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Abstract—Neurophysiological models of the brain
typically utilize systems of ordinary differential
equations to simulate single-cell electrodynamics.
To accurately emulate neurological treatments and
their physiological effects on neurodegenerative dis-
ease, models that incorporate biologically-inspired
mechanisms, such as neurotransmitter signalling,
are necessary. Additionally, applications that exam-
ine populations of neurons, such as multiscale mod-
els, can demand solving hundreds of millions of these
systems at each simulation time step. Therefore, ro-
bust numerical solvers for biologically-inspired neu-
ron models are vital. To address this requirement, we
evaluate the numerical accuracy and computational
efficiency of three L-stable implicit Runge-Kutta
methods when solving kinetic models of the ligand-
gated glutamate and γ-aminobutyric acid (GABA)
neurotransmitter receptors. Efficient implementa-
tions of each numerical method are discussed, and
numerous performance metrics including accuracy,
simulation time steps, execution speeds, Jacobian
calculations, and LU factorizations are evaluated
to identify appropriate strategies for solving these
models. Comparisons to popular explicit methods
are presented and highlight the advantages of the
implicit methods. In addition, we show a machine-
code compiled implicit Runge-Kutta method imple-

mentation that possesses exceptional accuracy and
superior computational efficiency.

Keywords-implicit Runge-Kutta; neuroreceptor
model; numerical stiffness; ODE simulation

I. INTRODUCTION

Mathematical modeling and computational sim-
ulation provide an in silico environment for in-
vestigating cerebral electrophysiology and neuro-
logical therapies including neurostimulation. Tra-
ditionally, volume-conduction models have been
used to emulate electrical potentials and currents
within the head cavity. In particular, these models
can reproduced electroencephalograph (EEG) sur-
face potentials [1]–[3], and have been successful
in predicting cerebral current density distributions
from neurostimulation administrations [1], [4]–
[7]. As these models become more refined, their
utility in diagnosing, treating, and comprehending
neurological disorders greatly increases.

Progress in field of computational neurology
has motivated a migration towards models that
incorporate cellular-level bioelectromagnetics. For
example, bidomain based models have been used
to simulate the effects of extracellular electrical
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current on cellular transmembrane voltage(s) [8]–
[13]. In addition, multiscale models have repro-
duced EEG measurements originating from action
potentials [14], [15], and have also demonstrated
an ability to simulate the influence of transcranial
electrical stimulation on neuronal depolarization
[16].

These models typically utilize a system of or-
dinary differential equations (ODEs) to emulate
cellular-level electrophysiology. While the com-
putational expense of simulating a single cell is
essentially negligible, this is not the case with
large-scale applications that may include hundreds
of millions of cells; in multiscale applications,
solving this set of ODEs is the computational
bottleneck [17]. In these applications, choosing an
appropriate numerical solver and using efficient
implementation approaches become paramount.

Alterations in neurotransmitter signalling is
a hallmark of many neurodegenerative condi-
tions and treatments. Parkinson’s disease (PD),
for example, which affects approximately one
million individuals in the United States alone
[18], culminates with pathological glutamate and
γ-aminobutyric acid (GABA) binding activity
throughout the basal ganglia-thalamocortical net-
work [19], [20]. As a treatment for PD, deep
brain stimulation (DBS) electrically stimulates ar-
eas of the basal ganglia, such as the subthala-
matic nucleus (STN) [21], to restore normal glu-
tamate and GABA synaptic concentrations [22]–
[24]. Therefore, models that incorporate funda-
mental neurotransmitter-based signalling provide
utility to the neurological research community.

Models of metabotropic and slow-responding
ligand-gated receptors, such as the GABAB

and N-methyl-D-aspartate (NMDA) glutamate
receptors, can be efficiently solved with ex-
plicit Runge-Kutta (ERK) methods [25]. On
the contrary, fast-responding ionotropic recep-
tors, such as the α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR) and
the GABAA receptor (GABAAR) result in models
that are classified as stiff [26], which is an attribute
of an ODE system that demands relatively small

step sizes in portions of the numerical solution
[27]. For these ODE systems, L-stable implicit
Runge-Kutta (IRK) solvers with adaptive time-
stepping are ideal given their exceptional stability
properties [28].

In this paper, we examine L-stable IRK methods
when solving models that represent the AMPA
and GABAA neuroreceptors. Three L-stable IRK
methods that are highly effective at solving stiff
ODE systems were selected and implemented with
custom Matlab [29] programming. Features in-
cluding adaptive step-sizing, embedded error esti-
mation, error-based step size selection, and sim-
plified Newton iterations are incorporated [30].
Numerical experiments were then used to identify
the optimal maximum number of inner Newton
iterations for each method. Then, for both the
AMPAR and GABAAR models, simulation time
step results of each IRK method are compared to
commonly used ERK methods. In addition, the
numerical accuracy and computational efficiency
of each IRK method is compared to one other, as
well as the highly-popular fifth order, variable step
size Dormand-Prince method. Finally, a C++ based
IRK implementation demonstrates exceptionally
accurate and expedient performances, showcasing
its potential to support large-scale multi-cellular
brain simulations.

II. MATERIALS AND METHODS

A. Neuroreceptor models

1) AMPA: Glutamate is the single most abun-
dant neurotransmitter in the human brain [31].
It is produced by glutamatergic neurons, and is
classified as excitatory in the sense that it predom-
inately depolarizes post-synaptic neurons towards
generating action potentials [32]. Given the large
concentration of glutamate in the nervous system,
alterations in its production are associated with
many neurodegenerative diseases and treatments.
In PD patients, for example, stimulating the STN
with DBS causes a cascade of cellular effects
within the basal-ganglia thalamocortical pathway
through its afferent and efferent projections, in-
cluding increased glutamate secretion to the globus
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pallidus external (GPe), globus pallidus internal
(GPi), and substantia nigra pars reticulata (SNr)
[23].

Ligand-gated AMPA receptors for glutamate are
permeable to sodium and potassium, have a rever-
sal potential of 0 mV, and possess fast channel
opening rates. Therefore, these receptors produce
fast excitatory post-synaptic currents [33]. Figure
1a displays the Markov kinetic binding model
for the ligand-gated AMPAR that was utilized
in this paper [34]. In this network, there is the
unbound AMPAR form C0, singly and doubly
bound receptor forms C1 and C2, which can lead
to desensitized states D1 and D2, respectively, and
the open receptor form O [35]. In addition, vari-
able T represents neurotransmitter concentration.
Mass action kinetics gives the following system of
ODEs for the AMPA neuroreceptor model:

dC0

dt
= −kbC0T + C1ku1, (1a)

dC1

dt
= kbC0T + ku2C2 + kudD1 − ku1C1

− kbC1T − kdC1,
(1b)

dC2

dt
= kbC1T + kudD2 + kcO − ku2C2

− kdC2 − koC2,
(1c)

dD1

dt
= kdC1 − kudD1, (1d)

dD2

dt
= kdC2 − kudD2, (1e)

dO

dt
= C2ko − kcO, (1f)

dT

dt
= −kbC0T + ku1C1 − kbC1T + ku2C2.

(1g)

State transition rates were assigned as follows:
kb = 1.3 x 107, ko = 2.7 x 103, kc = 200,
ku1 = 5.9, ku2 = 8.6 x 104, kd = 900,
and kud = 64, each with units [1/sec]. Initial
concentrations of C1, C2, D1, D2, and O were
set to 0 M [33], and initial values for C0 and T
were computed from a nonlinear least squares fit
of the model to the whole cell recording data in
Destexhe et al. [35].

2) GABA: GABA is the most abundant in-
hibitory neurotransmitter in the human brain [36].
Like glutamate, GABA concentrations are altered
by neurological disease and treatment. In STN
DBS, for example, increased glutamate to the GPe
increases GABA secretion to the GPi and SNr,
resulting in greater GABA neuroreceptor binding
in these regions [24].

There are two main categories of GABA neu-
roreceptors. Metabotropic GABAB receptors are
slow-responding due to the secondary messenger
biochemical network cascade necessary for ion
channel activation. On the contrary, ligand-gated
GABAA receptors are fast-responding due to their
expedient ion channel opening rates. GABAA re-
ceptors are selective to chlorine with a reversal
potential of approximately -70 mV. In addition,
this receptor has two bound forms that can both
trigger channel activation [35].

Figure 1b displays the kinetic binding model for
the GABAA receptor that was utilized in this paper
[26]. In this model, there is the unbound receptor
form C0, singly and doubly bound receptor forms
C1 and C2, slow and fast desensitized states Ds

and Df , and singly open and doubly open receptor
forms O1 and O2. This model incorporates the
minimal forms needed to accurately reproduce
GABAAR kinetics [37]. Mass action kinetics gives
the following ODE system for the GABAA neu-
roreceptor model:

dC0

dt
= −2kbC0T + kuC1, (2a)

dC1

dt
= 2kbC0T − kuC1 + kuDsDs − kDsC1

+ 2kuC2 − kbC1T + kc1O1 − ko1C1,
(2b)

dC2

dt
= kbC1T − 2kuC2 + kc2O2 − ko2C2

+ kuDfDf − kDfC2,
(2c)

dDs

dt
= kfsDf − ksfDsT + kDsC1 − kuDsDs,

(2d)
dDf

dt
= ksfDsT − kfsDf + kDfC2 − kuDfDf ,

(2e)
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Fig. 1: Kinetic models for ligand-gated neuroreceptors.

dO1

dt
= ko1C1 − kc1O1, (2f)

dO2

dt
= ko2C2 − kc2O2, (2g)

dT

dt
= kuC1 − 2kbC0T + 2kuC2 − kbC1T

+ kfsDf − ksfDsT.
(2h)

Transition rates for the GABAAR ODE system
were assigned as follows: kb = 5 x 106, ku = 131,
kuDs = 0.2, kDs = 13, kc1 = 1100, ko1 = 200,
kc2 = 142, ko2 = 2500, kuDf = 25, kDf = 1250,
kfs = 0.01, and ksf = 2, each with units [1/sec].
Initial values of C1, C2, Ds, Df , O1, and O2 were
set 0 M, and C0 and T were assigned the values
1 x 10−6 M and 4096 x 10−6 M, respectively [26].

B. Stiff ordinary differential equations

The stiffness ratio is defined as

L =
max |Re(λi)|
min |Re(λi)|

,

where λi is the ith eigenvalue of the local Jacobian
matrix [38], given by

Jij =
∂fi(t, ȳ)

∂yj
.

A general non-linear ODE system is stiff when
L � 1. For each neuroreceptor model, we esti-
mated the eigenvalues numerically; a local Jaco-
bian matrix is computed at each simulation time
step using finite differences, and then its eigen-
values are computed using Matlab’s eig function
[39]. For the AMPAR model L = 1.6 x 1011, and
for the GABAAR model L = 3.5 x 1011. Thus,
both of these systems are classified as stiff.

C. Implicit Runge-Kutta methods

Runge-Kutta methods are a family of numeri-
cal integrators that solve ODE systems with trial
steps within the time step. These methods can be
expressed with the following formulas:

Z̄i = h

s∑
j=1

aijF̄ (tn + cjh, ȳn + Z̄j), i = 1, ..., s

(3a)

ȳn+1 = ȳn + h

s∑
j=1

bjF̄ (tn + cjh, ȳn + Z̄j),

(3b)

where ȳn is the current solution at time tn, h
is the current time step, [aij ] is the Runge-Kutta
matrix, F̄ is the ODE system, [cj ] represents inter-
time trial step nodes, [bj ] is the trial step solution
weights, s is the number of stages, and ȳn+1 is the
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numerical solution at time tn+1 [28]. A Runge-
Kutta method can be fully defined with a Butcher
table, i.e. a specific [aij ], [bj ], and [cj ] [40].

L-stable IRK methods are highly effective at
solving stiff ODE systems [30]; these methods
have no step size constraint to maintain numerical
stability and quickly converge [41]. Methods with
second and third order accuracy were considered
as these orders best match the numerical accuracy
of fractional step algorithms typically employed
with partial differential equation based multiscale
models [16], [39].

The following L-stable IRK methods were se-
lected for examination: SDIRK(2/1) [42], ES-
DIRK23A [17], and RadauIIa(3/2) [30], [43]. Each
has demonstrated accuracy and computational effi-
ciency when solving extremely stiff ODE systems.
In addition, each provide an efficient local error
estimator that enables error-based adaptive time-
stepping. For simplicity, these solvers will be
referred to as SDIRK, ESDIRK, and Radau for the
remainder of this paper. Butcher tables for these
methods are displayed in Fig. 2.

γ γ
1 1− γ γ

b 1− γ γ

b̂ 1− γ̂ γ̂

(a) SDIRK(2/1)

1
3

5
12 - 1

12
1 3

4
1
4

b 3
4

1
4

b̂ 3
4 −

√
6

4
1
4 +

√
6

12

(b) RadauIIA(3/2)

0 0
2γ γ γ

1 b̂1 b̂2 γ
1 b1 b2 b3 γ

b 6γ−1
12γ

−1
(24γ−12)γ

−6γ2+6γ−1
6γ−3 γ

b̂ −4γ2+6γ−1
4γ

−2γ+1
4γ γ 0

(c) ESDIRK23A

Fig. 2: Butcher tables for the three implicit Runge-
Kutta methods evaluated in this paper. In Fig. 2a,
γ = 1−

√
2

2 and γ̂ = 2− 5
4

√
2, and in Fig. 2c, γ =

0.4358665215. In each Butcher table, b̂ specifies
the lower-order trial step solution weights.

The SDIRK method is second order with an

embedded first order formula for local error es-
timation. Each trial step, Z̄i, of the SDIRK
solver can be solved for sequentially. Specif-
ically, since a12 = 0 (see Fig. 2a), the
first stage of this method can be written as
Z̄1 = h

(
a11F̄ (tn + c1h, ȳn + Z̄1)

)
, and Z̄1 can

be solved for first and used directly in the solution
of Z̄2 = h

(
a21F̄ (tn + c1h, ȳn + Z̄1) + a22F̄ (tn +

c2h, ȳn + Z̄2)
)
.

The Radau method has two stages like the
SDIRK method (see Fig. 2b), but has third order
accuracy with a second order error formula. This
method’s Runge-Kutta matrix is full, therefore the
trial stages are solved as a coupled implicit system:

Z̄1 = h[a11F̄ (tn + c1h, ȳn + Z̄1)+

a12F̄ (tn + c2h, ȳn + Z̄2)],

Z̄2 = h[a21F̄ (tn + c1h, ȳn + Z̄1)+

a22F̄ (tn + c2h, ȳn + Z̄2)].

Trial steps in the ESDIRK method are solved
sequentially like the SDIRK method, after the
initial explicit first stage (see Fig. 2c). This method
is third order with an embedded second order
formula for local error estimation, similar to the
Radau solver.

D. Implementation

The three IRK methods were programmed in
Matlab using principles specified in [30] and [44];
we refer these resources for a detailed explanation
of Runge-Kutta method implementation and in this
section provide just a brief overview of key aspects
utilized in our implementations.

For each IRK method, Newton’s method is used
in solving system (3a). Typically, each inner New-
ton iteration involves computing the local Jacobian
matrix and performing an LU factorization. To
greatly decrease run-time, at each time step the
Jacobian computation and LU factorization are
performed just once on the first Newton iteration
and retained for all remaining iterations. Execu-
tion time is further decreased by retaining the
Jacobian in the subsequent time step if the IRK
method converges with just one Newton iteration,
or ‖Z̄

k+1−Z̄k‖
‖Z̄k−Z̄k−1‖ ≤ 10−3, where k is the number of
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inner iterations for convergence and ‖ · ‖ is an
error-normalized 2-norm [30], [45].

Efficient starting values for each Newton iter-
ation are produced via a Lagrange interpolation
polynomial of degree s [30], [42]. For the Radau
method, for example, we use the data points:
q(0) = 0, q(1

3) = Z̄1, and q(1) = Z̄2, and obtain
the following Lagrange polynomial:

q(w) =q(0)
(w − 1

3)(w − 1)

(0− 1
3)(0− 1)

+

q

(
1

3

)
(w − 0)(w − 1)

(1
3 − 0)(1

3 − 1)
+

q(1)
(w − 0)(w − 1

3)

(1− 0)(1− 1
3)

=
w(w − 1)
−2
9

Z̄1 +
w(w − 1

3)
2
3

Z̄2.

Newton iteration starting values are then given by:

Z̄1 = q(1 + wc1) + ȳn − ȳn+1,

Z̄2 = q(1 + wc2) + ȳn − ȳn+1,where w =
hnew
hold

.

For each time step, local error is calculated and
used for (i) step acceptance and (ii) subsequent
step size prediction. The error at time step tn+1

can be computed by err = ŷn+1 − ȳn+1, where

ŷn+1 = ȳn+b̂0hF̄ (tn, ȳn)+

h

s∑
j=1

b̂jF̄ (tn + cjh, Z̄j + ȳn).
(4)

The error calculations in the SDIRK and ES-
DIRK methods are suitable for stiff systems [39],
[41]. For the Radau method, however, ŷn+1−ȳn+1

will become unbounded and is therefore not appro-
priate for stiff systems [46]. Instead, we use the
formula err = (I − hb̂0J)−1(ŷn+1− ȳn+1) which
is equivalent to

err =(I − hb̂0J)−1[b̂0hF̄ (tn, ȳn) +

(b̂1 − b1)hF̄ (tn + c1h, Z̄1 + ȳn) +

(b̂2 − b2)hF̄ (tn + c2h, Z̄2 + ȳn)],

(5)

where I is the identity matrix, J is the Jacobian,
and b̂0 =

√
6

6 [46].

We can write ŷn+1 − ȳn+1 as follows [47]:

ŷn+1− ȳn+1 = b̂0hF̄ (tn, ȳn) + e1Z̄1 + e2Z̄2. (6)

To identify the coefficients e1 and e2, we substitute
Z̄1 and Z̄2 (3a) into (6):

ŷn+1 − ȳn+1 = b̂0hF̄ (tn, ȳn)

+e1[ha11F̄ (tn + c1h, Z̄1 + ȳn)+

ha12F̄ (tn + c2h, Z̄2 + ȳn)]

+e2[ha21F̄ (tn + c1h, Z̄1 + ȳn)+

ha22F̄ (tn + c2h, Z̄2 + ȳn)].

Collecting terms gives:

ŷn+1−ȳn+1 = b̂0hF̄ (tn, ȳn)+

(e1a11 + e2a21)hF̄ (tn + c1h, Z̄1 + ȳn)+

(e1a12 + e2a22)hF̄ (tn + c2h, Z̄2 + ȳn).
(7)

From (5) and (7), we end up with the following
system of equations:

b̂1 − b1 = e1a11 + e2a21,

b̂2 − b2 = e1a12 + e2a22.

Using the Radau Butcher table (Fig. 2b) gives
(e1, e2) = b̂0

(−9
2 ,

1
2

)
. The error estimation is used

to predict step size via the strategy proposed by
Gustafsson [45]. Further, step size following a
rejected step due to excessive local error, namely
‖err‖ > 1, is 1

3h.
For large-scale simulations, e.g. multiscale ap-

plications, hundreds of millions of ODE systems
may be solved at each time step. For these com-
putationally intensive simulations, scripting lan-
guages such as Matlab are not ideal, and machine-
compiled programs are generally necessary to
achieve simulation results within reasonable com-
puting time [48]. Due to its superior accuracy in
solving both the GABAAR and AMPAR models
(see Sec. III), we selected the Radau method and
configured a C++ implementation of it. Execution
results of this version provide a measure of opti-
mally expected computational performance.

We validated the implementation of each IRK
method by comparing their GABAAR simulation
results to those presented in Qazi et al. [37],
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and their AMPAR simulation results to whole cell
recording data in Destexhe et al. [35].

E. Simulations

Numerical simulations were performed to assess
the robustness of the IRK methods when solving
the AMPAR and GABAAR models. Simulations
were one second in duration, with rates and initial
conditions as specified in Section II-A. Absolute
and relative error tolerances were both set to
10−8, and initial step size, h, was set to 10−4.
For each IRK method, the optimal number of
maximum Newton iterations, kmax, was identified
by solving the AMPAR and GABAAR models
with kmax = 5, 6, ..., 20. For each value of kmax,
the mean execution time of five simulations was
computed, and the value of kmax that produced the
lowest mean execution time was selected. Figure
3a displays the kmax values selected for each
model and method.

For each method, it was observed that a thresh-
old value of kmax exists, such that higher values
do not result in faster simulations. Therefore, we
selected the minimum kmax value associated with
the fastest execution speed. For example, for the
Radau method solving the GABAAR model, sim-
ulation times begin to plateau for kmax ≥ 10, and
simulation times with kmax ≥ 15 were the same
(see Fig. 3b). Therefore, for this model and IRK
method, kmax = 15 was selected.

Figure 3b also shows that faster run times
correlate with fewer solution time steps and LU
factorizations, until a floor is reached; in the case
of the Radau method solving the GABAAR model,
this floor is 29 time steps and 30 LU factoriza-
tions. To a point, higher values of kmax increase
the probability of Newton method convergence,
resulting in fewer time steps and fewer compu-
tationally expensive LU factorizations [30]. For
the Radau method solving the GABAAR model,
values of kmax ≥ 15 yield the fewest number
of simulation times steps in addition to no steps
where the Newton iteration fails to converge. Thus,
when kmax = 15, time steps and associated LU
factorizations are minimized, yielding the fastest
execution speeds.

Model SDIRK ESDIRK Radau
GABAAR 7 10 15
AMPAR 14 12 17

(a) Values of kmax selected for each model and method

(b) Radau method solving the GABAAR model: run time, time
steps, and LU factorizations, for kmax = 5, 6, ..., 20

Fig. 3: Maximum Newton iteration metrics and
results.

To evaluate the advantages that IRK methods
have when solving fast-responding neuroreceptor
models, we first compare the total number of
simulation time steps and simulation step sizes
of each IRK method to the following commonly
used ERK methods: forward euler (FE), midpoint
method (Mid), and 4th order Runge-Kutta (RK4).
Next, to compare each IRK method to one another
and to the adaptive 5th order Dormand-Prince
method (DP5) [49], metrics including local and
global error, total simulation time steps, step sizes,
execution times, and numbers of Jacobian com-
putations and LU factorizations were evaluated.
Absolute and relative error tolerances of the DP5
method were set to 10−8, matching the tolerances
of the three implicit methods.

To more comprehensively assess performance
differences amoung the IRK methods, work-
precision diagrams using solution run times and
scd values, where scd = -log10(‖relative error at
t = 1.0 sec ‖∞), were then generated [50]. For the
work-precision diagrams, relative error tolerances
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Fig. 4: SDIRK method solution of GABAAR model.

were set to rtol = 10−(4+m

5
), m = 0, 1, ..., 25,

absolute error tolerance was set to 10−4 · rtol, and
initial step size was 10−4. In addition, solution run
times presented in these diagrams are the mean of
five runs. For all accuracy calculations, solutions
with a 5th order adaptive time-stepping L-stable
implicit Runge-Kutta method with a maximum
step size of 10−6 and both absolute and relative
tolerances set to 10−14 were used as true solutions.

Finally, the execution time of the Radau C++
implementation when solving both neuroreceptor
models was assessed. All simulations were run on
a Linux machine with an Intel i7 processor with a
clock speed of 2.40 GHz.

III. RESULTS AND DISCUSSION

A. GABAAR Model

Figure 4 presents the solution of the GABAAR
model with the SDIRK method; ESDIRK and
Radau solutions look identical. The sharp transi-
tion in the total open state concentration, O1(t) +
O2(t), at the onset of neurotransmitter stimulus
at t = 0 displays the necessity for smaller time
steps in this region of the solution (Fig. 4a). Upon
examining all receptor forms during the first 1.5
ms of the simulation, it is observed that both
the unbound closed form, C0(t), and total bound

closed form, C1(t) +C2(t), possess concentration
transitions even greater than the open receptor
form (Fig. 4b). These results show the stiffness
possessed by the GABAAR system.

Table I displays simulation time step metrics for
the three IRK methods and the FE, Mid, and RK4
ERK methods. The maximum step size of each
explicit method was calculated with the GABAAR
model stiffness index and the method’s stability
region [28], giving the largest step that can be
taken while maintaining numerical stability. Then,
the number of time steps required for each ERK
method was computed by dividing the simulation
duration by the maximum step size. The FE and
Mid methods both require 2.1 x 104 time steps,
and the RK4 method requires 1.5 x 104, which
is lower than the FE and Mid methods due to its
larger stability region [30]. On the contrary, each
implicit method requires less than 30 simulation
time steps. As displayed in Figure 4a, the majority
of these time steps for the SDIRK method occur at
the beginning of the simulation, within the region
of rapid solution transition.

Similarly, the ESDIRK and Radau solvers de-
mand noticeably more time steps at the onset
of neurotransmitter stimulation (Fig. 5). Rejected
steps, totalling three for the ESDIRK method (Fig.
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Fig. 5: Simulation step sizes for the GABAAR model.

TABLE I: Simulation time steps results for
the ERK and IRK methods when solving the
GABAAR model.

Method (Order) Max Step Time
Size (s) Steps

FE (1) 4.8 x 10−5 2.1 x 104

Mid (2) 4.8 x 10−5 2.1 x 104

RK4 (4) 6.8 x 10−5 1.5 x 104

SDIRK (2/1) Adaptive 28
ESDIRK (3/2) Adaptive 26

Radau (3/2) Adaptive 29

5a) and two for the Radau method (Fig. 5b) all
occur at time t = 0; once the solution in this
region has been accurately resolved, no further
rejected steps occur. In addition, for all three IRK
methods, all Newton iterations converged, which
was facilitated by identifying optimal kmax values
(see Sec. II-E). Further, the smallest step sizes
of the IRK methods, namely 1.4 x 10−5 for the
SDIRK and ESDIRK methods and 1.2 x 10−5

for the Radau method, have the same order of
magnitude as the largest stable step sizes of the
ERK methods.

Next the accuracy and computational efficiency
of the IRK methods were compared to one another
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Fig. 6: GABAAR model open state concentration
solution error.

and with the DP5 method (Table II). While the
DP5 method possesses the lowest maximal local
true solution deviation (3.2 x 10−10), the 2-norm
of its global error is one to two orders of mag-
nitude higher than all three IRK methods. These
results are explained by the fact that the solution of
the DP5 solver oscillates around the true solution
(Fig. 6). In addition, the DP5 method requires
approximately 50,000 simulation time steps and
takes 49.0 seconds to run. In comparison, the
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TABLE II: Accuracy and simulation run-time metrics of the DP5 and IRK methods when solving the
GABAAR model. Boldface font denotes best results of each column.

Method (Order) ‖ Error ‖2 Max |Error| Time Steps Run Time (s)
DP5 (5/4) 252.0 x 10−10 3.2 x 10–10 5.0 x 104 49.0

SDIRK (2/1) 45.6 x 10−10 19.6 x 10−10 28 0.21
ESDIRK (3/2) 18.3 x 10−10 8.8 x 10−10 26 0.27

Radau (3/2) 8.7 x 10–10 3.7 x 10−10 29 0.69

ESDIRK method requires 26 time steps and the
SDIRK method executes in 0.21 seconds. DP5
solution accuracy can be improved with either
stricter error tolerances or a decreased time step
[51], however, these approaches will result in even
greater run times.

The Radau method has the greatest execution
time of the three IRK methods, at 0.69 seconds.
While the number of simulation time steps amoung
the IRK methods are comparable, two factors
contribute to the longer run time of the Radau
method. First, this solver generally requires a
greater number of iterations for Newton’s method
to converge (Fig. 3a). Second, the Radau method
requires 30 Jacobian computations, versus just four
for the SDIRK and ESDIRK methods.
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Fig. 7: GABAAR work-precision diagram with
solver run time vs. scd for each IRK method.
Integer exponential tolerances, i.e. 10−4, 10−5, ...,
are presented with enlarged symbols. The symbol
for rtol = 10−6 is distinguished by the yellow
circle.

Despite its run time disadvantages amongst the
IRK methods, the accuracy of the Radau method
stands out as superior. It has the lowest global
error 2-norm (8.7 x 10−10), and its maximal
deviation from the true solution (−3.7 x 10−10) is
comparable to that of the 5th order DP5 method,
the only IRK method examined where this is
the case. Further, the Radau method has greater
accuracy at every time step than both the SDIRK
and ESDIRK methods.

These findings are reinforced by the work-
precision diagram for the three IRK methods when
solving the GABAAR model (Fig. 7). This diagram
highlights the higher precisions attained by the
third order methods, and in addition, also confirms
the slower execution speeds achieved by the Radau
method. However, when comparing graph points
of similar relative tolerances, such as the symbols
marked in yellow that represent rtol = 10−6, the
Radau method is consistently more accurate.

B. AMPAR Model

Figure 8 presents solution results of the AMPAR
model solved with the Radau method. Like the
GABAAR model, the rapid transition in the open
state concentration upon neurotransmitter stimula-
tion demands a greater number of time steps (Fig.
8a). Specifically, the first 10% of the simulation
(0.1 sec) encompasses approximately 96% of the
simulation time steps. Once beyond this initial
region, step size eventually increases by seven
orders of magnitude (Fig. 8b). Similar to the
GABAAR model, both unbound closed and bound
closed forms contribute to the system’s stiffness.

A noticeable difference, compared to the
GABAAR simulation results, is the number of time
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Fig. 8: Radau method solution of the AMPAR model.

steps needed by the implicit methods to solve the
AMPAR model. The Radau method, for example,
requires 199 time steps (Fig. 8b), a 586% increase
from the 29 steps needed to solve the GABAAR
model. Similar increases are observed with the
SDIRK and ESDIRK solvers, most notably the
531 steps required by the SDIRK method (Table
III). In addition, the smallest step sizes of the IRK
methods are two orders of magnitude lower with
the AMPAR model (Fig. 8b), due to the stiffness
index of the AMPAR system [27]. Despite the
elevated simulation time step counts, each IRK
method still outperforms the explicit methods (Ta-
ble III); maximum stable step sizes and simulation
time steps for the explicit methods were again
computed with their stiffness indices and stability
regions [28].

While greater kmax values eliminated non-
convergent Newton iterations in the GABAAR
model, this is not the case with the AMPAR
model. Each IRK method has two instances where
Newton’s method did not converge. In addition,
the SDIRK method has four rejected steps, and
the ESDIRK and Radau methods each have two,
all occurring at time t = 0.

Table IV displays accuracy and execution effi-
ciency results for the IRK methods. An interesting

TABLE III: Simulation time steps results for the
ERK and IRK methods when solving the AMPAR
model.

Method (Order) Max Step Time
Size (s) Steps

FE (1) 1.7 x 10−5 5.9 x 104

Mid (2) 1.7 x 10−5 5.9 x 104

RK4 (4) 2.4 x 10−5 4.2 x 104

SDIRK (2/1) Adaptive 531
ESDIRK (3/2) Adaptive 211

Radau (3/2) Adaptive 199

result is the seemingly uncorrelated relationship
between simulation time steps and run time. For
example, despite having the lowest number of
simulation time steps, the Radau method has the
longest run time. Along these same lines, the
Radau method has less than 50% of the simulation
time steps of the SDIRK method, yet no noticeable
computational advantage. Moreover, the ESDIRK
method has approximately 40% of the SDIRK
method’s time steps, yet it requires 72% of its run-
time.

With a comparable number of rejected and
non-convergent steps (Table V), a culprit for this
behavior is the number of Jacobian computations
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TABLE IV: Accuracy and simulation run-time metrics of the DP5 and IRK methods when solving the
AMPAR model. Boldface font denotes best results of each column.

Method (Order) ‖ Error ‖2 Max |Error| Time Steps Run Time (s)
DP5 (5/4) 3.3 x 10−8 2.7 x 10−9 1.1 x 105 32.4

SDIRK (2/1) 3.0 x 10−8 2.7 x 10−9 531 1.34
ESDIRK (3/2) 1.7 x 10−8 2.7 x 10−9 211 0.97

Radau (3/2) 1.6 x 10–8 2.7 x 10−9 199 1.38
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Fig. 9: Method comparison when solving the AMPAR model.

performed by these solvers. Figure 9a displays the
Jacobian computations and LU factorizations of
the SDIRK and ESDIRK methods. Each method
has a near identical number of LU factorizations,
however, the ESDIRK method requires 51 Jaco-
bian computations, which is more than double the
24 performed by the SDIRK method. In addition,
the Radau method requires 162 Jacobian compu-
tations. Therefore, despite having a lower number
of simulation time steps, the computational ad-
vantages of the ESDIRK and Radau methods are
diminished due to this elevated number of Jacobian
computations.

Once again, the accuracy and computational
performances of the IRK methods were compared
to the DP5 method (Table IV). As observed with
the GABAAR model, the DP5 method has inferior
execution performance, requiring 1.1×105 simula-

TABLE V: Number of rejected and non-
convergent steps for each IRK method when solv-
ing the AMPAR model.

Model Rejected Non-convergent
SDIRK 2 2

ESDIRK 4 2
Radau 2 2

tion time steps and 32.4 seconds for a numerically
stable solution, both of which are significantly
greater than results attained with the IRK methods.
All four methods generate the same maximum
local error (2.7×10−9), which occurs at t = 0 for
all methods. Also, differences among the global
errors are relatively smaller with the AMPAR
model. The oscillatory nature of the DP5 solution
around the true solution (Fig. 9b) contributes to its
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global error 2-norm (3.3 × 10−8), which is again
larger than those of the three IRK methods. The
Radau method once again has the lowest global
error 2-norm (1.6×10−8) of all methods inspected.
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Fig. 10: AMPAR work-precision diagram with
solver run time vs. scd for each IRK method.
Integer exponential tolerances, i.e. 10−4, 10−5, ...,
are presented with enlarged symbols. The symbol
for rtol = 10−6 is distinguished by the yellow
circle.

The work-precision diagram for the AMPAR
model (Fig. 10) again confirms the higher pre-
cision achieved by the third order ESDIRK and
Radau solvers. More noticeable in this graph are
the differences in the “slopes” of the curves, where
“flatter” curves, i.e. ESDIRK and Radau, have
more precision per unit CPU time [30]. For the
AMPAR model, the Radau method is slower than
the ESDIRK method at all work-precision toler-
ances examined, yet at relative tolerances greater
than 10−6, the Radau method becomes faster than
the SDIRK method. Further, the Radau method
is generally the most accurate of all three IRK
methods.

C. C++ Radau Implementation

The Radau method consistently demonstrates
the greatest accuracy of the methods examined,
however, its main disadvantage is execution speed.
For this reason, we selected the Radau method and

configured a C++ implementation of it. Table VI
displays execution times for the previous Radau
Matlab implementation, as well as the new C++
version.

As expected, the C++ version is significantly
faster. Specifically, the GABAAR model has a
99.6% decrease in execution time, and the AM-
PAR model has a 99.7% decrease in execution
time. Because the implementation algorithms be-
tween the two versions are the same, the C++
version maintains the accuracy of the Matlab pro-
totype.

TABLE VI: Run times (seconds) for the Mat-
lab and C++ Radau method when solving the
GABAAR and AMPAR models.

Implementation GABAAR AMPAR
Matlab 0.69 1.38

C++ 2.7 x 10-3 3.5 x 10-3

IV. CONCLUSIONS

Computational neurology is a valuable con-
tributor in the diagnosis, treatment, and com-
prehension of neurological disease. To provide
maximal utility to the scientific community, com-
putational simulations should incorporate highly-
detailed, neurotransmitter-based neuron models.
Therefore, large-scale simulations involving popu-
lations of neurons will inevitably produce compu-
tational challenges. In this paper, we have shown
that appropriate numerical solvers with efficient
implementation strategies can alleviate computa-
tional difficulties.

Commonly used explicit methods are capable
in solving a limited number of fast-responding
ligand-gated neuroreceptor models. However, we
have shown that poor stability properties make
them non-ideal for large-scale applications. Rather,
by addressing the stiffness possessed by these
models, we show that implicit methods are highly
advantageous. In particular, we demonstrate that
L-stable implicit Runge-Kutta methods offer su-
perior accuracy and run-time efficiency compared
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to their explicit siblings when solving biologically-
based AMPA and GABAA neuroreceptor models.
To accelerate solutions, we utilize a range of
strategies including embedded error estimators and
simplified Newton iterations. In addition, we show
that optimal execution times are achieved when
costly Jacobian computations and LU factoriza-
tions are minimized.

The third order Radau IRK method demon-
strates exceptional local and global accuracy com-
pared to all other explicit and implicit methods
examined. In addition, its numerical stability prop-
erties yield a relatively low number of simulation
time steps and efficient step sizes when solving
the AMPA and GABAA neuroreceptor models.
Further, a C++ implementation of the Radau solver
displays the computational faculty to enable large-
scale multi-cellular simulations. In future work,
we plan to continue our investigation of numerical
solvers for neurotransmitter-based neuron models
by comparing the IRK methods to multi-step meth-
ods and exponential integrators.
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