ≡

≡
n∑

k,i,j=1

vkwiwj
∂2fk(0, 0)

∂xi∂xj

(16)

and

b? = v ·Dx$f(x0, $)w ≡
n∑

k,i=1

vkwi
∂2fk(0, 0)

∂xi∂$
.

(17)
Note that the symbol $ denotes a bifurcation
parameter to be chosen, fi’s denotes the right hand
side of system (3), x denotes the state vector, x0

the Disease–free Equilibrium P1; v and w denote
the left and right eigenvectors, respectively, cor-
responding to the null eigenvalue of the Jacobian
matrix of system (3) evaluated at the criticality.

In order to apply this approach, let us choose
βhv as bifurcation parameter. From R0 = 1 we
get the critical value

β∗hv =

µvµ2k1k2k3k4(Λh +mµh)2

(
N
N − 1

)
βvhΛhµhKθ(πξ + µh)(µ2ηv + γv) [ηhk3 + γh])

.

Note also that in fk(0, 0), the first zero
corresponds to the disease–free equilibrium,
P1, for the system (3). Since βhv = β∗hv
is the bifurcation parameter, it follows from
$ = βhv − β∗hv that $ = 0 when βhv = β∗hv
which is the second component in fk(0, 0).

The Jacobian matrix of the system (4) evaluated
at the disease–free equilibrium P1 with βhv = β∗hv
is given by

J(P1) =



−k1 0 0 0 0
ξ −µh 0 0 0
0 0 −k2 0 0
0 0 γh −k3 0
0 0 0 σ −µh

0 0 0 0 0

0 0 −βvhηhS
0
v

H
−βvhS

0
v

H

0 0
βvhηhS

0
v

H

βvhS
0
v

H
0

0 0 0 0 0
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0 0 −β
∗
hvηvS

0
h

H
−β

∗
hvS

0
h

H

0 0 −β
∗
hvπηvV

0
h

H
−β

∗
hvπV

0
h

H

0 0
β∗
hvηvS0

H

β∗
hvS0

H
0 0 0 0
0 0 0 0
−K1 K2 K2 K2

θ −µv 0 0
0 0 −k4 0
0 0 γv −µ2


,

where we have set H = N0
h +m, K1 =

µbθ

µv
and

K2 =
k6µv
θ

.

The eigenvalues of the Jacobian matrix J(P1)
are λ1 = −µh, λ2 = −k1, and the other
eigenvalues are the eigenvalue of the following
matrix

J̄ =

−k2 0 0 0
β∗
hvηvS0

H

β∗
hvS0

H
γh −k3 0 0 0 0
0 0 −K1 K2 K2 K2

−
βvhηhS

0
v

H
−
βvhS

0
v

H
θ −µv 0 0

βvhηhS
0
v

H

βvhS
0
v

H
0 0 −k4 0

0 0 0 0 γv −µ2


.

The characteristic polynomial of J̄ is given
by

f(λ) = λ6 +a5λ
5 +a4λ

4 +a3λ
3 +a2λ

2 +a1λ+a0

(18)
with

a0 = −k1k2k3k4k
2
7µ2µbµv(k6µv − µbθ)
k1k2

7µbµv

(
1−R2

0

)
.

The others coefficients a5, a4, a3, a2, and
a1 are obtained after computations on Maxima
software [58], [89]. Since at the criticality, we
have R0 = 1, then a0 = 0, thus equation (18)
becomes
f(λ) = λ

(
λ5 + a5λ

4 + a4λ
3 + a3λ

2 + a2λ+ a1

)
.

Then, the Jacobian J(P1) of the linearized system
has a simple zero eigenvalue and therefore P1 is
a nonhyperbolic equilibrium for R0 = 1. In order
to get the coefficients (16) and (17), we need

to calculate the right and the left eigenvectors
corresponding to the zero eigenvalue.

The right eigenvector of J(P1) is given by
w = (w1, w2, w3, w4, w5, w6, w7, w8, w9)T where

w1 = −
β∗hvk9µhΛh
k2

1γvk7
w9 < 0,

w2 = −
ξΛhβ

∗
hvk9(µh + k1π)

k2
1µhγvk7

w9 < 0,

w3 =
β∗hvΛhk9(µh + k1π)

k1k2k7γv
w9 > 0,

w4 =
β∗hvΛhγhk9(µh + k1π)

k1k2k3k7γv
w9 > 0,

w5 =
β∗hvΛhσγhk9(µh + k1π)

k1k2k3k7µhγv
w9 > 0,

w7 = −βvhµhKθ
µvk7

(
1− 1

N

)
(ηhw3 + w4) < 0,

w8 =
βvhµhKθ

µvk4k7

(
1− 1

N

)
(ηhw3 + w4) > 0,

w6 =
µb

k6N 2
(w7 + w8 + w9) and w9 > 0.

Similarly, J(P1) has a left eigenvector
v = (v1, v2, v3, v4, v5, v6, v7, v8, v9) where

v1 = v2 = v5 = v6 = v7 = 0, v3 =
µvk1k7

βvhΛhk8
v9,

v4 =
βvhKθµh(ηvµv + γv)

k3k4k7µv

(
1− 1

N

)
v9,

v8 =
(ηvµv + γv)

k4
v9 and v9 > 0.

a) Computation of a?: Using the non–zero
components of v and the associated non–zero
partial derivatives of f (at the DFE P1), for system
(3), we obtain

a? =
1

2
v3

9∑
i,j=1

wiwj
∂2f3(0, 0)

∂xi∂xj

+
1

2
v8

9∑
i,j=1

wiwj
∂2f8(0, 0)

∂xi∂xj
.

We finally obtain (See the details in appendix
E)

a? = φ1 − φ2
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where

φ1 =
1

2
v3

{
β∗
hvµh

k1(Λh +mµh)2
[(εξΛh +mµh) (w1 + π w2)

× (w8ηv + w9 + ηv + 1)

−2Λh(µh + πξ) (w3 + w4 + w5) (w8ηv + w9)]}

−
1

2
v8

βvhµ
2
hKθ

µv(Λh + µhm)2

(
1−

1

N

)
w5 (ηhw3 + w4)

+
1

2
v8

βvhµh

(Λh + µhm)
(ηhw3 + w4)w7

−
1

2
v8

βvhµ
2
hKθ

(
1−

1

N

)
µv(Λh + µhm)2

×
[
2(ηh + 1)w3w4 + 2

(
ηhw

2
3 + w2

4

)]
< 0

and

φ2 =
1

2
v8

βvhµ
2
hKθ

µv(Λh + µhm)2

(
1−

1

N

)
× [(ηhw3 + w4) (w1 + w2)] < 0

b) Computation of b?:

b? = v3
Λh(µh + πξ)

k1(Λh + µhm)
(ηvw8 + w9) > 0.

Since b? > 0 according to the sign of wi, vi, for
i ∈ {1 . . . , 9}, we conclude that the backward
bifurcation phenomenon may occurs if a? > 0.
We can summarize the results obtained above in
the following theorem:

Theorem 4.1: If a? > 0, then model (3) exhibits
backward bifurcation at R0 = 1. If the reversed
inequality holds, then the bifurcation at R0 = 1 is
forward.

This is illustrated by simulating the model with
different set of parameter values (it should be
stated that these parameters are chosen for illus-
trative purpose only, and may not necessarily be
realistic epidemiologically):

—Using the parameters values in Table II, ex-
cept µv = µ1 = µ2 = 1/14, Λh = 200, ε = 0.80,
ξ = 0.475, δ = 0.6, β̃hv = 6, β̃vh = 50 and
K = 1000 such that R0 = 0.6095 < 1 and
a? = 1.0348 × 10−5 > 0, the numerical resolu-
tion of equation (44) (see appendix A), gives the
following solution: λ∗1h = 0, λ∗2h = 0.0083, λ∗3h =
10.9412, λ∗4h = −0.0080 and λ∗5h = −0.0001;
Note that the first solution λ∗1h = 0 corresponds
to the disease free equilibrium. The second, and

third solution, λ∗2h = 0.0083, λ∗3h = 10.9412,
correspond to endemic equilibria; λ∗2h = 0.0083
correspond to unstable endemic equilibrium and
λ∗3h = 10.9412 corresponds to the stable endemic
equilibrium. The fourth and fifth solution λ∗4h =
−0.0080 and λ∗5h = −0.0001 are not biologically
meaningful.
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Fig. 1. Time profile of infectious humans using different
initial conditions showing that the equilibrium λ∗

3h = 10.9412
is stable even if R0 = 0.6095 < 1 .

—Using the parameters values in Table II, ex-
cept µv = µ1 = µ2 = 1/14, Λh = 100,
ε = 0.80, ξ = 0.475, δ = 0.6, β̃hv = 4.0385,
β̃vh = 100 and K = 1000 such that R0 = 1 and
a? = 2.3665×10−4 > 0 , the numerical resolution
of equation (44), gives the following solution:
λ∗11h = 0, λ∗22h = 0.0114, λ∗3h = 8.5310, and
λ∗44h = −0.0111; The first solution λ∗1h = 0 corre-
sponds to the disease free equilibrium. The second,
and third solution, λ∗2h = 0.0083, λ∗33h = 8.5310,
correspond to endemic equilibria; λ∗22h = 0.0114
correspond to unstable endemic equilibrium and
λ∗33h = 8.5310 corresponds to the stable endemic
equilibrium. The fourth solution λ∗4h = −0.0111
is not biologically meaningful.

—In the absence to disease induced death (δ =
0) and choosing β̃hv = 4.0188 and K = 1000 such
that R0 = 1, equation (44) admit only one solution
λ∗h = 0 which corresponds to the disease–free
equilibrium. In this case, the backward bifurcation
phenomenon does not occurs.

—Choosing β̃hv = 10 and K = 1000 such that
R0 = 1.630976 > 1 and a? = −1.8011 < 0,
equation (44) admit only one positive solution
given by λ∗1h = 0.0001, which correspond to the
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Fig. 2. Time profile of infectious humans using different
initial conditions showing that the equilibrium λ∗

33h = 8.5310
is stable even if R0 = 1 .

endemic equilibria when the basic reproduction
number, R0, is greater than 1.

To conclude, depending to the values of param-
eters of model (3), the phenomenon of backward
bifurcation may occurs when the classical basic
reproduction number R0 is less than unity.

V. THRESHOLD ANALYSIS AND VACCINE

IMPACT

Since a future dengue vaccine, for example,
is expected to be imperfect, it is instructive to
determine whether or not its widespread use in
a community will be benefic (or not) [10], [40],
[68]. Now, consider the following model (model 3
without vaccination).

Ṡh = Λh − λhSh − µhSh
Ėh = λhSh − (µh + γh)Eh
İh = γhEh − (µh + δ + σ)Ih
Ṙh = σIh − µhRh
Ȧv = µb

(
1− Av

K

)
(Sv + Ev + Iv)− (θ + µA)Av

Ṡv = θAv − λvSv − µvSv
Ėv = λvSv − (µ1 + γv)Ev
İv = γvEv − µ2Iv

(19)
with λh and λv defined at (1) and (2), respectively.
Following procedure in [26], [82], the correspond-
ing basic reproduction number of model (19), Rs,

is given by

R2
s =

βhvβvhKθ(k3ηh + γh)(γv + ηvµ2)

µvµ2(µh + γh)(µh + δ + σ)(µ1 + γv)

× Λhµh
(Λh +mmuh)2

(
1− 1

N

)
(20)

So we deduce that

Rvac := R0 = Rs

√
(πξ + µh)

(µh + ξ)
. (21)

From Eq. (21), it follows that, in the absence of
vaccination (ξ = 0) or when the vaccine efficacy is
very low (ε → 0), we have Rvac = Rs. However,
when humans vaccination comes to play, the basic
reproductive number is reduced by a factor of√

(πξ + µh)

(µh + ξ)
< 1. Since increasing vaccination

efforts results in decreasing the magnitude of ar-
boviruses infection, humans vaccination can con-
tribute to control the spread of arboviral diseases.
In the following, we use the set of parameters
values given in Table III, which refer to Dengue
and Chikungunya. Figs. 3–5 show several simu-
lations, by varying the vaccine efficacy and the
percentage of population that is vaccinated. Figure
3 shows simulations with different proportions of
succeptible human vaccinated, using an imperfect
vaccine, with a level of efficacy of 60%. Both total
number of infected humans and infected vectors
reache a peack after 25 days approximatively.
However, when ε = 60%, the variation of vaccine
coverage parameter have not a great impact in the
number of infected humans and vectors. Figure
4 illustrates the effect of vaccine efficacy in the
reduction of the total number of infected humans
and vectors. It is clear that the effectiveness of the
vaccine has a great impact when ε ≥ 90%. Thus,
it is suitable to add to vaccination (when ε < 90%)
another control, such as, treatment of infected
individuals, personal protection, and vector control
strategies to stop the spread of arboviral diseases.
Figure 5 shows the representation of the basic
reproduction number R0 plotted as function of the
vaccine efficacy parameter ε and the proportion
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TABLE III
BASELINE VALUES OF PARAMETERS OF MODEL (3) AND

THEIR SOURCES.

Parameter Baseline value Sources

Λh 2.5 day−1 [40]
ξ variable
ε Variable
ηh, ηv 0.35 Assumed
˜βhv 0.75 day−1 [40]
˜βhv 0.75 day−1 [40]
γh 1/3 day−1 [30]
γv 1/2 day−1 [30]

µh
day−1

(71× 365)
[68]

µv (1/14) day−1 [40]
µA 1/5 day−1 [30]
µ−1
1 10 days [30]
µ−1
2 5 days [30]
θ 0.08 day−1 [30], [68]
δ 10−3 day−1 [40]
σ 0.1428 day−1 [2], [40]
a 1 day−1 [40], [61]
m 100 Assumed
K 2× 5000 Assumed
µb 6 day−1 [68], [60], [61]

of susceptible population vaccinated ξ. The use
of a vaccine with level of efficacy greather than
90% approximatively, dramaticaly decrease the
basic reproduction number, when the proportion
of susceptible humans vaccinated are greather than
85%. We observe the same result at Figure 6. Thus,
the use of a vaccine with a high level of efficacy
and a wide vaccine coverage has an impact on
stopping the spread of the disease. However, if the
vaccine efficacy is not high, it is important to add
another control strategies. Our sensitive analysis in
later section will further support this result.

VI. SENSITIVITY ANALYSIS

To determine the best way to fight against
arboviruses, it is necessary to know the relative
importance of the various factors responsible for
their transmission in both the human population
than in the vector population, as well as effective
means to fight these diseases. The transmission
of the disease is directly related to R0, and the
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Fig. 3. Total number of infected humans and vectors
varying the proportion of susceptible huamans vaccinated
ξ = (0.05; 0.25; 0.5; 0.75; 1) with a vaccine simulating 60%
of effectiveness (i.e. ε = 0.60 or π = 1− ε = 0.4).
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Fig. 4. Infected humans and Vector varying the efficacy level
of the vaccine ε = (0.25; 0.50; 0.80; 0.90; 1) and considering
that 85% of susceptible humans is vaccinated.

prevalence of the disease is directly related to the
infected states, especially for sizes of Eh(t), Ih(t),
Ev(t) and Iv(t). These variables are relevant to
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Fig. 6. Time profile of total number of infected human and
vector without vaccination and with vaccination.

the individuals (humans and vectors) who have
some life stage of arboviruses in their bodies. The
number of infectious humans, Ih, is especially
important because it represents the people who
may be clinically ill, and is directly related to
the total number of arboviral deaths [22]. We will
perform a global sensitivity analysis.

A. Mean values of parameters and initial values
of variables

Since we focus in this article, to a general
model of arboviral diseases, we will, in this sec-

TABLE IV
PARAMETER VALUE RANGES OF MODEL (3) USED AS

INPUT FOR THE LHS METHOD.

Parameter Range Parameter Range

Λh [1 , 6 ] µA [1/10,1/4]
ξ [0.05,1] µ1 [1/21,1/3]
ε [0.5,0.9] µ2 [1/21,1/3]
ηh, ηv [0.1,0.8] θ [0.01,0.17]
˜βhv [0.375,1] δ [10−5,10−2]
˜βvh [0.375,1] σ [0.1428,1/3]
γh [1/12,1/2] a [1,3]
γv [1/21,1/2] m [1,201]

µh

[
1

78× 365
,

1

45× 365

]
K 103×[10,15]

µv [1/21,1/10] µb [6,18]

TABLE V
INITIAL CONDITIONS.

Human Initial value vector Initial value
Sh: 1000 Av 1000
Vh: 0 Sv: 500
Eh: 20 Ev: 20
Ih: 10 Iv: 40
Rh: 0

tion, use the parameters values of two particular
arboviruses, Dengue and Chikungunya. It is impor-
tant to note that these two diseases are transmitted
by the same mosquito: Aedes albopictus. However,
dengue is also transmited by Aedes aegypti [30],
[35], [36], [38], [40], [61], [68], [90].

The mean values of parameters are listed in
Table III, the range values of parameters are in
Table IV and the initial conditions are given in
Table V.

B. Uncertainty and sensitivity analysis

1) Sensitivity analysis of R0: We study the
impact of each parameter of the model on the
value of the basic reproduction number R0. Fol-
lowing the approach of Wu and colleagues [88],
we perform the analysis by calculating the Partial
Rank Correlation Coefficients (PRCC) between
each parameter of our model and the basic repro-
duction number, R0. Table III troughly estimates
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the mean value for each parameter. It is important
to notice that, variations of these parameters in our
deterministic model lead to uncertainty to model
predictions since the basic reproductive number
varies with parameters. Due to the absence of data
on the distribution function, a uniform distribution
is chosen for all parameters. The sets of input pa-
rameter values sampled using the Latin Hypercube
Sampling (LHS) method were used to run 1,000
simulations.

With these 1,000 runs of Latin Hypercube Sam-
pling, the derived sampling distribution of R0 is
shown in Figure 7. From this sampling we get
that the mean of R0 is 1.9304 and the standard
deviation is 1.6128. Hence, statistically we are
very confidential that model (3) is in an endemic
state since R0 > 1.
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Fig. 7. Sampling distribution of R0 from 1,000 runs of
Latin hypercube sampling. The mean of R0 is 1.9304 and
the standard deviation is 1.6128.

From the previous sampling we compute the
Partial Rank Correlation Coefficients between R0

and each parameter of model (3). The result
is displayed in Table VI. According to Boloye
Gomero [13], the parameters with large PRCC
values (> 0.5 or < −0.5) as well as corresponding
small p-values (< 0.05) are most influential in
model (3).

Table VI show that the parameter ε have the
highest influence on the reproduction number R0.
Although ε is the vaccine efficacy. This suggests
that the development of a vaccine with high level
of efficacy may potentially be an effective strategy
to reduce R0. The other parameters with an im-
portant effect are θ, a, Λh and µ2. The parameters

TABLE VI
PRCC BETWEEN R0 AND EACH PARAMETER.

Parameter Correlation Coefficients P–values

1 Λh *–0.6067 1.4578E−99
2 ξ 0.0529 0.0977
3 ε ***–0.8043 2.6732E−223
4 ηh 0.2879 4.0576E−20

5 ˜βhv 0.4354 1.3609E−46
6 γh –0.2598 1.4099E−16
7 µh 0.2526 9.9492E−16
8 δ –0.0386 0.2274
9 σ –0.3269 7.7785E−26
10 ηv 0.2039 1.1635E−10

11 ˜βvh 0.4215 1.7130E−43
12 γv 0.2117 2.1787E−11
13 µv –0.3029 3.0015E−22
14 µA –0.0121 0.7049
15 µ1 –0.2948 4.2501E−21
16 µ2 *–0.5087 1.2669E−65
17 θ **0.7626 3.0823E−187
18 a **0.7134 3.4096E−153
19 m –0.0436 0.1724
20 K 0.3880 1.4683E−36
21 µb 0.0082 0.7973

which do not have almost any effect on R0 are ξ,
δ, µA, m and µb. In particular, the least sensitive
parameters is µb, the number of eggs at each
deposit per capita.

2) Sensitivity analysis of Infected states of
model (3): With 1,000 runs of Latin hypercube
sampling, we compute the PRCC between infected
states Eh(t), Ih(t), Ev(t), and Iv(t) and each
parameter of model (3). The result is displayed
in Tables VII–X. As in Table VI, the parameters
with large PRCC values (> 0.5 or < −0.5) as well
as corresponding small p-values (< 0.05) are most
influential in model (3).

From Tables VII–X, we can observe the follow-
ing facts:

–For the value of Eh, the parameters with
more influence are θ, K, a, ε, Λh and µ2. The
parameters which do not have almost any effect
on the variation of Eh are µh, δ, µA, m and µb.
In particular, the least sensitive parameters is µb,
the number of eggs at each deposit per capita;

–For the value of Ih, the parameters with more
influence are Λh and γh. The least sensitive pa-
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TABLE VII
PRCC BETWEEN INFECTED HUMANS Eh AND EACH

PARAMETER.

Parameter Correlation Coefficients P–values

1 Λh **0.6842 3.2080E−136
2 ξ 0.4115 2.4590E−41
3 ε ***0.7177 6.8762E−156
4 ηh –0.2457 6.1306E−15

5 β̃hv –0.4215 1.7187E−43
6 γh 0.2172 6.2865E−12
7 µh 0.0086 0.7879
8 δ -0.0259 0.4176
9 σ 0.3395 7.4246E−28

10 ηv –2378 4.5858E−14

11 β̃vh –0.4232 7.4972E−44
12 γv –0.2311 2.4083E−13
13 µv 0.2906 1.5881E−20
14 µA 0.0210 0.5122
15 µ1 0.3340 5.8090E−27
16 µ2 *0.5747 3.1691E−87
17 θ ***–0.7599 3.7832E−185
18 a ***–0.7597 4.9923E−185
19 m 0.0537 0.0931
20 K ***–0.7477 4.2124E−176
21 µb –0.0068 0.8328

TABLE VIII
PRCC BETWEEN INFECTIOUS HUMANS Ih AND EACH

PARAMETER.

Parameter Correlation Coefficients P–values

1 Λh ***0.8727 9.1342E−307
2 ξ 0.0078 0.8062
3 ε –0.2887 2.8614E−20
4 ηh 0.0711 0.0261
5 β̃hv 0.0850 0.0078
6 γh ***–0.8722 5.9181E−306
7 µh –0.0363 0.2566
8 δ 0.0412 0.1978
9 σ –0.0531 0.0965

10 ηv 0.0310 0.3316
11 β̃vh 0.1297 4.6364E−5
12 γv –0.0179 0.5764
13 µv –0.0544 0.0886
14 µA –0.0222 0.4877
15 µ1 –0.0580 0.0697
16 µ2 –0.0423 0.1855
17 θ 0.1312 3.7931E−5
18 a 0.1428 2.8933E−6
19 m –0.0017 0.9586
20 K 0.1783 1.9260E−8
21 µb –0.0054 0.8648

TABLE IX
PRCC BETWEEN INFECTED VECTORS Ev AND EACH

PARAMETER.

Parameter Correlation Coefficients P–values

1 Λh –0.0186 0.5603
2 ξ –0.0111 0.7280
3 ε 0.0135 0.6723
4 ηh –0.1086 6.6203E−4

5 β̃hv –0.0664 0.0375
6 γh 0.0560 0.0798
7 µh –0.0295 0.3563
8 δ 0.0116 0.7170
9 σ 0.0734 0.0215
10 ηv –0.0273 0.3928
11 β̃vh –0.0913 0.0043
12 γv 0.0069 0.8282
13 µv **-0.5923 7.6830E−94
14 µA 0.0157 0.6235
15 µ1 0.0331 0.3006
16 µ2 0.0043 0.8933
17 θ ***0.9225 0
18 a –0.0822 0.0100
19 m 0.0027 0.9324
20 K ***0.9199 0
21 µb 0.1125 4.1594E−4

TABLE X
PRCC BETWEEN INFECTIOUS VECTORS Iv AND EACH

PARAMETER.

Parameter Correlation Coefficients P–values

1 Λh 0.2254 9.3729E−13
2 ξ –0.0090 0.7785
3 ε –0.1228 1.1697E−4
4 ηh 0.3126 1.1661E−23

5 β̃hv 0.0031 0.9216
6 γh –0.3233 2.7921E−25
7 µh 0.0381 0.2338
8 δ –0.0215 0.5015
9 σ –0.3869 2.4025E−36

10 ηv 0.0196 0.5402
11 β̃vh 0.5584 2.0585E−109
12 γv –0.6287 6.0859E−109
13 µv –0.4856 4.0722E−59
14 µA 0.0294 0.3583
15 µ1 –0.4380 3.3922E−47
16 µ2 –0.0103 0.7470
17 θ **0.8728 7.6088E−307
18 a *0.6011 2.5895E−97
19 m –0.0640 0.0451
20 K *0.8600 5.9602E−288
21 µb –0.0770 0.0159
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rameters is µb, the number of eggs at each deposit
per capita;

–For the value of Ev, the parameters with more
influence are the maturation rate from larvae to
adult θ, and the capacity of breeding sites K. The
other parameter is the natural mortality rate of
vector µv. The least sensitive parameters is m, the
number of alternative source of blood;

–For the value of Iv, the parameters with more
influence are θ, K, γv, a and β̃vh. The least
sensitive parameters is β̃hv, the probability of
transmission of infection from an infectious vector
to a susceptible human.

Although the model is sensitive to the variations
of the vaccine efficacy parameter ε, there are
other parameters (such as θ, a, K, µv, µ2) which
have a considerable impact on the value of the
basic reproduction number R0 and the number of
infected individuals. Thus, it is important to take
into account other control strategies in the fight
against arboviral diseases.

VII. NUMERICAL SIMULATION

In order to illustrate some of the results ob-
tained in the previous sections, we provide here
some numerical simulations. We use the nonstan-
dard scheme given by (22). It is important to
note that standard numerical methods may fail
to preserve the dynamics of continuous models
[4], [59], [81]. Generally, compartmental models
are solved using standard numerical methods, for
example, Euler or Runge Kutta methods included
in software package such as Scilab [76] or Mat-
lab [57]. These methods can sometimes lead to
spurious behaviours which are not in adequacy
with the continuous system properties that they
aim to approximate. For example, they may lead to
negative solutions, exhibit numerical instabilities,
or even converge to the wrong equilibrium for
certain values of the time discretization or the
model parameters (see [3], [4], [5], [81] for further
investigations).

A. A nonstandard scheme for the model (3)

Following [30], system (3) is discretized as
follows:

Xk+1
S −Xk

S

φ(h)
= A1(Xk)(Xk

S −XDFE)

−D12(Xk
I )Xk+1

S +B12(Xk)Xk
I

Xk+1
I −Xk

I

φ(h)
= A2(Xk+1

S )Xk
I

(22)
such that

−D12(XI)XS +B12(X)XI = A12(X)XI (23)

with

D12(XI) =


λh 0 0 0 0
0 πλh 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 λv

 ,

and

B12(X) =
0 0 0 0 0
0 0 0 0 0
0 σ 0 0 0

0 0 µb

(
1− A0

v

K

)
µb

(
1− Av

K

)
0

0 0 0 0 0

 ,

which implies that the scheme is consistant with
formulation (11).

Rearranging (22), we obtain the foollowing new
expression {

AkXk+1 = Bk
Xk ≥ 0

(24)

with

Ak =

(
I5 + φ(h)D12(Xk

I ) 0
0 I5

)
and

Bk =(
Xk

S + φ(h)
[
A1(Xk)(Xk

S −XDFE) +B12(Xk)Xk
I

]
Xk

I

[
I4 + φ(h)A2(Xk+1

S )
] )

.

where I4 and I5 are the identity matrix of order 4
and 5 respectively. Thus, we claim the following
result:
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Lemma 7.1: Our non-standard numerical
scheme (22) is positively stable, i.e. for
Xk ≥ 0 we obtain Xk+1 ≥ 0, where
Xk =

(
Skh, V

k
h , E

k
h, I

k
h , R

k
h, A

k
v , S

k
v , E

k
v , I

k
v

)T .
Proof: We suppose Xk ≥ 0. Ak is a positive

diagonal matrix and thus, A−1
k ≥ 0. B12 is a pos-

itive matrix and we also have −A1(Xk)XDFE ≥
0. To show that Bk is a positive matrix, it suffices
to choose φ(h) such that

Id + φ(h)A1(X) ≥ Id + φ(h)A1 ≥ 0,
Id + φ(h)A2(X) ≥ Id + φ(h)A2 ≥ 0

where A1 and A2 are lower bounds for the sets
{X ∈ D|A1(X)} and {X ∈ D|A2(X)} respec-
tively. Following [30], to have Bk ≥ 0, it suffices
to consider the following time-step function

φ(h) =
1− e−Qh

Q
(25)

with Q ≥ max (k1, k2, k3, µh, k4, k6, µv, µ2). We
have proved that Xk ≥ 0 implies Xk+1 ≥ 0.
Concerning the equilibria of our numerical
scheme, we have the following result

Lemma 7.2: Our non-standard numerical
scheme (22) and the continuous model (3) have
the same equilibria.

Proof: See appendix F.
The stability of the trivial equilibrium is given by
the foollowing result

Lemma 7.3: If φ(h) has choosen as equation
(25), then the tivial equilibrium TE := P0 is
locally asymptotically stable for our numerical
scheme (22) whenever N ≤ 1.

Proof: See appendix G.
Now, we also have the following result concerning
the stability of the disease–free equilibrium:

Lemma 7.4: If φ(h) has choosen as equation
(25) and R0 < 1, then the disease–free equilibrium
DFE := P1 is locally asymptotically stable for
our numerical scheme (22) .

Proof: The proof of Lemma 7.4 follows the
proof of Proposition 3.4 in [30]. See also [5] for
a proof in a more general setting.

B. Simulation Results

We now provide some numerical simulations
to illustrate the theoretical results (local stability,
global stability and backward bifurcation). We
use parameters values given in Table III with
ξ = 0.475, ε = 0.60, K = 1000 and initial
conditions given in Table V.

Figure 8 illustrates the asymptotic stability of
the trivial equilbrium whenever the treshold N is
less than unity. In Figure 9, when N > 1 the
trivial equilibrium is unstable and the disease–
free equilibrium is stable (first panel). The phe-
nomenon of backward bifurcation occurs in the
second panel of figure 9, where the stable disease-
free equilibrium of the model co–exists with a
stable endemic equilibrium when the associated re-
production number, R0, is less than unity. Figures
10–11 show the existence of at least one endemic
equilibrium whenever R0 is equal or greather than
unity.

It is important to mentione that the simulation
results discussed in this work are subject to the
uncertainties (See section VI) in the estimates of
the parameter values (tabulated in Table III) used
in the simulations. The effect of such uncertainties
on the results obtained can be assessed using
a sampling technique, such as Latin Hypercube
Sampling.

VIII. CONCLUSIONS

In this paper, we formulated a compartmental
model which takes into account a future vacci-
nation strategy in human population, the aquatic
development stage of vector and the alternative
sources of blood.

The analysis has been performed by means of
stability, bifurcation and sensitivity analysis. We
have obtained that the disease–induced mortal-
ity may be the main cause for the occurrence
of the backward bifurcation (see remark 4.1).
This means that relatively high values of disease–
induced mortality rate may induce stable endemic
states also when the basic reproduction number
R0 is below the classical threshold R0 = 1.
The stability analysis reveals that for N ≤ 1,
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Fig. 8. Time profile of both population without vector (with
θ = 0.0008, so N = 0.2679 < 1. In this case the trivial
equilibrium is globally asymptotically stable.
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Fig. 9. Time profile infected humans and vectors. First
panel:R0 =: 0.2377 < 1 and Second panel: R0 = 0.9405 <
1. The backward bifurcation phenomenon is illustrate in
second panel.

the trivial equilibrium is globally asymptotically
stable. When N > 1 and R0 < 1, the disease–
free equilibrium is locally asymptotically stable. In
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Fig. 10. Time profile of infected humans with β̃hv =
42.9631, Λh = 20, so that R0 = 1 (first panel) and
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(second panel).
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Fig. 11. Time profile of infected vectors with β̃hv =
42.9631, Λh = 20, so that R0 = 1 (first panel) and
β̃hv = β̃vh = 20, Λh = 20, so that R0 = 3.5233 > 1
(second panel).

the absence of disease-induced death, the disease–
free equilibrium is also globally asymptotically
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stable. The reduced version of the model (3) (in
the absence of disease–induced mortality in both
human and vector populations) have a unique
endemic equilibrium point whenever its associated
reproduction number R1 exceeds unity.

Taking as cases study the dengue and chikun-
gunya transmission, we used parameter values
from the literature to estimate statistically the
basic reproduction number, R0, and to perform
a global sensitivity analysis on the basic repro-
duction number and infected states (Eh, Ih, Ev,
Iv). Using Latin Hypercube Sampling, we obtain
that the mean of R0 is 1.9304. Hence, statistically
we are very confident that our model (3) is in
an endemic state. The global sensitivity analysis
reveals that, apart from the parameters related
to vaccination, particularly vaccine efficacy, other
parameters ( such as parameters related to vector
population) also have a great impact on the basic
reproduction number (R0) and on the number of
infected humans and vectors (Eh, Ih, Ev, Iv).

Numerical simulations of the model (3), using a
nonstandard qualitatively stable scheme, show that
the use of a vaccine with high level of efficacy has
a proponderant role in the reduction of the disease
spread. However, since the efficacy of the proposed
vaccine for dengue, for example, has been around
60%, it is suitable to combine vaccination with
other mechanisms of control.

Also, to be the best control strategy, the vaccina-
tion process must verify the following conditions:

(a) The vaccine must be approved by the relevant
agencies (such as WHO, CDC), before its use.

(b) The vaccine efficacy should be high, as well
as vaccine coverage.

(c) The price of the vaccine must be low for
countries affected by the disease.

There are already governments, affected by the
diseases, willing to use the vaccine before it is
approved, which can have unpredictable conse-
quences, so condition (a) does not hold. Moreover,
according to previous analysis and french labo-
ratory SANOFI, the condition (b) does not hold.
Thus it is important to know what happens when
we combine vaccination with other mechanisms

of control already studied in the literature, such
as personal protection, chemical interventions and
education campaigns [30], [40], [60], [61], [63],
[64], [67], [68], [69]. This is the perspective of
our work.
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APPENDIX

Appendix A: PROOF OF PROPOSITION 3.1

To find the equilibrium points of our system, we
will solve the following system

Λh − λhSh − (ξ + µh)Sh = 0
ξSh − (1− ε)λhVh − µhVh = 0
λh [Sh + (1− ε)Vh]− (µh + γh)Eh = 0
γhEh − (µh + δ + σ)Ih = 0
σIh − µhRh = 0

µb

(
1− Av

K

)
(Sv + Ev + Iv)− (θ + µA)Av = 0

θAv − λvSv − µvSv = 0
λvSv − (µ1 + γv)Ev = 0
γvEv − µ2Iv = 0

(26)
To this aim, let P ∗ =
(S∗h, E

∗
h, I
∗
h, R

∗
h, A

∗
v, S

∗
v , E

∗
v , I
∗
v ) represents any

arbitrary endemic equilibrium of (3). Further, let

λ∗h =
βhv(ηvE

∗
v + I∗v )

(N∗h +m)
, λ∗v =

βvh(ηhE
∗
h + I∗h)

(N∗h +m)
,

(27)
be the forces of infection of humans and vectors
at steady state, respectively. Solving the first five
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equations in (26) at steady state gives

S∗h =
Λh

k1 + λ∗h
, V ∗h =

ξΛh
(k1 + λ∗h)(πλ∗h + µh)

,

E∗h =
Λhλ

∗
h(πξ + µh + πλ∗h)

k2(k1 + λ∗h)(πλ∗h + µh)
,

I∗h =
γhΛhλ

∗
h(πξ + µh + πλ∗h)

k2k3(k1 + λ∗h)(πλ∗h + µh)
,

R∗h =
σγhΛhλ

∗
h(πξ + µh + πλ∗h)

µhk2k3(k1 + λ∗h)(πλ∗h + µh)
.

(28)
where π = 1− ε, k1 = µh + ξ, k2 = µh + γh and
k3 = µh + σ + δ. Solving the last three equations
in (26) at steady state gives

S∗v =
θA∗v

(µv + λ∗v)
, E∗v =

θA∗vλ
∗
v

k4(µv + λ∗v)
,

I∗v =
γvθA

∗
vλ
∗
v

µ2k4(µv + λ∗v)
.

(29)

where k4 = µ1 + γv.
Substituting (29) in the sixth equation of (26) gives

A∗v

{
µbθ

µ2k4

(
1− A∗v

K

)(
µ2k4 + k5λ

∗
v

µv + λ∗v

)
− k6

}
= 0

(30)
with k5 = µ2 + γv and k6 = θ + µA.

The trivial solution of (30) is A∗v = 0. Substitut-
ing this solution in (29) gives S∗v = E∗v = I∗v = 0.
When E∗v = I∗v = 0, we also have λ∗h = 0, thus

E∗h = I∗h = R∗h = 0, S∗h =
Λh
k1

and V ∗h =
ξΛh
µhk1

.

Then we obtain the trivial equilibrium P0 =(
Λh
k1
,
ξΛh
µhk1

, 0, 0, 0, 0, 0, 0, 0

)
.

Now we suppose that A∗v 6= 0. The possible so-
lution(s) of (30) is the solution(s) of the following
equation

µbθ

µ2k4

(
1− A∗v

K

)(
µ2k4 + k5λ

∗
v

µv + λ∗v

)
−k6 = 0 (31)

The direct resolution of equation (31) gives

A∗v = K

µ2µbθk4

(
1− 1

N

)
+ αλ∗v

µbθ(µ2k4 + k5λ∗v)

 (32)

where N =
µbθ

µvk6
and α = µbθk5 − µ2k4k6.

Let us first compute the equilibrium without
Disease, i.e. λ∗h = λ∗v = 0 or Eh = Ih = Ev =
Iv = 0. From (32), we obtain

A0
v := K

(
1− µvk6

µbθ

)
:= K

(
1− 1

N

)
(33)

Thus, the existence of vector is regulated by the
threshold N . If N ≤ 1, the system (3) correspond
to human population of free vectors and the trivial
equilibrium in this case is P0.

Now we suppose that N > 1. From (28) and
(29) (with λ∗v = λ∗v = 0), we obtain the non trivial
equilibrium or the disease–free equilibrium P1 =(
S0
h, V

0
h , 0, 0, 0, A

0
v, S

0
v , 0, 0

)
, where

S0
h =

Λh
k1
, V 0

h =
ξΛh
k1µh

, A0
v = K

(
1− 1

N

)
,

S0
v =

θ

µv
A0
v.

Appendix B: PROOF OF PROPOSITION 3.2

We consider the Jacobian matrix associated to
model (3) at the equilibrium TE. we have

J (TE) =



−k1 0 0 0 0 0
ξ −µh 0 0 0 0
0 0 −k2 0 0 0
0 0 γh −k3 0 0
0 0 0 σ −µh 0
0 0 0 0 0 −k6
0 0 0 0 0 θ
0 0 0 0 0 0
0 0 0 0 0 0

0 −βhvηvS
0
h

N0
h +m

− βhvS
0
h

N0
h +m

0 −πβhvηvV
0
h

N0
h +m

−πβhvV
0
h

N0
h +m

0
βhvηvS0

N0
h +m

βhvS0

N0
h +m

0 0 0
0 0 0
µb µb µb

−µv 0 0
0 −k4 0
0 γv −µ2



,

were S0 = S0
h + πV 0

h . The eigenvalues of
J (TE) are given by λ1 = λ2 = −µh, λ3 = −k1,
λ4 = −k2, λ5 = −k3, and λ6, λ7, λ8, λ9 are
eigenvalues of the submatrix
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J̄ =


−k6 µb µb µb
θ −µv 0 0
0 0 −k4 0
0 0 γv −µ2

 .

The characteristic polynomial of J̄ is given
by

P(λ) = λ4 +A1λ
3 +A2λ

2 +A3λ+A4 = 0 (34)

where A1 = µv + µ2 + k4 + k6, A2 =
k6µv (1−N ) + (k4 + µ2) (µv + k6) + µ2k4,
A3 = k6µv (1−N ) (k4 + µ2) + µ2k4 (µv + k6)
and A4 = µ2k4 (1−N ). Thus, it is clear that
all coefficients are always positive since N < 1.
Now we just have to verify that the Routh–Hurwitz
criterion holds for polynomial P(λ). To this aim,
setting

H1 = A1, H2 =

∣∣∣∣A1 1
A3 A2

∣∣∣∣, H3 =

∣∣∣∣∣∣
A1 1 0
A3 A2 A1

0 A4 A3

∣∣∣∣∣∣,
H4 =

∣∣∣∣∣∣∣∣
A1 1 0 0
A3 A2 A1 1
0 A4 A3 A2

0 0 0 A4

∣∣∣∣∣∣∣∣ = A4H3.

The Routh-Hurwitz criterion of stability of the
trivial equilibrium TE is given by

H1 > 0
H2 > 0
H3 > 0
H4 > 0

⇔


H1 > 0
H2 > 0
H3 > 0
A4 > 0

(35)

We have
H1 = A1 = µv + µ2 + k4 + k6 > 0,

H2 = A1A2 −A3

= (k6 + k4 + µ2)µ2
v +

(
µ2k6

(
1− µbθ

µ2k6

)
+k2

6 + 2k4k6 + µ2k6 + k2
4 + 2µ2k4 + µ2

2

)
µv

+ µ2k
2
6

(
1− µbθ

µ2k6

)
+ k4k

2
6 + (k4 + µ2)2 k6

+ µ2k
2
4 + µ2

2k4,

H3 = A1A2A3 −A2
1A4 −A2

3

= (k4 + µ2) (µv + k6)

×
(
k6µv (1−N ) + µ2µv + µ2k6 + µ2

2

)
×
(
k6µv (1−N ) + k4µv + k4k6 + k2

4

)
,

Using inequality 1/µ2 ≤ 1/µ1 ≤ 1/µv, we obtain
H2 > 0. H3 > 0 if N < 1; A4 > 0 if and
only if N < 1. Thus we conclude that the trivial
equilibrium is locally asymptotically stable.

Now we assume that N > 1. Following the
procedure and the notation in [82], we may obtain
the basic reproduction number R0 as the dominant
eigenvalue of the next–generation matrix [26],
[82]. Observe that model (3) has four infected
populations, namely Eh, Ih, Ev, Iv. It follows
that the matrices F and V defined in [82], which
take into account the new infection terms and
remaining transfer terms, respectively, are given
by

F =
1

N0
h +m

×


0 0 βhvηvS0 βhvS0

0 0 0 0
βvhηhS

0
v βvhS

0
v 0 0

0 0 0 0

 ,

with N0
h =

Λh
µh

,

V =
(µh + γh) 0 0 0
−γh (µh + δ + σ) 0 0

0 0 (µ1 + γv) 0
0 0 −γv µ2

 ,

and the dominant eigenvalue of the next–
generation matrix FV −1 is given by Eq. (10).

The local stability of the disease–free equilib-
rium P1 is a direct consequence of Theorem 2 of
[82]. This ends the proof.

Appendix C: PROOF OF PROPOSITION 3.3

Setting Y=X-TE with
X = (Sh, Vh, Eh, Ih, Rh, Av, Sv, Ev, Iv)

T , we can
rewrite (3) in the following manner

dY

dt
= B(Y )Y (36)
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where

B(Y ) =



−λh − k1 0 0 0 0
ξ −πλh − µh 0 0 0
λh πλh −k2 0 0
0 0 γh −k3 0
0 0 0 σ −µh
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 −
βhvηvS

0
h

Nh +m
−
βhvS

0
h

Nh +m

0 0 −
πβhvηvV

0
h

Nh +m
−
πβhvV

0
h

Nh +m

0 0
βhvηvS0

Nh +m

βhvS0

Nh +m
0 0 0 0
0 0 0 0
−A66 µb µb µb
θ −λv − µv 0 0
0 λv −k4 0
0 0 γv −µ2



,

with S0 = (S0
h + πV 0

h ), A66 =(
k6 + µb

Sv + Ev + Iv
K

)
. It is clear that

Y = (0, 0, 0, 0, 0, 0, 0, 0, 0) is the only
equilibrium. Then it suffices to consider the
following Lyapunov function L(Y ) =< g, Y >

were g =

(
1, 1, 1, 1, 1, 1,

k6

θ
,
k6

θ
,
k6

θ
,
k6

θ

)
.

Straightforward computations lead that

L̇(Y ) =< g, Ẏ >
def
=< g,B(Y )Y >

= −µh(Y1 + Y2 + Y3 + Y4 + Y5)− δY4

+
k6µv
θ

(N − 1)Y7 +
k6µ1

θ

(
µbθ

k6µ1
− 1

)
Y8

− µb
Y6

K
(Y7 + Y8 + Y9)

+
k6µ2

θ

(
µbθ

k6µ2
− 1

)
Y9

Using the fact that 1/µ2 ≤ 1/µ1 ≤ 1/µv, we

have
µbθ

k6µ1
− 1 ≤ 0 and

µbθ

k6µ2
− 1 ≤ 0, which

implies that L̇(Y ) ≤ 0 if N ≤ 1. Moreover, the
maximal invariant set contained in

{
L|L̇(Y ) = 0

}
is {(0, 0, 0, 0, 0, 0, 0, 0, 0)}. Thus, from Lyapunov
theory, we deduce that (0, 0, 0, 0, 0, 0, 0, 0, 0) and
thus, TE := P0, is GAS if N ≤ 1.

Appendix D: PROOF OF PROPOSITION 4.1.

We compute now the endemic equilibrium, i.e.
we are looking for an equilibrium such that λ∗h 6= 0

and λ∗v 6= 0. We assume that N > 1.
From the sixth equation of (26), at equilibrium,

we have

S∗v + E∗v + I∗v =
Kk6A

∗
v

µb(K −A∗v)
(37)

From the last third equations of (26), at equilib-
rium, we have

µvS
∗
v + µ1E

∗
v + µ2I

∗
v = θA∗v (38)

we will observe the following two cases.
a) Absence of disease–induced death in vec-

tor: The absence of disease–induced death in
vector is traduce by the relation µv = µ1 = µ2,
then equation (38) becomes

S∗v + E∗v + I∗v =
θ

µv
A∗v (39)

Equalling Eqs. (37) and (39) gives like before

A0
v := K

(
1− µvk6

µbθ

)
= K

(
1− 1

N

)
. (40)

Substituting A∗v by A0
v in equation (29) gives

S∗v =

(
1− 1

N

)
Kθ

(µv + λ∗v)
,

E∗v =

(
1− 1

N

)
Kθλ∗v

k4(µv + λ∗v)
,

I∗v =

(
1− 1

N

)
Kθγvλ

∗
v

µvk4(µv + λ∗v)
.

(41)

Replacing (41) in the expression of λ∗h gives

λ∗
h =

βhv(ηvE
∗
v + I∗v )

(N∗
h +m)

= k10
λ∗
v

(µv + λ∗
v)
×(

βhvµhk2k3(k1 + λ∗
h)(πλ∗

h + µh)

k2k3k7(k1 + λ∗
h)(πλ∗

h + µh)− δγhΛhλ∗
h(k8 + πλ∗

h)

)
(42)

where k7 = (Λh +mµh), k8 = πξ + µh,
k9 = µ2ηv + γv = ηvµv + γv and

k10 =
k9Kθ

µvk4

(
1− 1

N

)
.

Replacing (28) in the expression of λ∗v gives

λ∗
v =(

βvhΛhµhk11λ
∗
h(k8 + πλ∗

h)

k2k3k7(k1 + λ∗
h)(πλ∗

h + µh)− δγhΛhλ∗
h(k8 + πλ∗

h)

)
(43)
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where k11 = k3ηh + γh.
Substituting (43) in (42) gives the following

equation

f(λ∗
h) := λ∗

h

[
B4(λ∗

h)4 +B3(λ∗
h)3

+B2(λ∗
h)2 +B1λ

∗
h +B0

]
= 0 (44)

where

B4 = π2 [k7(µhk3 + γh(µh + σ)) + δγhmµh]

× {µv [k7(µhk3 + γh(µh + σ)) + δγhmµh]

+βvhk11Λhµh}

B3 = 2πX {k2k3k7µh(1 + π) + δγhΛhµh

+πξX}µv + βvhπΛhµhk11 {πk2k3Y

+k7 [k8(k2k3 − 2δγh) + µhk2k3]}

B2 = µv [k1k2k3k7π − δΛhγhπξ +Xµh]2

+ 2k1k2k3k7πµhµvX

+ βvhΛhµ
2
hπk2k3k11 {πk1k7

−βhvk10 [π(k8 + k1) + µh]}
+ βvhk8k11Λhµh [k2k3k7πµh + k8X]

B1 = 2k1k2k3k7µhµv [k8X + πµhk2k3k7]

+ k2k3k11βvhΛhµ
2
h {k1k7k8

−βhvk10(µhk8 + k1π(k8 + µh))}

with X = k2k3k7−δγhΛh, Y = k1k7−βhvµhk10;
and

B0 = µ2
hµvk

2
1k

2
2k

2
3k

2
7

(
1−R2

0

)
We consider λ∗h 6= 0, otherwise we recover
DFE. The positive endemic equilibria P ∗ =
(S∗h, V

∗
h , E

∗
h, I
∗
h, R

∗
h, A

∗
v, S

∗
v , E

∗
v , I
∗
v ) are obtained

by solving Eq. (44) for λ∗h. The coefficient B4

is always positive and coefficient B0 is negative
(resp. positive) whenever R0 > 1 (resp. R0 < 1).
The number of possible nonnegative real roots of
the polynomial of Eq. (44) depends on the signs
of B3, B2 and B1. The various possibilities for the
roots of f(λ∗h) are tabulated in Table XI and XII.

From tables XI and XII , we deduce the fol-
lowing result which gives various possibilities of
nonnegative solutions of (44).

Lemma A.1: Assume that N > 1 and µv =
µ1 = µ2. Then, the arboviral-disease model (3)

TABLE XI
TOTAL NUMBER OF POSSIBLE REAL ROOTS OF (44) WHEN

R0 > 1.

Number of
Cases B0 B1 B2 B3 B4 sign changes

– + + + + 1
1 – – + + + 1

– – – + + 1
– – – – + 1
– + + – + 3
– + – + + 3

2 – + – – + 3
– – + – + 3

TABLE XII
TOTAL NUMBER OF POSSIBLE REAL ROOTS OF (44) WHEN

R0 < 1.

Number of
Cases B0 B1 B2 B3 B4 sign changes

1 + + + + + 0
+ + + – + 2
+ + – + + 2
+ + – – + 2

2 + – + + + 2
+ – – + + 2
+ – – – + 2

3 + – + – + 4

1. has a unique endemic equilibrium when Case
1 of Table XI is satisfied and whenever R0 >
1.

2. could have more than one endemic equilib-
rium when Case 2 of Table XI is satisfied
whenever R0 > 1.

3. could have more than one endemic equilib-
rium when Case 2, 3 of Table XII are satisfied
and whenever R0 < 1.

4. has no endemic equilibrium when Case 1 of
Table XII is satisfied and whenever R0 < 1.

Case 3 of Lemma A.1 suggests that co-existence
of the disease–free equilibrium and the endemic
equilibrium for the arboviral-disease model (3) is
possible, and hence the potential occurrence of the
backward bifurcation phenomenon when R0 < 1.
Also, case 2 of Lemma A.1 suggests the possibility
of a pithcfork (Forward) bifurcation when R0 = 1.
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b) Presence of disease–induced death in vec-
tor:: Here, we will consider µv < µ1 < µ2 with
µv 6= µ2. Equation (27) becomes

λ∗h =

βhvµhµvk2k3k10(k1 + λ∗h)(µh + πλ∗h)

k2k3k7(k1 + λ∗h)(µh + πλ∗h)− δγhΛhλ∗h(k8 + πλ∗h)

×
(
µ2µbθk4N1 + αλ∗v
µbθ(µ2k4 + k5λ∗v)

)(
λv

µv + λv

)
(45)

with k12 =
µvk10
K

, N1 =

(
1− 1

N

)
and

λ∗v =

βvhµhΛhk11λ
∗
h(k8 + πλ∗h)

k2k3k7(k1 + λ∗h)(µh + πλ∗h)− δγhΛhλ∗h(k8 + πλ∗h)
(46)

Substituting (46) in (45) gives the following equa-
tion

λ∗h

6∑
i=0

Ci(λ
∗
h)i = 0 (47)

where C0 = k3
1k

3
2k

3
3k4k

3
7θµ2µvµbµ

3
h

(
R2

0 − 1
)

and
C6 = −µbπ3θX (µ2k4X + βvhk5k11Λhµh)
× (µvX + βvhk11Λhµh) ,

with X = (k2k3k7 − δΛhγh) > 0. The others
coefficients C5, C4, C3, C2, and C1 are obtained
after computations on Maxima software. We also
obtain the following result which gives various
possibilities of solutions of Eq. (47).

Lemma A.2: Assume that N > 1. Then, the
arboviral-disease model (3)

1. could have a unique endemic equilibrium
whenever R0 > 1.

2. could have more than one endemic equilib-
rium whenever R0 > 1.

3. haven’t endemic equilibrium whenever R0 <
1.

4. could have one or more than one endemic
equilibrium whenever R0 < 1.

Case 4 of Lemma A.2 suggests that co-existence
of the disease–free equilibrium and endemic equi-
librium for the arboviral-disease model (3) is

possible, and hence the potential occurrence of a
backward bifurcation phenomenon when R0 < 1.
Also, case 2 of Lemma A.2 suggests the possibility
of a pithcfork (Forward) bifurcation when R0 = 1.

Appendix E: COMPUTATION OF a? OF

THEOREM 4.1.

a? =
1

2
v3

9∑
i,j=1

wiwj
∂2f3(0, 0)

∂xi∂xj

+
1

2
v8

9∑
i,j=1

wiwj
∂2f8(0, 0)

∂xi∂xj
.

(48)

Let a?3 =
∑9

i,j=1wiwj
∂2f3(0, 0)

∂xi∂xj
and

a?8 =
∑9

i,j=1wiwj
∂2f8(0, 0)

∂xi∂xj
. After few computa-

tions, we obtain

a?3 =
β∗
hvµh(εξΛh +mµh)

k1(Λh +mµh)2
w1 (ηvw8 + w9)

+
β∗
hvπµh(εξΛh +mµh)

k1(Λh +mµh)2
w2 (ηvw8 + w9)

− β∗
hvµhΛh(µh + πξ)

k1(Λh +mµh)2
w3 (w8ηv + w9)

− β∗
hvµhΛh(µh + πξ)

k1(Λh +mµh)2
w4 (w8ηv + w9)

− β∗
hvµhΛh(µh + πξ)

k1(Λh +mµh)2
w5 (w8ηv + w9)

+
β∗
hvηvµh

k1(Λh +mµh)2
[(εξΛh +mµh) (w1 + π w2)

−Λh(µh + πξ)w8 (w3 + w4 + w5)]

+
β∗
hvµh

k1(Λh +mµh)2
[(εξΛh +mµh) (w1 + π w2)

−Λh(µh + πξ)w9 (w3 + w4 + w5)]

=
β∗
hvµh

k1(Λh +mµh)2
{(εξΛh +mµh) (w1 + π w2)

−Λh(µh + πξ) (w3 + w4 + w5)} (w8ηv + w9)

+
β∗
hvµh

k1(Λh +mµh)2
{(εξΛh +mµh) (w1 + π w2) (ηv + 1)

−Λh(µh + πξ) (w3 + w4 + w5) (ηvw8 + w9)}

=
β∗
hvµh

k1(Λh +mµh)2
×

{(εξΛh +mµh) (w1 + π w2) (w8ηv + w9 + ηv + 1)

−2Λh(µh + πξ) (w3 + w4 + w5) (w8ηv + w9)} ,
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a?8 = w3

9∑
j=1

wj
∂2f8
∂x3∂xj

(x0, 0) + w4

9∑
j=1

wj
∂2f8
∂x4∂xj

(x0, 0)

+ w7

9∑
j=1

wj
∂2f8
∂x5∂xj

(x0, 0) + w8

9∑
j=1

wj
∂2f8
∂x8∂xj

(x0, 0)

+ w9

9∑
j=1

wj
∂2f8
∂x9∂xj

(x0, 0)

= −
βvhµ

2
hKθ

(
1− 1

N

)
µv(Λh + µhm)2

[
ηh

(
w3 +

5∑
i=1

wi

)
+ w4

]
w3

−
βvhµ

2
hKθ

(
1− 1

N

)
µv(Λh + µhm)2

[(
w4 +

5∑
i=1

wi

)
+ ηhw3

]
w4

+
βvhµh

(Λh + µhm)
(ηhw3 + w4)w7

= −
βvhµ

2
hKθ

(
1− 1

N

)
µv(Λh + µhm)2

[(ηhw3 + w4) (w1 + w2 + w5)

+2(ηh + 1)w3w4 + 2
(
ηhw

2
3 + w2

4

)]
+

βvhµh

(Λh + µhm)
(ηhw3 + w4)w7

Using above results, Eq. (48) becomes

a? = φ1 − φ2

where

φ1 =
1

2
v3

{
β∗
hvµh

k1(Λh +mµh)2
[(εξΛh +mµh) (w1 + π w2)

× (w8ηv + w9 + ηv + 1)

−2Λh(µh + πξ) (w3 + w4 + w5) (w8ηv + w9)]}

−
1

2
v8

βvhµ
2
hKθ

µv(Λh + µhm)2

(
1−

1

N

)
w5 (ηhw3 + w4)

+
1

2
v8

βvhµh

(Λh + µhm)
(ηhw3 + w4)w7

−
1

2
v8

βvhµ
2
hKθ

(
1−

1

N

)
µv(Λh + µhm)2

[2(ηh + 1)w3w4

+2
(
ηhw

2
3 + w2

4

)]
< 0

and

φ2 =
1

2
v8

βvhµ
2
hKθ

µv(Λh + µhm)2

(
1− 1

N

)
× [(ηhw3 + w4) (w1 + w2)] < 0

Appendix F: PROOF OF LEMMA 7.2

The Kamgang-Sallet approach used for (22)
ensures that the trivial equilibrium(TE := P0) and

the disease–free equilibrium (DFE := P1) are the
fixed point of (22). Indeed, rewriting (22) gives

Sk+1
h =

φ(h)Λh + (1− φ(h)k1)Skh
1 + φ(h)λkh

V k+1
h =

φ(h)ξSkh + (1− φ(h)µh)V k
h

1 + φ(h)πλkh
Ek+1
h = (1− φ(h)k2)Ekh + φ(h)λkh

×(Sk+1
h + πV k+1

h )

Ik+1
h = φ(h)γhE

k
h + (1− φ(h)k3)Ikh

Rk+1
h = φ(h)σIkh + (1− φ(h)µh)Rkh

Ak+1
v =

[
1−φ(h)

(
k6+µb

Skv+Ekv+Ikv
K

)]
Akv

+ φ(h)µb(S
k
v + Ekv + Ikv )

Sk+1
v =

φ(h)θAkv + (1− φ(h)µv)S
k
v

1 + φ(h)λkv
Ek+1
v = (1− φ(h)k4)Ekv + φ(h)λkvS

k+1
v

Ik+1
v = φ(h)γvE

k
v + (1− φ(h)µ2)Ikv

(49)
If X∗ = (Sh, V

∗
h , E

∗
h, I
∗
h, R

∗
h, A

∗
v, S

∗
v , E

∗
v , I
∗
v )T is

an equilibrium of the discrete system (49), then
we have after few simplifications

Λh − λ∗hS∗h − k1S
∗
h = 0

ξS∗h − πλ∗hV ∗h − µhV ∗h = 0
λ∗h(S∗h + πV ∗h )− k2E

∗
h = 0

γhE
∗
h − k3I

∗
h = 0

σI∗h − µhR∗h = 0

µb(S
∗
v + E∗v + I∗v )

(
1− A∗v

K

)
− k6A

∗
v = 0

θA∗v − λ∗vS∗v + µvS
∗
v = 0

k4E
∗
v − λ∗vS∗v = 0

γvE
∗
v − µ2I

∗
v = 0

(50)
which is equivalent to{
A1(X∗)(X∗S −XDFE) +A12(X∗)X∗I = 0
A2(X∗)X∗I = 0

(51)
where A1, A12 and A2 are given at Equation (11).

Appendix G: PROOF OF LEMMA 7.3

The Jacobian matrix associated with the right-
hand side of the numerical scheme (22) at the
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tivial equilibrium TE := P0 is given by JTE =
(Jij)1≤i,j≤9 with

J1,1 = 1− k1φ(h); J1,8 = −φ(h)βhvηvΛhµh
k1(Λh + µhm)

;

J1,9 = − φ(h)βhvΛhµh
k1(Λh + µhm)

; J2,1 = φ(h)ξ;

J2,2 = 1− µhφ(h);

J2,8 = −φ(h)πβhvηvξΛh
k1(Λh + µhm)

,

J2,9 = − φ(h)πβhvξΛh
k1(Λh + µhm)

,

J3,3 = 1− k2φ(h);

J3,8 =
φ(h)βhvηvΛh(µh + πξ)

k1(Λh + µhm)
;

J3,9 =
φ(h)βhvΛh(µh + πξ)

k1(Λh + µhm)
; J4,3 = φ(h)γh,

J4,4 = 1− k3φ(h); J5,4 = φ(h)σ;
J5,5 = 1− µhφ(h); J6,6 = 1− φ(h)k6;
J6,7 = J6,8 = J6,9 = φ(h)µb;
J7,6 = φ(h)θ, J7,7 = 1− φ(h)µv,
J8,8 = 1− φ(h)k4; J9,8 = φ(h)γv;
J9,9 = 1− µ2φ(h)

The eigenvalues of JTE are given by λ1 = λ2 =
1 − µhφ(h), λ3 = 1 − k1φ(h), λ4 = 1 − k2φ(h),
λ5 = 1− k3φ(h), and λ6, λ7, λ8, λ9 are eigenval-
ues of the submatrix

J̄ =


J6,6 φ(h)µb φ(h)µb φ(h)µb
J7,6 J7,7 0 0
0 0 J8,8 0
0 0 J9,8 J9,9


Since φ(h) > 0, it is clear that |λi| < 1, for
i = 1, 2, . . . , 5. We need also to show that the
characteristic polynomial associated with J̄ is
Schur polynomials, i.e. polynomials such that all
roots λi verify |λi| < 1.

The characteristic polynomial associated with
J̄ is given by
P (λ) = (λ+ µ2φ(h)− 1) (λ+ k4φ(h)− 1)H(λ)

where

H(λ) = λ2 + (φ(h)(µv + k6)− 2)λ

+ 1 + φ(h)2(k6µv − µbθ)− φ(h)(µv + k6)

The roots of P (λ) are λ6 = 1 − µ2φ(h), λ7 =
1 − k4φ(h) and the others roots are the roots of

H(λ). Note that |λ6| < 1 and |λ7| < 1. Now, we
need to show that H(λ) is a Schur polynomial. To
this aim, let q1 = (φ(h)(µv + k6)− 2)
and q2 = 1 +φ(h)2(k6µv−µbθ)−φ(h)(µv + k6).
Using Lemma 11 in [29], we just show that the
following conditions hold:

1+q1 +q2 > 0, 1−q1 +q2 > 0, 1−q2 > 0
(52)

We compute 1 + q1 + q2 = φ(h)2k6µv(1−N ),
1− q1 + q2 = 2 [(1− φ(h)µv) + (1− φ(h)k6)] +
φ(h)2k6µv(1−N ) and
1− q2 = φ(h) [µv + k6(1− φ(h)µv) + φ(h)µbθ]

If φ(h) has choosen as equation (25), then
conditions (52) hold wheneverN ≤ 1. Thus, H(λ)
is a Schur polynomial. This ends the proof.
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