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Abstract—We study the uniform approximation
of the sigmoid cut function by smooth sigmoid
functions such as the logistic and the Gompertz
functions. The limiting case of the interval-valued
step function is discussed using Hausdorff metric.
Various expressions for the error estimates of the
corresponding uniform and Hausdorff approxima-
tions are obtained. Numerical examples are pre-
sented using CAS MATHEMATICA.
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I. INTRODUCTION

In this paper we discuss some computational,
modelling and approximation issues related to
several classes of sigmoid functions. Sigmoid
functions find numerous applications in various
fields related to life sciences, chemistry, physics,
artificial intelligence, etc. In fields such as signal
processing, pattern recognition, machine learning,
artificial neural networks, sigmoid functions are
also known as “activation” and “squashing” func-
tions. In this work we concentrate on several

practically important classes of sigmoid functions.
Two of them are the cut (or ramp) functions and
the step functions. Cut functions are continuous
but they are not smooth (differentiable) at the two
endpoints of the interval where they increase. Step
functions can be viewed as limiting case of cut
functions; they are not continuous but they are
Hausdorff continuous (H-continuous) [4], [43]. In
some applications smooth sigmoid functions are
preferred, some authors even require smoothness
in the definition of sigmoid functions. Two famil-
iar classes of smooth sigmoid functions are the
logistic and the Gompertz functions. There are
situations when one needs to pass from nonsmooth
sigmoid functions (e. g. cut functions) to smooth
sigmoid functions, and vice versa. Such a neces-
sity rises the issue of approximating nonsmooth
sigmoid functions by smooth sigmoid functions.

One can encounter similar approximation prob-
lems when looking for appropriate models for
fitting time course measurement data coming e. g.
from cellular growth experiments. Depending on
the general view of the data one can decide to use
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initially a cut function in order to obtain rough
initial values for certain parameters, such as the
maximum growth rate. Then one can use a more
sophisticate model (logistic or Gompertz) to obtain
a better fit to the measurement data. The presented
results may be used to indicate to what extend and
in what sense a model can be improved by another
one and how the two models can be compared.

Section 2 contains preliminary definitions and
motivations. In Section 3 we study the uniform and
Hausdorff approximation of the cut functions by
logistic functions. Curiously, the uniform distance
between a cut function and the logistic function of
best uniform approximation is an absolute constant
not depending on the slope of the functions, a
result observed in [18]. By contrast, it turns out
that the Hausdorff distance (H-distance) depends
on the slope and tends to zero when increasing the
slope. Showing that the family of logistic functions
cannot approximate the cut function arbitrary well,
we then consider the limiting case when the cut
function tends to the step function (in Hausdorff
sense). In this way we obtain an extension of a
previous result on the Hausdorff approximation
of the step function by logistic functions [4]. In
Section 4 we discuss the approximation of the
cut function by a family of squashing functions
induced by the logistic function. It has been shown
in [18] that the latter family approximates uni-
formly the cut function arbitrary well. We propose
a new estimate for the H-distance between the
cut function and its best approximating squashing
function. Our estimate is then extended to cover
the limiting case of the step function. In Section 5
the approximation of the cut function by Gompertz
functions is considered using similar techniques
as in the previous sections. The application of the
logistic and Gompertz functions in life sciences
is briefly discussed. Numerical examples are pre-
sented throughout the paper using the computer
algebra system MATHEMATICA.

II. PRELIMINARIES

Sigmoid functions. In this work we consider
sigmoid functions of a single variable defined on

the real line, that is functions s of the form
s : R −→ R. Sigmoid functions can be defined
as bounded monotone non-decreasing functions on
R. One usually makes use of normalized sigmoid
functions defined as monotone non-decreasing
functions s(t), t ∈ R, such that lim s(t)t→−∞ = 0
and lim s(t)t→∞ = 1. In the fields of neural
networks and machine learning sigmoid-like func-
tions of many variables are used, familiar under the
name activation functions. (In some applications
the sigmoid functions are normalised so that the
lower asymptote is assumed −1: lim s(t)t→−∞ =
−1.)

Cut (ramp) functions. Let ∆ = [γ − δ, γ + δ] be
an interval on the real line R with centre γ ∈ R
and radius δ ∈ R. A cut function (on ∆) is defined
as follows:

Definition 1. The cut function cγ,δ on ∆ is defined
for t ∈ R by

cγ,δ(t) =


0, if t < ∆,

t− γ + δ

2δ
, if t ∈ ∆,

1, if ∆ < t.

(1)

Note that the slope of function cγ,δ(t) on the
interval ∆ is 1/(2δ) (the slope is constant in the
whole interval ∆). Two special cases are of interest
for our discussion in the sequel.

Special case 1. For γ = 0 we obtain a cut
function on the interval ∆ = [−δ, δ]:

c0,δ(t) =


0, if t < −δ,

t+ δ

2δ
, if −δ ≤ t ≤ δ,

1, if δ < t.

(2)

Special case 2. For γ = δ we obtain the cut
function on ∆ = [0, 2δ]:

cδ,δ(t) =


0, if t < 0,

t

2δ
, if 0 ≤ t ≤ 2δ,

1, if 2δ < t.

(3)
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Step functions. The step function (with “jump” at
γ ∈ R) can be defined by

hγ(t) = cγ,0(t) =


0, if t < γ,

[0, 1], if t = γ,
1, if t > γ,

(4)

which is an interval-valued function (or just in-
terval function) [4], [43]. In the literature various
point values, such as 0, 1/2 or 1, are prescribed
to the step function (4) at the point γ; we prefer
the interval value [0, 1]. When the jump is at the
origin, that is γ = 0, then the step function is
known as the Heaviside step function; its “inter-
val” formulation is:

h0(t) = c0,0(t) =


0, if t < 0,

[0, 1], if t = 0,
1, if t > 0.

(5)

H-distance. The step function can be perceived
as a limiting case of the cut function. Namely,
for δ → 0, the cut function cδ,δ tends in “Haus-
dorff sense” to the step function. Here “Haus-
dorff sense” means Hausdorff distance, briefly
H-distance. The H-distance ρ(f, g) between two
interval functions f, g on Ω ⊆ R, is the distance
between their completed graphs F (f) and F (g)
considered as closed subsets of Ω× R [24], [41].
More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, (6)

sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R2, e. g. the maximum
norm ||(t, x)|| = max |t|, |x|.

To prove that (3) tends to (5) let h be the H-
distance between the step function (5) and the
cut function (3) using the maximum norm, that
is a square (box) unit ball. By definition (6) h
is the side of the smallest unit square, centered
at the point (0, 1) touching the graph of the cut
function. Hence we have 1 − cδ,δ(h) = h, that is
1− h/(2δ) = h, implying

h =
2δ

1 + 2δ
= 2δ +O(δ2).

For the sake of simplicity throughout the pa-
per we shall work with some of the special cut
functions (2), (3), instead of the more general
(arbitrary shifted) cut function (1); these special
choices will not lead to any loss of generality
concerning the results obtained. Moreover, for all
sigmoid functions considered in the sequel we
shall define a “basic” sigmoid function such that
any member of the corresponding class is obtained
by replacing the argument t by t − γ, that is by
shifting the basic function by some γ ∈ R.

Logistic and Gompertz functions: applications
to life-sciences. In this work we focus on two
familiar smooth sigmoid functions, namely the
Gompertz function and the Verhulst logistic func-
tion. Both their inventors, B. Gompertz and P.-
F. Verhulst, have been motivated by the famous
demographic studies of Thomas Malthus.

The Gompertz function was introduced by
Benjamin Gompertz [22] for the study of de-
mographic phenomena, more specifically human
aging [38], [39], [47]. Gompertz functions find
numerous applications in biology, ecology and
medicine. A. K. Laird successfully used the Gom-
pertz curve to fit data of growth of tumors [32];
tumors are cellular populations growing in a con-
fined space where the availability of nutrients is
limited [1], [2], [15], [19].

A number of experimental scientists apply
Gompertz models in bacterial cell growth, more
specifically in food control [10], [31], [42], [48],
[49], [50]. Gompertz models prove to be useful in
animal and agro-sciences as well [8], [21], [27],
[48]. The Gompertz model has been applied in
modelling aggregation processes [25], [26]; it is a
subject of numerous theoretical modelling studies
as well [6], [7], [9], [20], [37], [40].

The logistic function was introduced by Pierre
François Verhulst [44]–[46], who applied it to
human population dynamics. Verhulst derived his
logistic equation to describe the mechanism of
the self-limiting growth of a biological population.
The equation was rediscovered in 1911 by A.
G. McKendrick [35] for the bacterial growth in
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broth and was tested using nonlinear parameter
estimation. The logistic function finds applications
in an wide range of fields, including biology, ecol-
ogy, population dynamics, chemistry, demography,
economics, geoscience, mathematical psychology,
probability, sociology, political science, financial
mathematics, statistics, fuzzy set theory, to name
a few [12], [13], [11], [14], [18].

Logistic functions are often used in artificial
neural networks [5], [16], [17], [23]. Any neural
net element computes a linear combination of its
input signals, and applies a logistic function to the
result; often called “activation” function. Another
application of logistic curve is in medicine, where
the logistic differential equation is used to model
the growth of tumors. This application can be
considered an extension of the above-mentioned
use in the framework of ecology. In (bio)chemistry
the concentration of reactants and products in
autocatalytic reactions follow the logistic function.

Other smooth sigmoid functions. The integral
(antiderivative) of any smooth, positive, “bump-
shaped” or “bell-shaped” function will be sig-
moidal. A famous example is the error function,
which is the integral (also called the cumulative
distribution function) of the Gaussian normal dis-
tribution. The logistic function is also used as a
base for the derivation of other sigmoid functions,
a notable example is the generalized logistic func-
tion, also known as Richards curve [37]. Another
example is the Dombi-Gera-squashing function
introduced and studied in [18] obtained as an
antiderivative (indefinite integral) of the difference
of two shifted logistic functions.

In what follows we shall be interested in the
approximation of the cut function by smooth sig-
moid functions, more specifically the Gompertz,
the logistic and the Dombi-Gera-squashing func-
tion. We shall focus first on the Verhulst logistic
function.

III. APPROXIMATION OF THE CUT FUNCTION

BY LOGISTIC FUNCTIONS

Definition 2. Define the logistic (Verhulst) func-
tion v on R as [44]–[46]

vγ,k(t) =
1

1 + e−4k(t−γ)
. (7)

Note that the logistic function (7) has an inflec-
tion at its “centre” (γ, 1/2) and its slope at γ is
equal to k.

Proposition 1. [18] The function vγ,k(t) defined
by (7) with k = 1/(2δ): i) is the logistic func-
tion of best uniform one-sided approximation to
function cγ,δ(t) in the interval [γ,∞) (as well as
in the interval (−∞, γ]); ii) approximates the cut
function cγ,δ(t) in uniform metric with an error

ρ = ρ(c, v) =
1

1 + e2
= 0.11920292.... (8)

Proof. Consider functions (1) and (7) with same
centres γ = δ, that is functions cδ,δ and vδ,k. In
addition chose c and v to have same slopes at their
coinciding centres, that is assume k = 1/(2δ), cf.
Figure 1. Then, noticing that the largest uniform
distance between the cut and logistic functions is
achieved at the endpoints of the underlying interval
[0, 2δ], we have:

ρ = vδ,k(0)− cδ,δ =
1

1 + e4kδ
=

1

1 + e2
. (9)

This completes the proof of the proposition.

We note that the uniform distance (9) is an
absolute constant that does not depend on the
width of the underlying interval ∆, resp. on the
slope k. The next proposition shows that this is
not the case whenever H-distance is used.

Proposition 2. The function v(t) = v0,k(t) with
k = 1/(2δ) is the logistic function of best Haus-
dorff one-sided approximation to function c(t) =
c0,k(t) in the interval [0,∞) (resp. in the interval
(−∞, 0]). The function v(t), approximates func-
tion c(t) in H-distance with an error h = h(c, v)
that satisfies the relation:

ln
1− h
h

= 2 + 4kh. (10)
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Fig. 1. The cut and logistic functions for γ = δ = 1,
k = 1/2.

Proof. Using δ = 1/(2k) we can write δ+ h =
(1 + 2hk)/(2k), resp.:

v(−δ − h) =
1

1 + e2(1+2hk)
.

The H-distance h using square unit ball (with a
side h) satisfies the relation v(−δ − h) = h,
which implies (10). This completes the proof of
the proposition.

Relation (10) shows that the H-distance h de-
pends on the slope k, h = h(k). The next result
gives additional information on this dependence.

Proposition 3. For the H-distance h(k) the fol-
lowing holds for k > 5:

1

4k + 1
< h(k) <

ln(4k + 1)

4k + 1
. (11)

Proof. We need to express h in terms of k, using
(10). Let us examine the function

f(h) = 2 + 4hk − ln(1− h)− ln
1

h
.

From

f ′(h) = 4k +
1

1− h
+

1

h
> 0

we conclude that function f is strictly monotone
increasing. Consider the function

g(h) = 2 + h(1 + 4k)− ln
1

h
.

Then g(h)− f(h) = h+ ln(1−h) = O(h2) using
the Taylor expansion ln(1 − h) = −h + O(h2).
Hence g(h) approximates f(h) with h → 0 as
O(h2). In addition g′(h) = 1 + 4k + 1/h > 0,
hence function g is monotone increasing. Further,
for k ≥ 5

g

(
1

1 + 4k

)
= 3− ln(1 + 4k) < 0,

g

(
ln(4k + 1)

4k + 1

)
= 2 + ln ln(1 + 4k) > 0.

This completes the proof of the proposition.

Relation (11) implies that when the slope k of
functions c and v tends to infinity, the h-distance
h(c, v) between the two functions tends to zero
(differently to the uniform distance ρ(c, v) which
remains constant).

The following proposition gives more precise
upper and lower bounds for h(k). For brevity
denote K = 4k + 1.

Proposition 4. For the H-distance h the following
inequalities hold for k ≥ 5:

lnK

K
− 2 + ln lnK

K
(
1 + 1

lnK

) < h(k) < (12)

lnK

K
+

2 + ln lnK

K
(

ln lnK
1−lnK − 1

) ,K = 4k + 1.

Proof. Evidently, the second derivative of g(h) =
2 + h(1 + 4k) − ln(1/h), namely g′′(h) =
− 1
h2 < 0, has a constant sign on [ 1

K ,
lnK
K ]. The

straight line, defined by the points
(

1
K , g( 1

K )
)

and(
lnK
K , g( lnK

K )
)
, and the tangent to g at the point(

lnK
K , g( lnK

K )
)

cross the abscissa at the points

lnK

K
+

2 + ln lnK

K
(

ln lnK
1−lnK − 1

) , lnK

K
− 2 + ln lnK

K
(
1 + 1

lnK

) ,
respectively. This completes the proof of the
Proposition.

Propositions 2, 3 and 4 extend similar results
from [4] stating that the Heaviside interval-valued
step function is approximated arbitrary well by
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logistic functions in Hausdorff metric. The Haus-
dorff approximation of the Heaviside step function
by sigmoid functions is discussed from various
computational and modelling aspects in [28], [29],
[30].

IV. APPROXIMATION OF THE CUT FUNCTION

BY A SQUASHING FUNCTION

The results obtained in Section 3 state that
the cut function cannot be approximated arbitrary
well by the family of logistic functions. This
result justifies the discussion of other families
of smooth sigmoid functions having better ap-
proximating properties. Such are the squashing
functions proposed in [18] further denoted DG-
squashing functions.

Definition 3. The DG-squashing function s∆ on
the interval ∆ = [γ − δ, γ + δ] is defined by

s
(β)
∆ (t) = s

(β)
γ,δ (t) =

1

2δ
ln

(
1 + eβ(t−γ+δ)

1 + eβ(t−γ−δ)

) 1

β

.

(13)
Note that the squashing function (13) has an

inflection at its “centre” γ and its slope at γ is
equal to (2δ)−1.

The squashing function (13) with centre γ = δ:

s
(β)
δ,δ (t) =

1

2δ
ln

(
1 + eβt

1 + eβ(t−2δ)

) 1

β

, (14)

is the function of best uniform approximation to
the cut function (3). Indeed, functions cδ,δ and s(β)

γ,δ
have same centre γ = δ and equal slopes 1/(2δ)
at their coinciding centres. As in the case with
the logistic function, one observes that the uniform
distance ρ = ρ(c, s) between the cut and squashing
function is achieved at the endpoints of the interval
∆, more specifically at the origin. Denoting the
width of the interval ∆ by w = 2δ we obtain

ρ = s
(β)
δ,δ (0) =

1

w
ln(

2

1 + eβ(−w)
)1/β < (15)

ln 2

w

1

β
= const

1

β
.

The estimate (15) has been found by Dombi
and Gera [18]. This result shows that any cut

Fig. 2. The functions F (d) and G(d).

function c∆ can be approximated arbitrary well by
squashing functions s(β)

∆ from the class (13). The
approximation becomes better with the increase of
the value of the parameter β. Thus β affects the
quality of the approximation; as we shall see below
the practically interesting values of β are integers
greater than 4.

In what follows we aim at an analogous result
using Hausdorff distance. Let us fix again the
centres of the cut and squashing functions to be
γ = δ so that the form of the cut function is cδ,δ,
namely (3), whereas the form of the squashing
function is s(β)

δ,δ as given by (14). Both functions

cδ,δ and s
(β)
δ,δ have equal slopes 1/w, w = 2δ, at

their centres δ.

Denoting the square-based H-distance between
cδ,δ and s

(β)
δ,δ by d = d(w;β), w = 2δ, we have

the relation

s
(β)
δ,δ (w + d) =

1

w
ln

(
1 + eβ(w+d)

1 + eβd

) 1

β

= 1− d

or

ln
1 + eβ(w+d)

1 + eβd
= βw(1− d). (16)

The following proposition gives an upper bound
for d = d(w;β) as implicitly defined by (16):

Proposition 5. For the distance d the following
holds for β ≥ 5:

d < ln 2
ln(4βw + 1)

4wβ + 1
. (17)
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Proof. We examine the function:

F (d) = −βw(1−d)+ln(1+eβ(w+d))+ln
1

1 + eβd
.

From F ′(d) > 0 we conclude that function
F (d) is strictly monotone increasing. We define
the function

G(d) = −βw + ln(1 + eβw)+

dβ

(
w +

eβw

1 + eβw

)
+ ln

1

1 + eβd
.

We examine G(d)− F (d):

G(d)− F (d) =

ln(1 + eβw) +
eβwβd

1 + eβw
− ln(1 + eβ(w+d)).

From Taylor expansion

ln(1+eβ(w+d)) = ln(1+eβw)+
eβwβd

1 + eβw
+O(d2)

we see that function G(d) approximates F (d) with
d→ 0 as O(d2) (cf. Fig. 2).

In addition G(0) < 0 and G
(

ln 2 ln(4βw+1)
4wβ+1

)
>

0 for β ≥ 5. This completes the proof of the
proposition.

Some computational examples using relation
(16) and (17) for various β and w are presented
in Table 1.

w β d(w;β) from(16) d(w;β) from(17)
1 30 0.016040 0.027472
5 10 0.012639 0.018288
6 100 0.001068 0.002247
14 5 0.009564 0.013908
50 100 0.000137 0.000343
500 1000 1.38× 10−6 5.02× 10−6

1000 5000 1.3× 10−7 5.8× 10−7

TABLE I
BOUNDS FOR d(w;β) COMPUTED BY (16) AND (17),

RESPECTIVELY

The numerical results are plotted in Fig. 3 (for
the case β = 5, w = 3; d = 0.0398921) and Fig.
4 (for the case β = 10, w = 4; d = 0.0154697).

Fig. 3. Functions cδ,δ and s(β)δ,δ for β = 5, w = 3; d ≤ 0.4.

Fig. 4. Functions cδ,δ and s
(β)
δ,δ for β = 10, w = 4; d ≤

0.016.

V. APPROXIMATION OF THE STEP FUNCTION

BY THE GOMPERTZ FUNCTION

In this section we study the Hausdorff approxi-
mation of the step function by the Gompertz func-
tion and obtain precise upper and lower bounds
for the Hausdorff distance. Numerical examples,
illustrating our results are given.

Definition 4. The Gompertz function σα,β(t) is
defined for α, β > 0 by [22]:

σα,β(t) = e−αe
−βt

. (18)

Special case 3. For α∗ = ln 2 = 0.69314718... we
obtain the special Gompertz function:

σα∗,β(t) = e−α
∗e−βt , (19)

such that σα∗,β(0) = 1/2.
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Fig. 5. The Gompertz function with α = ln 2 and β = 5;
H-distance d = 0.212765.

We study the Hausdorff approximation of the
Heaviside step function c0 = h0(t) by Gompertz
functions of the form (18) and find an expression
for the error of the best approximation.

The H-distance d = d(α∗, β) between the
Heaviside step function h0(t) and the Gompertz
function (19) satisfies the relation

σα∗,β(d) = e−α
∗e−βd = 1− d,

or
ln(1− d) + α∗e−βd = 0. (20)

The following theorem gives upper and lower
bounds for d(α∗, β). For brevity we denote α = α∗

in Theorem 1 and its proof.

Theorem 1. The Hausdorff distance d = d(α, β)
between the step function h0 and the Gompertz
function (19) can be expressed in terms of the
parameter β for any real β ≥ 2 as follows:

2α− 1

1 + αβ
< d <

ln(1 + αβ)

1 + αβ
. (21)

Proof. We need to express d in terms of α and β,
using (20). Let us examine the function F (d) =
ln(1− d) + αe−βd. From

F ′(d) = − 1

1− d
− αβe−βd < 0

we conclude that the function F is strictly mono-
tone decreasing. Consider function G(d) = α −
(1 + αβ)d. From Taylor expansion

α− (1 + αβ)d− ln(1− d)− αe−βd = O(d2)

we obtain G(d)−F (d) = α− (1 +αβ)d− ln(1−
d) − αe−βd = O(d2). Hence G(d) approximates
F (d) with d → 0 as O(d2). In addition G′(d) =
−(1 + αβ) < 0. Further, for β ≥ 2,

G

(
2α− 1

1 + αβ

)
= 1− α > 0,

G

(
ln(1 + αβ)

1 + αβ

)
= α− ln(1 + αβ) < 0.

This completes the proof of the theorem.

Some computational examples using relation
(20) are presented in Table 2.

β d(α∗, β)
2 0.310825
5 0.212765
10 0.147136
50 0.0514763
100 0.0309364
500 0.00873829
1000 0.00494117

TABLE II
BOUNDS FOR d(α∗, β) COMPUTED BY (20) FOR VARIOUS

β .

The calculation of the value of the H-distance
between the Gompertz sigmoid function and the
Heaviside step function is given in Appendix 1.

The numerical results are plotted in Fig. 5
(for the case α∗ = ln 2, β = 5, H-distance
d = 0.212765) and Fig. 6 (for the case α∗ = ln 2,
β = 20, H-distance d = 0.0962215).

Remark 1. For some comparisons of the Gom-
pertz and logistic equation from both practical and
theoretical perspective, see [6], [8], [40]. As can
be seen from Figure 6 the graph of the Gompertz
function is “skewed”, it is not symmetric with
respect to the inflection point. In biology, the
Gompertz function is commonly used to model
growth process where the period of increasing
growth is shorter than the period in which growth
decreases [8], [33].
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Fig. 6. The logistic (dotted line) and the Gompertz function
(dense line) with same point and same rate (at that point).

Remark 2. For k > 0, β > 0 consider the
differential equation

y′ = ke−βty, k

β
= α. (22)

We have
dy

dt
= ke−βty;

dy

y
= ke−βtdt

ln y = −k
β
e−βt = −αe−βt; y = e−αe

−βt
.

We see that the solution of differential equation
(22) is the Gompertz function σα,β(t) (18) [6]).
As shown in [28], equation (22) can be interpreted
as y′ = ksy, wherein s = s(t) is the nutrient
substrate used for the growth of the population;
one see that s is a decay exponential function in
the Gompertz model (a similar interpretation can
be found in [21]), [40]). For other interpretations
see [6]), [8], [20].

VI. CONCLUSION

In this paper we discuss several computational,
modelling and approximation issues related to two
familiar classes of sigmoid functions—the logis-
tic (Verhulst) and the Gompertz functions. Both
classes find numerous applications in various fields
of life sciences, ecology, medicine, artificial neural
networks, fuzzy set theory, etc.

bigskip
We study the uniform and Hausdorff approxima-

tion of the cut functions by logistic functions. We

demonstrate that the best uniform approximation
between a cut function and the respective logistic
function is an absolute constant not depending on
the (largest) slope k. On the other side we show
that the Hausdorff distance (H-distance) depends
on the slope k and tends to zero with k →∞. We
also discuss the limiting case when the cut function
tends to the Heaviside step function in Hausdorff
sense, thereby extending a related previous result
[4].

The approximation of the cut function by a
family of squashing functions induced by the lo-
gistic function is also discussed. We propose a new
estimate for the H-distance between a cut function
and its best approximating squashing function.
Our estimate extends a known result stating that
the cut function can be approximated arbitrary
well by squashing functions [18]. Our estimate
is also extended to cover the limiting case of the
Heaviside step function.

Finally we study the approximation of the cut
and step functions by the family of Gompertz func-
tions. New estimates for the H-distance between a
cut function and its best approximating Gompertz
function are obtained.
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APPENDIX

The Module “Computation of the distance d and visualization of the cut function c∆ and squashing
function s(β)

∆ ” in CAS MATHEMATICA.
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Fig. 7. Module in programming environment MATHEMATICA.

Fig. 8. The test provided on our control example.
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