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Abstract—An inverse numerical method that esti-
mates parameters of dynamic mathematical models
given some information about unknown trajectories
at some time is applied to examples taken from
Biology and Ecology. The method consists of de-
termining an overdetermined system of algebraic
equations using the experimental data. The solution
of the overdetermined system is then obtained using,
for example the least-square method. To illustrate
the effectiveness of the method an analysis of ex-
amples and a numerical example for the model that
monitors the dynamics of HIV is presented.

Keywords-Inverse problem; least squares meth-
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I. INTRODUCTION

Function approximation on a fixed interval by
means of an initial value problem of an ordinary
differential equation with unknown coefficients
and unknown initial values as presented by M
Shatalov, I. Fedotov and S.V. Joubert in [7], is
central to this study. In their paper al method
to determine both the unknown coefficients and
initial values of a dynamic system by minimizing

a certain goal function is presented. In earlier
collaborations Shatalov and Fedotov suggested the
use of such an approach in identifying dynamic
systems’ parameters from experimental data, see
[6].

Several other parameter estimation methods are
presented in literature, for instance the stochastic
models; the Bayesion approach, the Monte Carlo
technique, the numerical method with combined
Adomain/Alienor approach, the differential evo-
lution (DE) and the hybrid Taguchi-differential
evolution algorithm.

The method used is based on integrating both
sides of equations of a dynamic system, and ap-
plying regression methods to the overdetermined
system of linear algebraic equations with possible
constraints. The unknown parameters and initial
values can then be obtained using the method of
least squares. In this paper, the proposed method
gives parameter estimates that have a percentage
relative error that is mostly less than 0.4% for
artificially generated data and parameters that are
in the expected range for real data.

As an illustration of the method of identifica-
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tion, we present the analysis for problems from
Biology and Ecology. The following mathematical
models are taken as examples: model of a free pop-
ulation (with negligible mortality and with mortal-
ity different from zero), population with negligible
mortality and unknown initial conditions, inter-
species modifications of the Lotka-Voltera model
and a model that monitors the dynamics of HIV.
Numerical results with artificially generated data
and real data is then given for the model that
monitors the dynamics of HIV.

A. Inverse methods

The general approach to the inverse system
identification of a n –dimensional parameter a ∈
A ⊂ Rn, where A can coincide with Rn (no
constrains between entries of a) and A can be
subset of Rn (there are constrains) in a system
of ordinary differential equations of the following
form

ẋ = f(t,x,a), (1)

where x is vector-function [0, T ] 3 t −→ x (t) ∈
Rm subject to experimental information concern-
ing the values x (tj) at the point tj ∈ [0, T ] is
known:
t0 · · · tj · · · tN
x0 = x(t0) · · · xj = x(tj) · · · xN = x(tN )

(2)
The general approach to find a solution of the
formulated problem (1) consists of determining
an overdetermined system of algebraic equations
using the experimental data (2)

Aa = h, (3)

with respect to unknown vector a. The solution of
the system (3) is then obtained using any method
of solution of the overdetermined system, for
example the least-square method which minimize
the difference Aa − h using Euclidean metric. It
is known that in this case (see, for example [5]),
the solution of (3) can be obtained by solving the
following system

A>Aa = A>h, (4)

to obtain a.

II. MATHEMATICAL MODELS

1) Problem 1: Free population: Consider a
single species that grows by sexual reproduction.
Assume that the individuals move in the pop-
ulation like Brownian motion particles (or that
the population is colonial), then the frequency
of contact between the individuals is proportional
to the squared population density [1]. Further
assuming that mortality is different from zero and
is independent of the population size, the scalar
function f(t, x,a) is given by

f(t, x,a) =
a1x

2

x+ a2
− a3x, (5)

with the unknown vector a = (a1, a2, a3)> ∈ R3,
n = 3, m = 1 and a1 > a3. The parameters a1 and
a2 represent per capita birth rate (fecundity) and
the population at which half of the females are able
to reproduce, respectively. The mortality rate of the
population is represented by a3. The parameters
a1, a2 and a3 are positive and x(t) = x(t) ∈ R
is a scalar function. We also assume that x0 is
specified.

A special case arises if we assume that the
population is of negligible mortality. That is, if
a3 = 0 the scalar function f(t, x,a) is then given
as

f(t, x,a) =
a1x

2

x+ a2
. (6)

2) Problem 2: Population with negligible mor-
tality and x0 unknown: Here we consider the
special case of Problem 1 (that is, if a3 = 0) but
with the value x0 considered as an incorrect value
which must be corrected. The statement of such
a problem naturally appears since the initial value
x0 = x(t0) plays an important role, namely; it
defines the Cauchy’s problem for equation (1) and,
secondly x0 is included widely in computations
below. Therefore if x0 given from an experiment
has low accuracy, it would be desirable to define
this value with more accuracy.

3) Problem 3:Nonlinear predation at small prey
population: In this problem we consider an inter-
species modification of the Lotka-Voltera model
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where there is a nonlinear predation at small prey
population. Consider the system

ẋ = −a1
x2y

xp + a2
+ a3x,

ẏ = a4
x2y

xp + a2
− a5y,

 (7)

where p = 1, 2, a1, a2, a4 > 0, a3, a5 ≥ 0 and
n = 5, m = 2. The prey and predator densities
are represented by x(t) and y(t), respectively. In
this model, the parameters a1 represent the rate of
the consumption of prey by the predator popula-
tion, a2 the prey population density at which the
predator’s consumption is half the maximum value
[1], a3 the prey’s growth rate, a4 is rate at which
the prey contributes to the predator’s growth rate
and a5 is the predator’s death rate.

4) Problem 4: A model that monitors the dy-
namics of HIV: Consider the following two-
dimensional model that monitors the dynamics of
HIV. The model considers two sub-populations:
HIV susceptible (x), the HIV infected population
(y). The total population size is given by N =
x+ y. The model is described by

ẋ = −a1
xy

N
− a2x+ a3,

ẏ = a1
xy

N
− a4y,

 (8)

where a1, a2, a3 and a4 are all positive con-
stants model parameters. The parameter a1 and
a2 denotes the average rate of infection by HIV,
a2 the natural cessation of sexual activity, a3 the
recruitment rate of susceptible and a4 denotes the
death rates of the infected population due to HIV.
This model is a modified version of the three
dimensional one by Gumel (see, [3]). The vector
a = (a1, a2, a3, a4)T ∈ R4 is unknown. Note that
in this case n = 4 and m = 2.

III. CONSTRUCTION OF OVERDETERMINED

SYSTEMS

Consider equation (1) where f is defined by

f(t, x,a) =
a1x

2

x+ a2
, (9)

The resultant equation can be rewritten as

ẋx+ a2ẋ = a1x
2, (10)

Integration of (10) with respect to t from t0 to tj
(j = 1, 2, . . . , N) gives

−a1Pj + a2∆xj = −∆hj , (11)

where
∆xj = x (tj)− x (t0) ,

Pj =

∫ tj

t0

x2dt,

∆hj =

[
1

2
x2(tj)−

1

2
x2(t0)

]
.


(12)

The integral Pj can be calculated by using a
quadrature rule, for example trapezoidal rule.
Thus, System (3) is solved with

A =

 −P1 ∆x1
...

...
−PN ∆xN

 ,

a =

(
a1

a2

)
and h =

 ∆h1
...

∆hN

 .

Now, suppose that (1) is defined as in (10) and
the initial condition is unknown. Let us replace in
(11) ∆xj and ∆hj by those given in (12):

−a1Pj + a2xj −
(
a2x0 +

1

2
x2

0

)
= −hj , (13)

where hj = 1
2x

2
j under the assumption that for Pj

we use the old values of x0 defined by (2) for j =
1 and for j ≥ 2 the values of Pj are evaluated by
an open quadrature rule. Formally speaking system
(13) is nonlinear but setting

−
(
a2x0 +

1

2
x2

0

)
= a3, (14)

we obtain the linear system of the form (3) with

A =

 −P1 x1 1
...

...
...

−PN xN 1

 ,

a =

 a1

a2

a3

 , h =

 −h1
...
−hN

 .
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The value of x0 can then be obtained from Equa-
tion (14).

Equation (1) with f defined by (5) can be written
in the form

xẋ+ a2ẋ = a1x
2 − a3x

2 − a2a3x, (15)

In contrast to (10) two supplementary terms −a3x
2

and −a2a3x arise. Integrating (15) we obtain

(a1 − a3)Pj − a2xj +

(
1

2
x2

0 + a2x0

)
− a2a3Xj = hj , (16)

where Xj =
∫ tj
t0
xdt. Introducing the new vector

b = (b1, b2, b3, b4) where b1 = a1 − a2, b2 = a2,
b3 = 1

2x
2
0 + a2x0 and b4 = a2a3 the system can

be written in the form (3) where

A =

 P1 −x1 1 −X1
...

...
...

...
PN −xN 1 −XN

 ,

b =


b1
b2
b3
b4

 and h =

 h1
...
hN


In other words, we obtain the following system

b1Pj − b2xj + b3 − b4Xj = hj , (j = 1, . . . N)
(17)

Since the Jacobian is ∂b
∂a = a2 + x0 6= 0, we can

find the vector b and hence the unknown vector
a.

The system (7) of an interspecies modification
of the Lotka–Voltera model for nonlinear predation
at small prey population can be written as

ẋxp + a2ẋ = −a1x
2y + a3x

p+1 + a2a3x
ẏxp + a2ẏ = a4x

2y − a5yx
p − a2a5y

}
(18)

where p = 1, 2, a1, a2, a4 > 0 and a3, a5 ≥ 0.
Integrating (18) we obtain

∆hj = −a1Zj − a2∆xj + a3Pj + a2a3Xj

Sj = −a2∆yj + a4Zj − a5Qj − a2a5Yj

}
(19)

where,using the same notation as in (12):

∆xj = x (tj)− x (t0) ,

Pj =

∫ tj

t0

x2dt,

∆hj =

[
1

2
x2(tj)−

1

2
x2(t0)

]
.


(20)

and

Xj =

∫ tj

t0

x(t)dt, Yj =

∫ tj

t0

y(t)dt, (21)

Zj =

∫ tj

t0

y(t)x2(t)dt,Qj =

∫ tj

t0

xp(t)y(t)dt,

Sj =

∫ tj

t0

xp(t)dt, (22)

with j = 1 . . . N . Introducing the new vector b =
(b1, b2, b3, b4, b5, b6, b7)> where b1 = a1, b2 = a2,
b3 = a3, b4 = a4, b5 = a5, b6 = a2a3 and b7 =
a2a5, we write the System (19) in the form (3)
where

A=



−Z1 −∆x1 P1 0 0 X1 0

−Z2 −∆x2 P2 0 0 X2 0
...

...
...

...
...

...
...

−ZN −∆xN PN 0 0 XN 0

0 −∆y1 0 Z1 −Q1 0 −Y1

0 −∆y2 0 Z2 −Q2 0 −Y2

...
...

...
...

...
...

...
0 −∆yN 0 ZN −QN 0 −YN


and

h = (∆h1, . . . ,∆hN , S1, . . . , SN ).

In other words, we obtain the following system of
2N equations with seven unknowns:

∆hj = −b1Zj − b2∆xj + b3Pj + b6Xj ,
Sj = −b2∆yj + b4Zj − b5Qj − b7Yj ,

}
(23)

subject to
−b6 + b2b3 = 0,
−b7 + b2b5 = 0.

}
(24)

To evaluate numerically the right hand side of Sj
can be considered as the Riemann–Stietjes integral
Sj =

∫ tj
0 xp(t)dy(t), (see, for example Dragomir

and Fedotov [3]). Otherwise this integral can be
computed using numerical differentiation.
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Another approach to construct the over deter-
mined system is generally appealing since the
system obtained is simpler than (19). This method
is possible due to the special form of the system
(7); namely the system can be written as

ẋ = −a1g(x, y, a2) + a3x,
ẏ = a4g(x, y, a2)− a5y,

}
(25)

where g(x, y, a2) = x2y
xp+a2

. Eliminating g(x, y, a2)
we get

ẏ + c1y + c2ẋ− c3x = 0, (26)

where

a5 = c1,
a4

a1
= c2 and

a4a3

a1
= c3. (27)

Using the integration techniques that we discussed
earlier, we determine the vector c = (c1, c2, c3)>

and hence c3
c2

= a3, which will be considered as
unknown in the next step.

Multiplying the first equation of (7) by
(xp + a2), we obtain

xpẋ+ a2ẋ = −a1x
2y + a3x

p+1 + a2a3x. (28)

After integration of (28) the overdetermined sys-
tem can be written as

a1Zj + a2 (∆xj − a3Xj) = −∆hj + a3Pj , (29)

where j = 1, . . . , N , and Zj , Pj , Xj , ∆hj ,
∆xj were defined in (20) and (22). The unknown
parameters a1 and a2 may then be determined
from equation (29) and a4 and a5 from (27).

A. A model that monitors the dynamics of HIV

The system (8) can be written as

ẋ = −a1Pj − a2Xj + a3,

ẏ = a1Pj − a4Yj .

}
(30)

where

∆xj = x(tj)− x(t0), ∆yj = y(tj)− y(t0),

Pj =

tj∫
0

x(t)y(t)

x(t) + y(t)
dt,

Xj =

tj∫
0

x(t)dt and Yj =

tj∫
0

y(t)dt.

The system (30) can be written in the form (3)
with

A =



−P1 −X1 1 0
−P1 −X2 1 0

...
...

...
...

P1 0 0 −Y1

P1 0 0 −Y2
...

...
...

...


and

h = (∆x1,∆x2, . . . ,∆y1,∆y2, . . .)
>

IV. NUMERICAL EXTRACTION OF MODEL

PARAMETERS

In order to illustrate the effectiveness of the
method the parameter identification of the system
(8) is presented. Using parameter values from
Gumel [4], we generate points of solutions of the
system (8) by the adaptive Runge-Kutta method.
A mathematical software Mathcad was used for
the adaptive Runge-Kutta method and for the in-
tegration by quadratue rules. These solutions are
then perturbed by a normal distribution with mean
x̄ and standard deviation δ = 0.5 and further taken
as “experimental data”.

Furthermore, system (8) is studied in the context
of the Gauteng Province, South Africa. Data used
in the numerical simulation is obtained from the
Acturial Society of South Africa (ASSA) (see [2])
HIV prevalence estimates. The data is compiled
from the population sensus, antenatal survey and
registered deaths [2]. The ASSA 2003 tables gives
the population N and the number infected with
HIV y. From the relationship

N = x+ y, (31)

we obtain the susceptible population x as

x = N − y. (32)

The results given in Table 2 below, show a
comparison of the parameters used (from Gumel
[4]) , the estimated parameters and the percentage
error given by ||α− α̃||/||α|| × 100.

Biomath 5 (2016), 1604231, http://dx.doi.org/10.11145/j.biomath.2016.04.231 Page 5 of 7

http://dx.doi.org/10.11145/j.biomath.2016.04.231


A.N. Pete et al., Determination of parameters for Cauchy’s problem ...

Table 2: Problem 4: The parameter estimates and
errors.

Parameter Actual value Estimated value % Error
α α̃

a1 0.24 0.2404 0.375
a2 0.03125 0.0313 0.16
a3 2000 2000 0.000
a4 0.531 0.532 0.16

Applying the parameter estimation method in
the case of the transmission dynamics of HIV in
the Gauteng Province, South Africa the following
estimates are obtained:

a1

a2

a3

a4

 =


0.393
0.049

565143
0.149

 .

Figures 1 and 2 below show the comparison
of the estimated solutions with the “experimental
data” and the absolute error in the decimal loga-
rithmic scale. The initial value problem was solved
with the new coefficients and old initial conditions.
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X1i

ti
 

 

 

0 10 20
2

1

0
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ti
 Fig. 1. Comparison of the estimated solutions, Xi, with

the “experimental data” and the absolute error in the decimal
logarithmic scale.
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Fig. 2. Comparison of the estimated solutions, Yi, with
the “experimental data” and the absolute error in the decimal
logarithmic scale.

From the comparison of the parameters in Table
2, Figures 1 and 2, it can be seen that the estimated
parameters are close enough to the actual values.
The estimated parameters of dynamic HIV math-
ematical models for the Gauteng Province are all
nonnegative and also in the expected ranges.

V. CONCLUSION AND SUGGESTIONS FOR

FURTHER RESEARCH

A method for estimating parameters of dy-
namic mathematical models given some informa-
tion about unknown trajectories at some time, by
Shatalov, Fedotov and Joubert [7], was applied to
problems from Biology and Ecology. In Problem 2
where the initial value was assumed to be unknown
with accuracy, the method was applied to find this
value. To illustrate the efficiency of the method,
a numerical example for the model that monitors
the dynamics of HIV was presented. The estimated
parameters for the artificially generated data are
close enough to the actual parameter values and
for the Gauteng Province the estimated parameters
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are in the expected ranges.
The method for estimating parameters values

could be improved by incorporating a suitable
penalty term that minimizes the error caused by
numerical quadrature and high observational noise
levels in the real data. An improvement of the
method will be investigated in future studies.
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