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Abstract—Biological control is a sustainable agri-
cultural practice that was introduced to improve
crop yields and has been highlighted among the var-
ious pest control techniques. However, real mathe-
matical models that describe biological control mod-
els can have error measurements or even incorporate
lack of information. In these cases, intervals may be
feasible for indicating the lack of information or
even measurement errors. Therefore, we consider
interval mathematical models to represent the bio-
logical control problem. Specifically, in the present
paper, we illustrate the solution of a discrete-time
interval optimal control problem for a practical ap-
plication in biological control. To solve the problem,
we use single-level constrained interval arithmetic
[9] and the dynamic programming technique [3]

along with the idea proposed in [23] for the solution
of the interval problem.

Keywords-Interval optimal control problem; inter-
val mathematical models; single-level constrained in-
terval arithmetic; dynamic programming; biological
control.

I. INTRODUCTION

Sugarcane culture plays an important role in the
Brazilian economy. It is estimated that the country
has more than 8 million hectares of cultivated area
[1] and that sugarcane is responsible for over 4.5
million jobs [38]. In addition to the production
of sugar, ethanol and various other byproducts, it
is also used to produce electricity with the use
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of biomass (bagasse and straw). Thus, sustain-
able management of this culture is fundamental.
Among the various types of management that can
be implemented (control of pests and weeds, soil
handling, etc.) and the various methods of manu-
facture (biological control, use of insecticide and
herbicide, manual and mechanical control, etc.),
pest control through biological control stands out.

Biological control is sustainable because it does
not affect the environment. For the culture of
sugarcane, the control involves the caterpillar and
wasp. The caterpillar (Diatraea Saccharalis) is an
insect that causes damage to the crop, and its
natural predator, Cotesia Flavipes, is a wasp that
deposits its eggs on the caterpillar and inhibits
the development of the caterpillar. Hence, the
caterpillar dies without completing its life cycle
and without causing economic loss to the crop.

The spread of the caterpillar can cause damage
to the crop such as weight loss and reduction in
germination, leading to the death of germinating
plants, which directly reflects on the costs of
production. Thus, the biological control of pests is
a good alternative to the feasibility of such crops
for the country. In addition, the biological control
process is part of the integrated crop protection
[11] that is a benchmark for sustainable farming
practices.

Control theory study began in the USA in the
1930s with studies of problems in electrical en-
gineering and mechanical engineering [8]. In the
1950s, with optimization methods developed by
Bellmann in 1957 (see [2]) and Pontryagin in 1958
(see [29], [30]), modern control theory or optimal
control theory was born. Such theory brought
advances in several areas such as Agriculture,
Biology, Economics, Engineering and Medicine.

In Agriculture or Biology, deterministic optimal
control problems are widely studied, and some
biomathematical models illustrating deterministic
models can be found in [7], [15], [16], [19],
[37]. In these studies, conventional models were
assumed with fixed coefficients.

For problems with uncertain parameters, the op-
timal control problem usually utilizes stochasticity

[4], [16] or, more recently, fuzzy set theory [12],
[10], [28]. In the two cases, the coefficients are
viewed as random variables or as fuzzy sets, and
it is assumed that their probability distributions or
membership functions, respectively, are known.

In biological problems, uncertainty arises fre-
quently because it is inherent to the determination
of biological data; for example, uncertainty arises
due to measurement errors, inaccuracies in the
equipment, climatic factors, and lack of speci-
fication, among many others. Thus, we propose
interval uncertainty to describe the uncertainty in
obtaining data in biological problems. We can
represent a parameter of the model, such as the
mortality rate of predators, as an interval. This is
relevant because we can model an environment
with several variations in the mortality rates of
predators and not have to consider a unique rate
for all the predators, especially if this information
has been obtained imprecisely.

Optimal control problems involving uncertain
systems are described in [6], [13], [14], [39].
However, in these approaches, the functional is a
real number and thus differs from the approach
proposed in this paper. Additionally, the problem
discussed here does not include state feedback.
References on control problems that present inter-
val uncertainty but still differ from that proposed
in this paper can be found in [20], [17], [32].

Thus, in this work, we consider a new kind of
problem called the interval optimal control prob-
lem. The interval arithmetic used in this approach
is described in [9], [21], [22] and is different from
the standard interval arithmetic proposed in [24].
To solve the interval optimal control problem, we
choose single-level constrained interval arithmetic
[9] because it eliminates certain problems related
to other types of interval arithmetic, such as the
existence of the additive inverse or the distribu-
tive law property. Single-level constrained interval
arithmetic also has properties closer to the space
of real numbers. Therefore, we study the discrete
time interval optimal control problem with the
interval initial condition or interval parameters in
the dynamic equation.
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The paper is arranged as follows. Section II
presents the application in Biology, and some
biological aspects will be demonstrated. We also
present the deterministic and interval optimal con-
trol problem. In Section III, we present the solu-
tions of the discrete time interval optimal control
problems previously proposed. The discussion of
the results is provided in Section IV.

II. THE BIOMATHEMATICAL MODEL

The biological situation studied is a problem
encountered in sugarcane culture. According to
Silva and Bergamasco [35], the environmental
management of sugarcane culture requires perfor-
mance prediction in production and environmental
risk at various levels of control in sugarcane pro-
duction because manipulation of the soil, planting
depth and density, pest and diseases, among other
factors, and biological control have proven to be
effective in operational management of the culture.

Thus, the problem studied corresponds to a
model of competition between the wasp (Cotesia
Flavipes) and the caterpillar (Diatraea Saccharalis)
in terms of sugarcane, represented using the Lotka-
Volterra two-species model.

Tusset and Rafikov in [37] ran a simulation of
the dynamics of the system without application
control and showed that the system begins to
stabilize at 350 days and that during this period,
economic losses are experienced. Thus, we need
to apply control in previous periods, and the ap-
plication of control corresponds to the introduction
of wasps in sugarcane culture.

Tusset and Rafikov [37] solve the continuous
deterministic optimal control problem using the
Riccati equation. Campos [7] also solved the de-
terministic and discrete problem using dynamic
programming, and the results are similar for the
two approaches.

The goal here is to present the interval op-
timal control problem and solve the biological
control problem encountered in sugarcane culture.
We analyze the biological situation and describe
the biomathematical model. According to Tusset
and Rafikov [37], the Lotka-Volterra two-species

model used in the problem of sugarcane culture is
given by {

ẋ = x (a− γ x− c y)
ẏ = y (−d+ r x) + u∗ + u

, (1)

where x(t) is the number of preys and y(t) is the
number of predators for t ≥ 0. Here, u∗ is the
control that carries the system to the desired equi-
librium point, and u is the control that stabilizes
the system at this point.

The dynamic model (1) is a Lotka-Volterra
model for the case of the caterpillar that is the
sugarcane parasitoid, where the coefficient a repre-
sents the interspecific growth of the preys, the co-
efficient d represents the mortality of the predators,
c represents the capture rate, r is the maximum
rate of growth of the predator population, and γ
is the self-inhibition coefficient of growth of the
preys due to restriction of food.

According to [37], the parameter a is calculated
assuming the absence of predators in (1). Then, we
obtain

ẋ = x (a− γ x), (2)

where we suppose that γ = a/k. Solving the
differential equation (2) and isolating the value of
the parameter a, we obtain

a = −1

t

[
ln

(
k−x
x

k−x0

x0

)]
.

Assuming k = 25000 and considering that
the caterpillar lives on average 70 days and after
mating lays on average 300 eggs (see [27]), we
find that t = 70 days with x(70) = 300 caterpillars
per hectare. Assuming an initial number of preys
equal to x0 = 2 caterpillars per hectare, it follows
that the interspecific growth of the caterpillar is
a = 0.0716 caterpillars per hectare per day.

The calculation of the other parameters of the
dynamic equation of problem (1) can be found in
[37], following a similar analysis.

Thus, in this work, we obtain the numerical
coefficients a, γ, c, d and r in [37] as well as the
expression for the functional of the optimal control
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problem. The problem proposed in [37] with a
quadratic objective function subject to nonlinear
restrictions is given by

minC =
1

2

∫ tf

0
8(x−x∗)2+0.2841(y−y∗)2+u2dt

subject to

{
ẋ = x (0.0716− 0.0000029x− 0.0000464 y)
ẏ = y (−1 + 0.000520235x) + u∗ + u

,

(3)
where tf is the final time, the initial conditions are
x0 = 5000 and y0 = 1500, and the final conditions
are the desired equilibrium point (x∗, y∗). From
a biological point of view, Segato et al. [33]
show that when the number of preys (Diatraea
Saccharalis) reaches 5000 caterpillars per hectare,
application of control u corresponds to the release
of predators (Cotesia Flavipes).

The calculations for the numerical coefficients
of the states x and y in the functional of problem
(3) are extensive and can be found in [37]; such
calculations are based on [34], [31]. Furthermore,
Tusset and Rafikov consider in [37] a positive
semidefinite and symmetric quadratic functional in
order to take the system to the desired equilibrium
point the fastest way possible when considering
only small oscillations in the path of the system.
This is important for the biological control prob-
lem studied.

To solve problem (3), Tusset and Rafikov in
[37] considered a problem with a linear dynamic
equation. The linearization of the model is feasible
because we suppose that the linear and nonlin-
ear dynamic system behaviors are qualitatively
equivalent in the vicinity of the equilibrium point
(see [25], Grobman-Hartman Theorem). Thus, the
dynamic equation of problem (3) is linearized (see
[25]) assuming that the initial conditions are near
the equilibrium point (2000, 1418.10). In a real
system, this is possible when we apply a value
several times that of the control.

According to Botelho and Macedo [5] for the
sugarcane crop, greater than or equal to 2500
caterpillars per hectare causes damage to the

culture. We fix x∗ = 2000 (a value that does
not cause damage) and hence obtain the value
y∗ using the equation f(x∗, y∗) = 0, where
f(x, y) = 0.0716 − 0.0000029x − 0.0000464 y.
Therefore, the desired equilibrium point for the
prey and the predator is represented by (x∗, y∗) =
(2000, 1418.10) and used in the final condition of
the problem.

Finally, the optimal control problem with a
quadratic objective function subject to linear re-
strictions proposed in [37] is given by

minC =
1

2

∫ tf

0
8 z21 + 0.2841 z22 + u2 dt

subject to

ż =

[
−0.0058 −0.0928
0.7386 0.0405

]
z +

[
0
1

]
u, (4)

with initial conditions z1 0 = 3000 and z2 0 =
80.17 due to translation to the equilibrium point.
Note that z = (z1, z2)

T = (x−x∗, y−y∗)T , where
z is the translation of the point of equilibrium
(x∗, y∗) to the origin and T denotes the transposed
vector. In particular, the change in coordinates to
problem (4) is performed assuming that we are
close to the fixed point; furthermore, the change
in coordinates facilitates the computational imple-
mentation.

To find the solution of the problem of biological
control of the sugarcane caterpillar (4) with a
discrete dynamic programming method, Campos
[7] discretized problem (4).

The discrete model (and match) proposed in [7]
is

minC =
h

2

N∑
k=0

8 z21 k + 0.284 z22 k + u2k

subject to

zk+1 =

[
0.960 −0.093
0.743 1.006

]
zk +

[
−0.047
1.009

]
uk,

(5)
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where zk = (z1 k, z2 k)
T and the initial conditions

are z1 0 = 3000 and z2 0 = 80.17. Here, k denotes
the discrete iterations in days for the problem. Fur-
thermore, for problem (5), the simulation period
equals N = 18 days, and hence, tf = hN = 18
days.

Campos in [7] used the zero-order hold method
(function c2d in MATLAB 7.4) to discretize the
dynamic equation of problem (4). Thus, the zero-
order hold method provides an exact match be-
tween the continuous dynamic system of problem
(4) and the discrete dynamic system of problem
(5). For the biological analysis of the optimal
control problem, we are assuming that the control
decision uk, introduction of predators, occurs only
once a day.

The discretization of the functional of problem
(4) introduces an error because it is approximated
using a numerical quadrature. However, the error
in the discretization of the functional does not
change the behavior of the dynamic equations of
problems (4) and (5). Furthermore, the weight
assigned to the coefficient of control uk in the
functional of problem (5) can be modified and
adapted according to the costs involved in the
operations.

Next, we illustrate the formulation of interval
control problems for two distinct situations. The
first involves the problem with the interval initial
condition. The second formulation considers an
interval coefficient in the dynamic equation.

A. Uncertainty in the Initial Condition

Suppose that the model (5) uses the in-
terval initial condition because we consider
there to be inaccurate information in the
data. We use an interval initial condition of
Z1 0 = [2970, 3030], which represents an error of
2%. The second initial condition used is Z2 0 =
80.17 and represents a degenerate interval.

Therefore, the problem with the interval initial
condition is described below. It is given by

minC =
h

2
⊗

N∑
k=0

8 ⊗Z2
1 k ⊕ 0.284 ⊗Z2

2 k ⊕U2
k

subject to

{
Z1k+1 = 0.960⊗Z1k	0.093⊗Z2k 	 0.047⊗Uk
Z2k+1 = 0.743⊗Z1k⊕1.006⊗Z2k ⊕ 1.009⊗Uk

(6)
where Z1 k, Z2 k, Uk and C are intervals and
the initial conditions are Z1 0 = [2970, 3030]
and Z2 0 = 80.17. For the interval problem, the
symbols ⊕,	,⊗ and � represent the sum, sub-
traction, multiplication and division of intervals,
respectively, according to single-level constrained
interval arithmetic. This model is presented in [7];
however, here it is presented as an interval prob-
lem. In particular, the initial condition is also an
interval. Problem (6) is called the interval optimal
control problem. Furthermore, we emphasize that
the functional is an interval and that its optimality
is given by the order relation of single-level con-
strained interval arithmetic (see [18]). According
to Leal [18], given two intervals A = [a, ā] and
B = [b, b̄], the order relation between them is
given by

A ≤SL B iff A(λ) ≤ B(λ) for all λ ∈ [0, 1],

where ≤SL denotes the inequality between
intervals according to single-level constrained
interval arithmetic and A(λ) and B(λ) are
the convex constraint functions associated
with A and B, respectively. Note that
A(λ) = (1− λ) a+ λ ā, 0 ≤ λ ≤ 1.

Initially, the interval optimal control problem
(6) can be transformed into a real classic problem
using single-level constrained interval arithmetic.
Thus, the interval optimal control problem (6),
rewritten as the single-level constrained interval
arithmetic [9], is given by

minC =
h

2

N∑
k=0

8Z2
1k(λ) + 0.284Z2

2k(λ) + U2
k (λ)

subject to

Zk+1(λ)=

[
0.960 −0.093
0.743 1.006

]
Zk(λ)+

[
−0.047
1.009

]
Uk(λ),

(7)
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where Zk(λ) = (Z1 k(λ), Z2 k(λ))T and the initial
conditions areZ1 0(λ) = 2970+60λ and Z2 0(λ) =
80.17, 0 ≤ λ ≤ 1. Here, Zk(λ) and Uk(λ) are
the convex constraint functions associated with
intervals Zk and Uk, respectively. Furthermore,
we also suppose Zk(λ) and Uk(λ) to have the
appropriate dimensions.

Now, problem (7) is a classic optimal control
problem for all fixed λ ∈ [0, 1]. Therefore, we use
dynamic programming as our solution technique
for the discrete time optimal control problem. The
advantage of dynamic programming is that it deter-
mines the optimal solution of a multistage problem
by breaking it into stages, where each stage is a
subproblem. Solving a subproblem is a simpler
task in terms of calculation than dealing with all
the stages simultaneously. Moreover, a dynamic
programming model is a recursive equation that
links the different stages of the problem, ensuring
that the optimal solution at each stage is also
optimal for the entire problem (see [36]). Details
on dynamic programming can be found in [3].

Finally, we solve problem (7) for all fixed λ ∈
[0, 1], and we present the solution in the interval
space in accordance with the ideas proposed in [9]
and [23], i.e., we return the solution to the interval
space using the minimum and maximum of the
values obtained for each stage of the problem,
provided that the minimum and maximum exist.

B. Uncertainty in the Dynamic Equation

For the interval problem with uncertainty in
the dynamic equation, we consider again the
biomathematical model (5) described previously.
Suppose that, due to some biological factors, the
first parameter of the first dynamic equation is an
interval. Specifically, consider that due to some
inaccuracy in obtaining the data for the model,
the interval optimal control problem represents
the first parameter of the dynamic equation as an
interval, that is, the value 0.960 is substituted by
the interval [0.760, 1.160]. This interval represents
41.67% of the error in relation to the deterministic
value.

Therefore, the interval optimal control problem
is

minC =
h

2
⊗

N∑
k=0

8 ⊗ Z2
1 k ⊕ 0.284 ⊗ Z2

2 k ⊕ U2
k

subject to

{
Z1k+1=[0.760, 1.160]⊗Z1k	0.093⊗Z2k	0.047⊗Uk

Z2k+1=0.743⊗Z1 k⊕1.006⊗Z2 k⊕1.009⊗Uk

(8)
where Z1 k, Z2 k, Uk and C are intervals and

the initial conditions are Z1 0 = 3000 and Z2 0 =
80.17 (degenerate intervals) due to translation of
the equilibrium point.

Similar to Subsection II-A, we rewrite the inter-
val problem according to single-level constrained
interval arithmetic [9]. We then solve the cor-
responding problem using dynamic programming
[3]. According to the methodology proposed in
[23] and [9], we find the solution interval.

The numerical solution to the problems (6) and
(8) will be presented in the next section.

III. NUMERICAL ANALYSIS AND SIMULATIONS

The implementation and adaptation of the dy-
namic programming algorithm to solve problems
(6) and (8) were performed using MATLAB 7.4.
Furthermore, problems (6) and (8) were solved
using a microcomputer with a Dual-Core AMD
E 300 processor and 3 GB of memory. For the
interval problems, we chose N = 18 days. The
computational time to solve problem (6) was ap-
proximately 4.5 minutes, and the computational
time required to solve problem (8) was approxi-
mately 26 minutes.

The interval cost found in the solution is called
the optimal interval cost. The interval state ob-
tained is called the optimal interval state, and
the interval control obtained for each iteration in
the interval optimal control problem is called the
optimal interval control.

The following figures represent the numerical
results of problems (6) and (8). The deterministic
and discrete solutions are also introduced in the
figures. In the solutions presented, the translation
of the solution has been reversed. In addition, the
points representing the deterministic and interval
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Fig. 1. Preys for problem (6).

solutions to the problem are connected by line
segments for facilitating the visualization of the
temporal evolution. The solutions given by the
minimum and maximum values correspond to the
optimal interval solutions.

Graphical solutions are provided for the sit-
uations described in problem (6). Figure 1 il-
lustrates the number of preys for the problem
with uncertainty in the initial condition. Figure 2
illustrates the number of predators for the same
problem. The predators are introduced in Figure
3, and the negative values that appear in the figure
correspond to the number of predators that should
be removed using some sustainable agricultural
practice.

The optimal cost of the deterministic problem is
1.3716× 108. The optimal interval cost of problem
(6) is [1.3443 × 108, 1.3992 × 108]. Thus, the
interval uncertainty inserted in the initial condi-
tion of the problem results in a variation in the
cost of approximately 4.00% compared with the
deterministic solution.

The graphical solution to problem (8) is pre-
sented below. Figure 4 illustrates the number of
preys for this problem. Figure 5 illustrates the
number of predators for (8). The values of the
control variable are presented in Figure 6.

The optimal interval cost of problem (8) is

Fig. 2. Predators for problem (6).

Fig. 3. Introduction of predators for problem (6).

[7.8523 × 107, 2.7181 × 108]. The uncertainty
introduced into the dynamic equation generated a
variation of approximately 140.92% in the func-
tional in relation to the deterministic solution.

Remark 3.1: The solutions of the interval prob-
lems (6) and (8) converge to the desired equilib-
rium point. The interval solutions converge to the
desired equilibrium point if the distance between
them tends to zero according to the definition of
the distance between intervals given by [9]. Thus,
the approximate interval X to x∗ means that the
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Fig. 4. Preys for problem (8).

Fig. 5. Predators for problem (8).

distance between them, given by max
0≤λ≤1

|X(λ)−x∗|
where X(λ) is a convex constraint function asso-
ciated with X , tends to zero. Further, analyzing
the interval problems (6) and (8) according to the
associated convex constraint functions (see, for
example, problem (7)), we have that the corre-
sponding optimal control problems are classical
optimal control problems for all fixed λ ∈ [0, 1]
and satisfy the stability criterion (see [26], [3]) for
optimal control problems with quadratic functional
and linear constraints.

Fig. 6. Introduction of predators for problem (8).

Remark 3.2: Other interval optimal control
problems can be investigated, such as the prob-
lem with interval initial conditions and interval
parameters in the interval dynamic equation. Thus,
considering the interval optimal control problem
given by

minC =
h

2
⊗

N∑
k=0

8 ⊗ Z2
1 k ⊕ 0.284 ⊗ Z2

2 k ⊕ U2
k

subject to

{
Z1k+1=[0.760, 1.160]⊗Z1k	0.093⊗Z2k	0.047⊗Uk

Z2k+1 = 0.743⊗ Z1 k ⊕ 1.006⊗ Z2 k ⊕ 1.009⊗ Uk

(9)
where Z1 k, Z2 k, Uk and C are intervals and the

interval initial conditions are Z1 0 = [2970, 3030]
and Z2 0 = 80.17, we have that the optimal interval
cost is given by [7.6959 × 107, 2.7729 × 108].
Furthermore, the solution of the interval problem
(9) shows basically the same qualitative behavior
as that of the solution of the interval problem (8).

IV. DISCUSSION OF THE RESULTS

In the problems studied, the initial condition
or the dynamic equation has intervals because
the data are generally inaccurate and may be
represented by interval uncertainty. Consequently,
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this implies a variation in the functional, state
and control at each iteration (cost, state and con-
trol represented by intervals). The decision maker
should consider whether it is feasible to run the
model for the values obtained in these intervals.

Therefore, to analyze if the number of preys
or predators achieves the minimum or maximum
values is an important question in the decision-
making process of a manager because it can lead
to financial loss and environmental damage. Fur-
thermore, the analysis of interval costs is also very
important for the company.

We now emphasize some points from the
solutions obtained previously.

A. Analysis of the interval problem (6)

In the solution presented for the interval prob-
lem (6), we found consistency with the determin-
istic results as can be seen from Figures 1, 2 and 3.
The behaviors of the interval state variable and in-
terval control variable are also quite regular and in
accordance with the variation of the deterministic
solution. The extremes of the intervals of the state
interval solutions X and Y approached the desired
value, as was observed with the interval control
U . Therefore, the decision maker obtains values
close to those found for the deterministic solution;
associated with this, we observe only a small
variation in the functional. Thus, an error caused
by lack of information in obtaining the initial
condition generated small variations in cost and
did not result in drastic changes for the decision
maker.

B. Analysis of the interval problem (8)

For the interval problem (8), the behaviors of
the interval state variable X and interval control
variable U followed the same trajectory as that of
the deterministic solution after the thirteenth day.
Thus, for the state variable X (preys) and with the
introduction of predators U , there was no large
variation in comparison with the deterministic
solution after the thirteenth day. However, in the
initial periods, the introduction of predators U pre-
sented a large variation, with direct implications
for agricultural practice of pest control.

We emphasize the large variation of the interval
state variable Y , which represents the variation of
the predators (Figure 5). For the third period, we
obtained a variation of 5.1270× 103 up to 1.4565×
104 corresponding to the Y optimal interval state
given by the interval [5.1270× 103, 1.4565× 104].
For this variable, we obtained an approximation
of the extremes of the interval, which represents
the interval solution, to the deterministic solution
after the fifteenth day. Furthermore, the problem
presents a large variation in the optimal interval
cost.

Finally, we can conclude that the facts described
above will certainly influence the company’s deci-
sion making.

C. Conclusion

In Section III, we perceive that the optimal
interval state X was approximately 2000 in prob-
lems (6) and (8). The optimal interval state Y
(predators) also approximated the desired value.
The optimal interval control tends to the value of
16 wasps per day for the two situations.

These values approximated the results presented
in [5]. Botelho and Macedo in [5] show that
the application of control in the population of
caterpillars in the State of São Paulo - Brazil
utilizing the parasitoid Cotesia Flavipes stabilized
the number of caterpillars to x = 1900 per hectare.
The number of wasps per hectare stabilized to
y = 1423 with the average rate of introduction
of 16.4 wasps per day.

Thus, considering the deterministic or interval
problem, the values that represent the solution to
the problem are near the desired values and in
accordance with the actual situation practiced in
the State of São Paulo.

For the implementation of biological control
in practice, the simulation results show us that
we should introduce a daily number of predators
(Cotesia Flavipes) in the tillage, and this number
should be contained in the interval solution. We
remark that inserting large numbers of predators
does not necessarily guarantee a higher cost com-
pared to the costs that are contained in the optimal
interval cost and does not necessarily guarantee
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José Renato Campos et al., Biological control of sugarcane caterpillar ...

a control of the infestation in a shorter time,
although this is a likely outcome for both interval
problems studied. We only know that independent
of the number of predators inserted in tillage, and
because this number of predators is contained in
the interval solution, we can control the infestation
with a cost contained in the optimal interval cost
state and control contained in the optimal interval
state and optimal interval control, respectively.
Furthermore, the daily number of predators in-
serted in tillage corresponds to the difference, in
absolute value, between the number of predators
inserted the previous day and the number that will
be inserted the day after.
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dinâmica multiobjetivo da aplicação de herbicida con-
siderando a resistência de plantas daninhas, Bio-
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