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Abstract—Nestedness is a concept employed to
describe a particular pattern of organization in
species interaction networks and in site-by-species
incidence matrices. Currently the most widely used
nestedness index is the NODF (Nestedness metric
based on Overlap and Decreasing Fill), initially
presented for binary data and later extended to
quantitative data, WNODF. In this manuscript we
present a rigorous formulation of this index for
both cases, NODF and WNODF. In addition, we
characterize the matrices corresponding to the two
extreme cases, (W)NODF=1 and (W)NODF=0, rep-
resenting a perfectly nested pattern and the absence
of nestedness respectively. After permutations of
rows and columns if necessary, the perfectly nested
pattern is a full triangular matrix, which must
of course be square, with additional inequalities
between the elements for WNODF. On the other
hand there are many patterns characterized by the
total absence of nestedness. Indeed, any binary ma-
trix (whether square or rectangular) with uniform
row and column sums (or marginals) satisfies this

condition: the chessboard and a pattern reflecting
an underlying annular ecological gradient, which we
shall call gradient-like, are symmetrical or nearly
symmetrical examples from this class.

Keywords-biogeography, interaction networks,
nestedness, bipartite networks

I. INTRODUCTION

Observing nature is one of the most fascinating
experiences in life. A honeybee visits a daisy, a
rosemary, and other ten different species. Another
bee of the same family is specialized in just one
flower that by its turn is visited by twenty diverse
pollinators. Once we put together the community
of pollinators and flowers an intricate mutualist
network arises [5]. In the opposite side of life a
caterpillar feed on two asteraceae species which
are eaten by another couple of insects, the full
set of herbivorous and plants forms a complex
antagonist network. An central quest in ecology

Citation: N. F. Britton, M. Almeida Neto, Gilberto Corso, Which Matrices Show Perfect Nestedness or
the Absence of Nestedness? An Analytical Study on the Performance of NODF and WNODF, Biomath
4 (2015), 1512171, http://dx.doi.org/10.11145/j.biomath.2015.12.171

Page 1 of 9

http://www.biomathforum.org/biomath/index.php/biomath
http://dx.doi.org/10.11145/j.biomath.2015.12.171


N. F. Britton et al., Which Matrices Show Perfect Nestedness or the Absence of Nestedness ...

of communities today is the search for patterns in
networks that can distinguish between mutualist
and antagonist webs [13, 21]. One network pattern
that is part of this answer is nestedness, the subject
of this manuscript.

Nestedness is a concept used in ecology to study
a specific formation pattern in species interaction
networks and in site-by-species incidence matri-
ces. In general terms, nestedness is a specific kind
of topological organization in adjacency matrices
of bipartite networks where any vertex S, with
m links, tend to be connected to a subset of
the vertices connected to any other vertex with
n links, where n > m. The nestedness concept
was first introduced by [8] to characterize species
distribution pattern in a spatial set of isolated
habitats such as islands. In a perfectly nested
pattern site-by-site incidence matrix there is a
hierarchy of sites such that the set of species
inhabiting any site is a subset of the set inhabiting
any site further up the hierarchy. When applied to
describe the topological organization in ecological
interaction networks this new nestedness concept
was first used to networks formed by pollinators
and flowering plants and by seed dispersers and
flesh-fruited plants [4, 12]. In cases a network is
perfectly nested if (i) there is a hierarchy of plant
species such that the set of animal (pollinator or
seed disperser) species interacting with any plant
is a subset of the set of animals interacting with
any plant further up the hierarchy, and (ii) there
is a similar hierarchy of animals. It is clear that
in such a network generalist species interact with
specialists and generalists, but specialists do not
interact with each other.

The proper mathematical framework for intro-
ducing nestedness is in the context of bipartite
networks. From a general perspective we consider
a bipartite network formed by two sets S1 and
S2. Nestedness is characterized by several indices
[22, 18] and it is not the objective of this work
to compare them. Here we focus on the NODF
index, which has a clear mathematical definition
that allows further analytic developments. The
NODF index, an acronym for Nestedness metric

based on Overlap and Decreasing Fill, is an index
that was introduced in [2] and that has been
widely used in the literature. An extension of this
index to quantitative networks, WNODF , was
recently proposed [3], and we include it in our
analysis because of the importance of quantitative
networks, specially for networks of interacting
species [9, 13].

Null models are an important methodological
tool widely used in ecology to test model fitting,
perform statistical tests or test the validity of
indices and measures [10]. In order to assess an
index a large set of empirical or artificial data is
used as a data bank to explore its limitations and
fragility. This process has already been used to
test a set of nestedness indices [22]. Null models
are necessary because statistical tests are otherwise
always questionable by limitation in the range of
tested parameters, interpretation bias of the results,
or equivocal choice of random models. These
studies emphasis the necessity of analytic results to
strength confidence about nestedness indices and
their applications.

The original definition of the NODF index
depends on how the rows and columns are ordered,
and a frequently used software for calculating
NODF explicitly asks the user if they would like
to order the matrix according to row and column
sums (or marginals) [11]. In this paper we employ
a definition of (W)NODF in which the matrix is
previously sorted before the computation of the
index.

In this paper we give rigorous definitions of
NODF and WNODF and prove two mathemat-
ical theorems in each case. For the sake of clarity,
and for historical reasons, we explore separately
qualitative (binary) and quantitative (weighted)
networks. The treatment of the qualitative case
is more intuitive and helps the reader to follow
the analytic developments. In section 2 we start
with a formal definition of NODF and WNODF
and present two theorems that characterize the
extreme cases, NODF = 0 and WNODF =
0 corresponding to absence of nestedness, and
NODF = 1 and WNODF = 1 corresponding
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to the perfectly nested arrangement. In section 3
we summarize the main ideas of the work and put
the results in a broader context.

II. ANALYTIC TREATMENT

We shall consider a bipartite network of set S1,
containing m elements, and set S2, containing n
elements, with quantitative data for the frequency
wij of the interactions between element i of set
S1 and element j of set S2. In the simplest case
wi,j is equal to 1 or 0, a situation corresponding
to the binary network, qualitative network or pres-
ence/absence matrix. The adjacency matrix for the
network is the m×n matrix A = (aij), where aij
is defined by:

aij =


1 if wij 6= 0, so that element i of S1

and element j of S2 are linked
0 if wij = 0, so that they are not linked.

(1)
We define the row and column marginal totals

MT r
i and MT c

l by

MT r
i =

n∑
j=1

aij and MT c
l =

m∑
k=1

akl, (2)

so that MT r
i is the number of elements of S2

interacting with element i of S1, and MT c
l is the

number of elements of S1 interacting with element
l of S2. Define the row and column decreasing-fill
indicators DF r

ij and DF c
kl by

DF r
ij =

{
1 if MT r

i > MT r
j ,

0 if MT r
i ≤MT r

j ,
(3)

DF c
kl =

{
1 if MT c

k > MT c
l ,

0 if MT c
k ≤MT c

l .
(4)

Note that, if i < j, so that row i is above row j,
then DF r

ij = 1 if and only if element i of set S1 is
linked with more elements of set S2 than element
j of S1; similarly, if k < l, so that column k is to
the left of column l, then DF c

kl = 1 if and only if
element k of S2 is linked with more elements of
set S1 than element l of S2. It is always possible to

permute the rows and columns of the matrix so that
MT r

i ≥MT r
j whenever i < j, and MT c

k ≥MT r
l

whenever k < l, but the definition does not require
this to be done.

A. Qualitative matrices, the case NODF

In order to define NODF we start with the row
paired-overlap quantifier POr

ij as the fraction of
unit elements in row j that are matched by unit
elements in row i, and the column paired-overlap
quantifier POc

kl as the fraction of unit elements in
column l that are matched by unit elements in row
k, so that

POr
ij =

∑n
p=1 aipajp∑n
p=1 ajp

, POc
kl =

∑n
q=1 akqalq∑n
q=1 alq

.

(5)
Note that POr

ij is the fraction of elements of S2

linked to element j of S1 that are also linked to
element i of S1, and similarly for POc

kl. Define the
row paired nestedness NP r

ij between rows i and j,
and the column paired nestedness NP c

kl between
columns k and l, by

NP r
ij = DF r

ijPOr
ij +DF r

jiPOr
ji, (6)

NP c
kl = DF c

klPOc
kl +DF c

lkPOc
lk. (7)

Note that these definitions are valid whatever the
signs of MT r

i −MT r
j and MT c

k −MT c
l . Finally,

define the row and column nestedness metrics
NODF r and NODF c by

NODF r =

∑m
i=1

∑m
j=i+1NP r

ij
1
2m(m− 1)

, (8)

NODF c =

∑n
k=1

∑n
l=k+1NP c

kl
1
2n(n− 1)

, (9)

and the overall nestedness metric NODF as a
weighted average of these, by

NODF =

m∑
i=1

m∑
j=i+1

NP r
ij +

n∑
k=1

n∑
l=k+1

NP c
kl

1
2m(m− 1) + 1

2n(n− 1)
.

(10)
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1) Conditions for NODF = 0: Our objective
is to characterize all matrices for which NODF =
0. It is clear that NODF = 0 if and only if both
NODF r = 0 and NODF c = 0, so let us first
consider the conditions for which NODF r = 0.
This is true if and only if NP r

ij = 0 for all
pairs (i, j) of rows. From equation (6), NP r

ij = 0
if and only if either MT r

i = MT r
j , so that

DF r
ij = DF r

ji = 0, or
∑n

p=1 aipajp = 0, so that
POr

ij = POr
ji = 0. In other words, either rows

i and j have the same number of unit elements,
so that elements i and j of S1 interact with the
same number of elements of S2, or there is no
p in S2 that interacts with both i and j. If our
bipartite network is connected, then it is possible
to move from any i in S1 to any other j in S1 by
following a path composed of edges of the network
from S1 to S2 to S1 and so on. Hence, in this
connected case, NODF r = 0 if and only if all
elements of S1 are linked to the same number of
elements of S2. Similarly, for a connected network,
NODF c = 0 if and only if all elements of S2

are linked to the same number of elements of
S1, and NODF = 0 if and only if both these
conditions hold. If our network is disconnected,
then NODF = 0 if and only if all elements of
S1 are linked to the same number of elements of
S2, and all elements of S2 are linked to the same
number of elements of S1 within each connected
component, or compartment. This is a necessary
and sufficient condition for NODF = 0. There
are many networks that satisfy this condition. For
example in figure 1 we show a 9×6 network where
each of the nine elements of S1 interact with a dif-
ferent pair of elements of S2, so that each element
of S2 interacts with three elements of S1. Figure
1(c) does not resemble any of the NODF = 0
configurations exhibited in the literature [4, 15],
which are all (including the chessboard after row
and column permutation) compartmented with full
connectivity within the compartments. Case 1(d)
seems to reflect an underlying cyclic ecological
gradient [15], and we call it gradient-like. The
requirement that the gradient be cyclic is manifest
in the occupied cell at the bottom left of the matrix,

and it is occupied to fulfil the rule that there should
be two nonzero elements in each row and three in
each column. It is interesting that the dimensions
(m,n) of the adjacency matrix obey a constraint
in the NODF = 0 case. The total number of
matrix elements that is distributed along columns
and rows should follow the relation:

n∑
i=1

MT c
i =

m∑
j=1

MT r
j . (11)

As MT c
i and MT r

j are constants we can rewrite
11 in the form nMT c = mMT r.

2) Conditions for NODF = 1: We now wish
to characterize all matrices for which NODF = 1,
see figure 2. It is clear that NODF = 1 if and
only if both NODF r = 1 and NODF c = 1,
so let us first consider the conditions under which
NODF r = 1. This is true if and only if NP r

ij =
1 for all pairs (i, j) of rows. From equation (6),
NP r

ij = 1 implies that MT r
i 6= MT r

j , so that
either DF r

ij = 1 or DF r
ji = 1. If there are more

elements of S2 interacting with element i in S1

than with j in S1, then MT r
i > MT r

j , so that
DF r

ij = 1, DF r
ji = 0. Then we also require that∑n

p=1 aipajp =
∑n

p=1 ajp, so that POr
ij = 1, in

other words that aip = 1 whenever ajp = 1. Thus
all elements of S2 interacting with element j in
S1 also interact with element i in S1, or the set of
elements of S2 interacting with j in S1 is nested
within (or a proper subset of) the set of elements
of S2 interacting with i in S1 . Similarly, if there
are more elements of S2 interacting with j in S1

than with i in S1, then the set of elements of S2

interacting with i in S1 must be nested within the
set of elements of S2 interacting with j in S1.
Similar results hold for NODF c = 1, so that the
set of elements of S1 interacting with any k in S2

must be a proper subset or superset of the set of
S1 elements interacting with any other l in S2. For
NODF = 1, all (S1 and S2) interaction sets must
be proper sub- or supersets, so that by the pigeon-
hole principle we must have m = n, and it must
be possible to permute the rows and columns of
the matrix A so that aij = 1 if i ≥ j, aij = 0
otherwise. The matrix with NODF = 1 is the

Biomath 4 (2015), 1512171, http://dx.doi.org/10.11145/j.biomath.2015.12.171 Page 4 of 9

http://dx.doi.org/10.11145/j.biomath.2015.12.171


N. F. Britton et al., Which Matrices Show Perfect Nestedness or the Absence of Nestedness ...

Fig. 1: Some NODF = 0 patterns. Panels (a) and (b) represent the same matrix after permutation of lines and
columns; this non-chessboard tiling is a composition of three disconnected networks. Panels (c) and (d) show
two connected networks that have NODF = 0, since MT c

i = 3 and MT r
j = 2 for all i and j respectively. Case

(d) represents a gradient-like structure.
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full triangular matrix, unique up to permutation of
rows and columns.

B. Quantitative matrix, the case WNODF

To construct the WNODF index we define the
row-pair dominance quantifier Dr

ij as the fraction
of non-zero weights in row j that are dominated by
(less than) the corresponding weight in row i, and
the column-pair dominance quantifier Dc

kl as the
fraction of non-zero weights in column l that are
dominated by the corresponding weight in column
k, so that

Dr
ij =

∑n
p=1H(wip − wjp)H(wjp)

MT r
j

, (12)

Dc
kl =

∑m
q=1H(wqk − wql)H(wql)

MT c
l

, (13)

where H is the Heaviside step function with
H(0) = 0. Note that Dr

ij is the fraction of
elements of S2 interacting with j in S1 that interact
more strongly with i in S1, and similarly for Dc

kl.
Note that, when calculating NODF for qualitative
networks, the quantity corresponding to Dr

ij is
the row-pair overlap quantifier POr

ij which is the
fraction of elements of S2 interacting with j in
S1 that also interact with i in S1, and similarly
for Dc

kl; the requirement that the interaction be
stronger is not (and cannot be) applied. This is the
essential difference between the index WNODF
for quantitative networks and the index NODF
for qualitative ones. Now define the row-pair
dominance nestedness between rows i and j, and
the column-pair dominance nestedness between
columns k and l, by

DN r
ij = DF r

ijD
r
ij +DF r

jiD
r
ji, (14)

DN c
kl = DF c

klD
c
kl +DF c

lkD
c
lk. (15)

Note that these definitions are valid whatever
the signs of MT r

i −MT r
j and MT c

k −MT c
l . For

example, (i) if MT r
i > MT r

j then DF r
ij = 1 and

DF r
ji = 0, so DN r

ij = Dr
ij , (ii) if MT r

i < MT r
j

then DF r
ij = 0 and DF r

ji = 1, so DN r
ij = Dr

ji,
and (iii) if MT r

i = MT r
j then DF r

ij = DF r
ji = 0,

and DN r
ij = 0. Finally, define the row and

column weighted nestedness metrics WNODF r

and WNODF c by

WNODF r =

∑m
i=1

∑m
j=1DN r

ij

m(m− 1)
, (16)

WNODF c =

∑n
k=1

∑n
l=1DN c

kl

n(n− 1)
, (17)

and the overall weighted nestedness metric
WNODF as a weighted average of these, by

WNODF =

m∑
i=1

m∑
j=1

DN r
ij +

n∑
k=1

n∑
l=1

DN c
kl

m(m− 1) + n(n− 1)
.

1) Conditions for WNODF = 0: The treat-
ment of WNODF = 0 shares some similarities
with the previous analysis of NODF = 0. To
characterize all matrices for which WNODF = 0
we proceed as follows. It is clear that WNODF =
0 if and only if both WNODF r = 0 and
WNODF c = 0, so let us first consider the
conditions for which WNODF r = 0. This is
true if and only if DN r

ij = 0 for all pairs
(i, j) of rows. From equation (14), DN r

ij = 0
if and only if either (i) MT r

i = MT r
j , so that

DF r
ij = DF r

ji = 0, or (ii) MT r
i > MT r

j

and
∑n

p=1H(wip − wjp)H(wjp) = 0, so that
Dr

ij = DF r
ji = 0, or (iii) MT r

i < MT r
j and∑n

p=1H(wjp − wip)H(wip) = 0, so that Dr
ji =

DF r
ij = 0. In case (i), the elements i and j of S1

interact with the same number of S2 elements. In
case (ii), i in S1 interacts with more elements of
S2 than does j in S1, but any interaction between
j and any element p of S2 is at least as strong
as the corresponding interaction between i and p.
Although i in S1 strictly dominates j in S1 in
terms of the number of its interactions, j in S1 (not
necessarily strictly) dominates i in S1 in terms of
the strength of the interactions it does have. Case
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Fig. 2: The maximal nestedness pattern exemplified
for qualitative (a) and quantitative (b) cases. In the
second situation the weight of the link between species
is indicated by grey tones.

(iii) is analogous, with i and j interchanged. There
are many possible ways to obtain WNODF r = 0,
and similarly WNODF c = 0 and WNODF =
0. In particular any connected bipartite network in
which all elements of S1 interact with the same
number of elements of S2, and all elements of
S2 interact with the same number of elements of
S1, has WNODF = 0, as does any network in
which each element of W is either 0 or 1. Note
that WNODF is not a continuous function of the

elements of W ; for example, if W is a 2 × 2
matrix with w11 = 1 + ε, w12 = w21 = 1,
w22 = 0, then WNODF (W ) = 0 if ε = 0 but
WNODF (W ) = 1 if ε is positive, however small
it is.

C. Conditions for WNODF = 1

We now wish to characterize all matrices for
which WNODF = 1, see figure 2. This demon-
stration has some points in common with the case
NODF = 1. It is clear that WNODF = 1 if and
only if both WNODF r = 1 and WNODF c = 1,
so let us first consider the conditions under which
WNODF r = 1. This is true if and only if
DN r

ij = 1 for all pairs (i, j) of rows. From equa-
tion (15), DN r

ij = 1 implies that MT r
i 6= MT r

j ,
so that either DF r

ij = 1 or DF r
ji = 1. If there

are more elements of S2 interacting with i in
S1 than with j in S1, then MT r

i > MT r
j , and

DF r
ij = 1, DF r

ji = 0. Then we also require
that

∑n
p=1H(wip − wjp)H(wjp) = MT r

j , so that
Dr

ij = 1, in other words that wip ≥ wjp whenever
wjp 6= 0. Thus all elements of S2 interacting
with j in S1 not only interact with i in S1, but
interact more strongly with i than with j. The set
of elements of S2 interacting with j in S1 not only
has to be nested within (or a proper subset of) the
set of S2 elements interacting with i in S1, but
all the interactions with i in S1 must be stronger
than the corresponding interaction with j in S1.
Similarly, if there are more S2 elements interacting
with j in S1 than with i in S1, then the set of S2

elements interacting with i in S1 must be nested
within the set of S2 elements interacting with j
in S1, and each interaction with j in S1 must be
stronger than the corresponding interaction with i
in S1. Similar results hold for WNODF c = 1,
so that the set of elements of S1 interacting with
any k in S2 must be a proper subset or superset
of the set of S1 elements interacting with any
other l in S2, corresponding interactions in subsets
must be weaker, and corresponding interactions in
supersets stronger. For WNODF = 1, all (S1

and S2) interaction sets must be proper sub- or
supersets, so that by the pigeon-hole principle we
must have m = n, and it must be possible to
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permute the rows and columns of the matrix W
so that wij > 0 if i + j ≤ n + 1, wij = 0
otherwise. Any matrix with WNODF = 1 has
the same adjacency matrix, up to permutation of
rows and columns, and also satisfies the row and
column strict dominance properties wik > wjk for
all i < j whenever wjk > 0, wki > wkj for all
i < j whenever wkj > 0.

III. FINAL REMARKS

This work focuses on probably the most com-
monly used nestedness index: the Nestedness met-
ric based on Overlap and Decreasing Fill. Initially
we introduce a rigorous formulation for NODF
and WNODF . We then elucidate the patterns of
maximal and minimal nestedness, (W )NODF =
1 and (W )NODF = 0. The maximal nestedness
pattern is already known in the literature [15, 2],
but an understanding of the minimum nestedness
pattern is substantially extended in this work. The
literature usually presents the chessboard pattern
as the prototype of the zero nestedness arrange-
ment; but this work shows that there is in fact a
large class of matrices that fulfil this condition.
We cite the completely compartmented networks
with equal modules (of which the chessboard is a
special case) and gradient-like matrices. But there
is another class of non-symmetrical matrices that
also have zero nestedness as long as the row and
column sums of the adjacency matrix are uniform.

The theoretical discussion about nestedness to-
day resembles the debate around diversity and its
measurements [14, 16, 17]. In both cases the com-
munity of ecologists is aware of the importance
of the concept in understanding and quantifying
patterns in ecological processes. In both contexts,
also, there is a dynamic debate about the true
meaning of the concepts, and the most adequate
way to transform them into an index [1, 18, 20].
Intriguingly, the comparison between diversity and
nestedness is not just a curiosity in the story of
theoretical ecology, but also a challenging aspect
of theory itself, because beta diversity and nested-
ness show common similarities and dissimilarities
[6, 19].

We hope that this rigorous work that highlight
the nestedeness of (W)NODF will contribute to
the discussion about the general meaning of nest-
edness by clarifying the extreme cases: zero and
maximal nestedness. The basics of the mathemat-
ical framework presented here is flexible enough
to encourage further developments using alterna-
tive pairwise nestedness indices. Despite the large
number of nestedness indices, there are few ana-
lytic results relating the properties of a nestedness
index and the characteristics of the corresponding
adjacent matrix; an exception is [7]. With the
exact results shown in this manuscript we add new
elements to the debate about the real meaning of
nestedness and the best way to measure it.
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[21] E. Thébault and C. Fontaine. Stability of
ecological communities and the architecture
of mutualistic and trophic networks. Science,
329:853, 2010.

[22] W. Ulrich, M. Almeida-Neto, and N. J.
Gotelli. A consumer’s guide to nestedness
analysis. Oikos, 118:3, 2009.

Biomath 4 (2015), 1512171, http://dx.doi.org/10.11145/j.biomath.2015.12.171 Page 9 of 9

http://dx.doi.org/10.11145/j.biomath.2015.12.171

	Introduction
	Analytic treatment
	Qualitative matrices, the case NODF
	Conditions for NODF = 0
	Conditions for NODF = 1

	Quantitative matrix, the case WNODF
	Conditions for WNODF = 0

	Conditions for WNODF = 1

	Final Remarks

