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Abstract—Peristaltic flow of viscoelastic fluid
through a uniform channel is considered under the
assumptions of long wavelength and low Reynolds
number. The fractional Oldroyd-B constitutive vis-
coelastic law is employed. Based on models for
peristaltic viscoelastic flows given in a series of
papers by Tripathi et al. (e.g. Appl Math Comput.
215 (2010) 3645–3654; Math Biosci. 233 (2011) 90–
97) we present a detailed analytical and numerical
study of the evolution in time of the pressure
gradient across one wavelength. An analytical ex-
pression for the pressure gradient is obtained in
terms of Mittag-Leffler functions and its behavior
is analyzed. For numerical computation the frac-
tional Adams method is used. The influence of the
different material parameters is discussed, as well
as constraints on the parameters under which the
model is physically meaningful.

Keywords-Riemann-Liouville fractional deriva-
tive; Mittag-Leffler function; viscoelastic flow; frac-
tional Oldroyd-B constitutive model; peristalsis.

I. INTRODUCTION

Recently, Fractional Calculus has gained con-
siderable popularity mainly due to its numerous
applications in diverse fields of science and en-
gineering. Fractional Calculus allows integration
and differentiation of arbitrary order, not necessar-
ily integer. More precisely, it deals with integro-

differential operators, where the integrals are of
convolution type with weakly singular power-law
kernels.

Extensive applications of Fractional Calculus
can be found in the constitutive modeling of
viscoelasticity, see [3], [4], [10], [18], [20] and
the references cited there. The fractional order
constitutive models (proposed in the beginning
in an implicit way, see for a historical overview
[19], [22], [29]) appear to be a valuable tool for
describing viscoelastic properties. Unlike the clas-
sical models which exhibit exponential relaxation,
the models of fractional order show power-law
behavior which is widely observed in a variety of
experiments. They provide a higher level of ade-
quacy preserving linearity and give the possibility
for relatively simple description of the complex
behavior of non-Newtonian viscoelastic fluids.

The generalized fractional Oldroyd-B constitu-
tive law belongs to the class of linear fractional
models of viscoelastic fluids. It is obtained by
replacing the first order derivatives in the classi-
cal Oldroyd-B model by derivatives of fractional
order. The corresponding constitutive equation in
the one-dimensional case is given by

(1 + λα1D
α
t ) τ(t) = η

(
1 + λβ2D

β
t

)
ε̇(t), (1)

where τ(t) is the shear stress, ε(t) - shear strain,
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the over-dot denotes the first time derivative, η > 0
is the dynamic viscosity of the fluid, λ1, λ2 ≥ 0 are
parameters related to the relaxation and retardation
times, respectively, and Dα

t and Dβ
t are fractional

Riemann-Liouville derivatives in time of orders α
and β, where 0 < α ≤ 1, 0 < β ≤ 1. The gener-
alized Oldroyd-B model (1) encompasses a large
class of fluids: Newtonian fluid (λ1 = λ2 = 0),
fractional second grade fluid (λ1 = 0, λ2 > 0),
fractional Maxwell fluid (λ2 = 0, λ1 > 0).
In [23] a very good fit with experimental data
is achieved for the fractional Oldroyd-B model.
Unidirectional flows of viscoelastic fluids with the
fractional Oldroyd-B constitutive law are studied
in [5], [11], [13], [17], [21], to mention only few
of many recent publications.

The transportation of many biophysical fluids is
controlled by a special mechanism called peristal-
sis. The mechanism includes involuntary periodic
contraction followed by relaxation and expansion
of the ducts through which the fluids pass. It is
inducted by the propagation of electrochemically
generated waves along the vessels containing flu-
ids. Examples from physiology where the peri-
staltic transport is prevalent are the movement of
chyme in the small intestine, transport of bile in
bile ducts, transport of lymph in the lymphatic
vessels, etc. The complex physical nature of peri-
staltic flows of non-Newtonian fluids stimulated
significant attention in the applied mathematics
and engineering sciences research communities.
For recent research on this topic we refer to [1],
[2], [8], [9], [15], [28].

Fractional derivative models for peristaltic trans-
port of viscoelastic fluids are derived in a series
of papers by Tripathi et al. (e.g. [24], [25], [26],
[27]) As noted in [26] such models are appropriate
for describing the chyme movement in the small
intestine, by considering the gastric chyme as
a viscoelastic fluid. In [26] and [27] peristaltic
transport through a cylindrical tube of fractional
Oldroyd-B fluid is studied, with 0 < α ≤ β ≤ 1.
In [26] inclined tube is considered and in [27]
wall slip conditions are assumed. In [24], [25]
the particular case of a fractional Maxwell model

(λ2 = 0) is considered. For the numerical compu-
tations the Adomian decomposition and homotopy
analysis methods are used in the aforementioned
articles.

In the present work, peristaltic flow of viscoelas-
tic fluid through a uniform channel is considered
under the assumptions of long wavelength and low
Reynolds number. The viscoelastic properties of
the fluid are governed by the fractional Oldroyd-B
constitutive equation. We employ the model pro-
posed in [24] for the particular case of fractional
Maxwell fluid (λ2 = 0) and generalize it in a
straightforward way to cover also the case λ2 6= 0.
Since the considered model is non-stationary in
nature and contains parameters which are time-
related such as the orders of the fractional time
derivatives α and β, the relaxation and retardation
times λ1, λ2, it is natural to study the time evo-
lution of the physical quantities described by the
model and the influence of the different parameters
on this evolution.

Our main contribution is a detailed analytical
and numerical analysis of the time evolution of
the pressure gradient across one wavelength in
the peristaltic flow. To the best of our knowledge,
this issue has not been discussed before in the
general case λ2 6= 0. An explicit expression for
the pressure gradient in terms of the Mittag-Leffler
functions is derived and its behavior is studied. For
the numerical computations a technique based on
the fractional Adams method [6], [7] is used. Re-
sults of several numerical examples are given and
the influence of the different material parameters is
discussed as well as constraints on the parameters
under which the model is physically meaningful.

The rest of the paper is organized as follows. In
Section II the equation for the pressure gradient is
derived. In Section III an analytical representation
for the pressure gradient is obtained in terms of
Mittag-Leffler functions and its behavior is ana-
lyzed. In Section IV the numerical method used
for the computations is described. The obtained
numerical results are given in Section V and the
influence of the different material parameters is
discussed. Section VI contains conclusions. Some
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basic definitions and results from Fractional Cal-
culus which are used in this work are summarized
in an Appendix.

II. MATHEMATICAL MODEL

In this section we derive the equation for the
pressure gradient in a peristaltic flow of a vis-
coelastic fluid with fractional Oldroyd-B constitu-
tive model. This equation was originally proposed
in [24] for the case λ2 = 0. The necessary gener-
alizations to the case λ2 6= 0 are straightforward.
Here we give for completeness the main steps in
the derivation. For further details we refer to [24]
and the related works [17], [21], [25], [26], [27].

The fundamental equations governing the un-
steady motion of an incompressible viscoelastic
fluid are the continuity equation:

∇ ·V = 0

and the general Cauchy momentum equation:

ρ

(
∂V

∂t
+ (V · ∇)V

)
= ∇ · σ (2)

where V is the velocity vector, ρ - fluid density,
σ - Cauchy stress tensor:

σ = −pI + τ , (3)

where p is the pressure and τ is the shear stress
tensor, which for a viscoelastic fluid with the
generalized fractional Oldroyd-B model satisfies
the equation(

1 + λα1
Dα

Dtα

)
τ = η

(
1 + λβ2

Dβ

Dtβ

)
A1. (4)

Here η > 0 is the dynamic viscosity of the fluid,
λ1 and λ2 are parameters related to relaxation and
retardation times, respectively, satisfying (see [23])

λ1 ≥ λ2 ≥ 0, (5)

α and β are fractional parameters,

0 < α ≤ 1, 0 < β ≤ 1, (6)

A1 is the first Rivlin-Ericksen tensor given by

A1 = ∇V + (∇V)T (7)

and
Dγ

Dtγ
denotes the upper convected time deriva-

tive

Dγτ

Dtγ
= Dγ

t τ+(V · ∇)τ − (∇V) · τ − τ · (∇V)T ,

where Dγ
t is the Riemann-Liouville fractional

derivative, see (51) in the Appendix for the defi-
nition.

It is assumed that the relevant Reynolds number
is small enough for inertial effects to be negligible
and the wavelength to diameter ratio is large
enough for the pressure to be considered uniform
over the cross-section of the channel. As in [24]
we consider a uniform horizontal two-dimensional
channel with h being the transverse displacement
of the walls. Denote by x the axis along the
channel and by y the transverse coordinate. Let
u be the velocity of the flow in the direction of
the channel.

First, the above equations are rewritten in di-
mensionless form (for details see [24]). Here, for
simplicity we keep the same notations. According
to the assumption of low Reynolds number, one
obtains inserting (3) in the momentum equation
(2):

∂p

∂x
=
∂τxy
∂y

, (8)

∂p

∂y
= 0. (9)

On the other hand, the constitutive equation (4)
gives:

(1 + λα1D
α
t ) τxy =

(
1 + λβ2D

β
t

) ∂u
∂y
. (10)

Applying the operator (1 + λα1D
α
t ) to both sides

of (8) the following identity is deduced:

(1 + λα1D
α
t )
∂p

∂x
= (1 + λα1D

α
t )
∂τxy
∂y

(11)

Differentiating with respect to y both sides of
equation (10) one gets

(1 + λα1D
α
t )
∂τxy
∂y

=
(

1 + λβ2D
β
t

) ∂2u
∂y2

. (12)
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From (11) and (12) one deduces the following
equation for the pressure gradient ∂p

∂x

(1 + λα1D
α
t )
∂p

∂x
=
(

1 + λβ2D
β
t

) ∂2u
∂y2

. (13)

Boundary conditions for the velocity are given by

∂u

∂y

∣∣∣∣
y=0

= 0, u|y=h = 0. (14)

In the following integrations we essentially use
the fact that the pressure does not depend on the
transverse coordinate y, see (9), i.e. p = p(x, t).
Integrating Eq. (13) with respect to y twice and
using boundary conditions (14) one obtains suc-
cessively

(1 + λα1D
α
t )
∂p

∂x
y =

(
1 + λβ2D

β
t

) ∂u
∂y
. (15)

y2 − h2

2
(1 + λα1D

α
t )
∂p

∂x
=
(

1 + λβ2D
β
t

)
u.

(16)
Denote by Q the volumetric flow rate Q =∫ h
0 u dy. Then after one more integration (16)

implies

−h
3

3
(1 + λα1D

α
t )
∂p

∂x
=
(

1 + λβ2D
β
t

)
Q. (17)

Following [24] it is assumed that the wall of
the channel undergoes contraction and relaxation
given by

h = 1− φ cos2(πx), (18)

where φ is the amplitude of the wave. The trans-
formations between the wave and the laboratory
frames (an established procedure in peristaltic fluid
dynamics, see [14]) are given in dimensionless
form by

X = x− t, Y = y, U = u−1, θ = Q−h. (19)

Let Q denotes the averaged volumetric flow rate

Q =

∫ 1

0
Q dt. (20)

Using the following relation from [14]

Q = θ + 1− φ

2
= Q− h+ 1− φ

2
, (21)

Eq. (17) gives

(1 + λα1D
α
t )
∂p

∂x
=
(

1 + λβ2D
β
t

)
A, (22)

where

A = − 3

h3
(
Q+ h− 1 + φ/2

)
. (23)

For further details on this derivation we refer to
[24].

Let us emphasize that the function A defined
by (23) does not depend on time, but it depends
on the spatial variable x via the peristaltic wave
parameters h, φ and Q. Therefore we write A =
A(x).

III. ANALYTICAL PROPERTIES OF THE

PRESSURE GRADIENT FUNCTION

Since A(x) is independent of t equation (22)
can be rewritten in the form

(1 + λα1D
α
t )
∂p

∂x
=

(
1 + λβ2

t−β

Γ(1− β)

)
A(x).

(24)
Here we have used the identity

Dβ
t 1 =

t−β

Γ(1− β)
, 0 < β < 1, (25)

obtained by applying the definition (51) of the
Riemann-Liouville fractional derivative and iden-
tity (50). Eq. (24) implies that the pressure gradient
can be expressed as follows

∂p

∂x
= A(x)y(t), (26)

where the function y(t) is a solution of the equa-
tion

(1 + λα1D
α
t ) y(t) = 1 + λβ2

t−β

Γ(1− β)
. (27)

Therefore, the time evolution of the pressure gra-
dient is determined by the behavior of the function
y(t). In the present work our study is limited to
the properties of this function.

In what follows we assume λ1 6= 0. Let us
rewrite (27) in the form of the following fractional
order equation

Dα
t y(t) = − 1

λα1
y(t) + F (t), (28)
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where

F (t) =
1

λα1

(
1 + λβ2

t−β

Γ(1− β)

)
. (29)

Suppose the physically reasonable initial condition

∂p

∂x

∣∣∣∣
t=0

<∞. (30)

Therefore, from (26), y(0) <∞ and thus

lim
t→0

(J1−α
t y)(t) = 0, (31)

where J1−α
t is a Riemann-Liouville fractional in-

tegral, see (47) in the Appendix. According to (63)
the solution of equation (28) is given by

y(t) =

∫ t

0
τα−1Eα,α

(
−τ

α

λα1

)
F (t− τ) dτ, (32)

where Eα,α(·) denotes the Mittag-Leffler function
(see (55) for the definition). From (32), (29) and
the definition (47) of the fractional integration
operator we deduce the representation

y(t)=
1

λα1

(
J1
t + λβ2J

1−β
t

)(
tα−1Eα,α

(
− t

α

λα1

))
,

which by the use of identities (61) and (59) implies
that the function y(t) can be expressed in terms of
the Mittag-Leffler functions as follows

y(t) = 1− Eα,1
(
− t

α

λα1

)
(33)

+
λβ2
λα1
tα−βEα,α+1−β

(
− t

α

λα1

)
.

Inserting (55) into (33) one obtains the following
series expansion

y(t) = 1−
∞∑
k=0

(−1)ktαk

λαk1 Γ(αk + 1)
(34)

+ λβ2

∞∑
k=0

(−1)ktαk+α−β

λ
α(k+1)
1 Γ(αk + α− β + 1)

.

In the particular case α = β (33) reduces to

y(t) = 1−
(

1−
(
λ2
λ1

)α)
Eα,1

(
− t

α

λα1

)
, (35)

while for λ2 = 0 it gives

y(t) = 1− Eα,1
(
− t

α

λα1

)
. (36)

Based on the obtained expressions we study the
behavior of the function y(t). Recall the restric-
tions on the parameters λ1 ≥ λ2 ≥ 0, 0 < α ≤ 1
and 0 < β ≤ 1.

In the simplest case λ2 = 0, based on rep-
resentation (36) and the properties of Mittag-
Leffler function, we easily infer that y(t) is a
monotonically increasing function with y(0) = 0
and y(+∞) = 1. Moreover, for small times t the
function y(t) grows faster when α is smaller, while
for large t it grows faster (and approaches the value
1) when α is larger. This behavior can be seen also
on Fig. 1.

Qualitatively similar behavior can be deduced
from the representation (35) for the case α = β,
taking into account that λ1 ≥ λ2 (see also Fig. 5
and Fig. 6). However, there is one essential differ-
ence: in this case y(t) does not vanish at t = 0,
more precisely, (35) implies

y(0) =

(
λ2
λ1

)α
, α = β. (37)

To find the asymptotic behavior of y(t) for t→
0 we take the first terms in the series representation
(34) and obtain for λ2 6= 0:

y(t) =
λβ2
λα1

tα−β

Γ(1 + α− β)
+O

(
tmin{α,2α−β}

)
,

(38)
and for λ2 = 0:

y(t) =
1

λα1

tα

Γ(1 + α)
+O

(
t2α
)
. (39)

Therefore, for λ2 = 0 as well as for λ2 6= 0 and
α > β the function y(t) vanishes for t → 0. If
λ2 6= 0 and α = β then the initial value y(0) is as
in (37).

However, if λ2 6= 0 and α < β, then the
asymptotic expansion (38) implies that the func-
tion y(t) has a weak singularity as t→ 0 (see also
Fig. 3). This contradicts initial condition (30) and
raises the question whether the model is physically
correct in this case.
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Concerning large time behavior, asymptotic ex-
pansion (56) in the Appendix implies

y(t) = 1− λα1
t−α

Γ(1− α)
+ λα2

t−β

Γ(1− β)

+ O
(
t−min{α+β,2α}

)
, t→ +∞. (40)

This asymptotic expansion is valid in all of the
considered cases. Therefore, in all cases

lim
t→+∞

y(t) = 1. (41)

This can also be observed on the figures.

IV. NUMERICAL METHOD

Let us note first that the explicit representation
(34) derived from the series expansions of the
Mittag-Leffler functions is appropriate for numer-
ical computation of the function y(t) only for
sufficiently small times.

In [24], [25], [26], [27] two semi-numerical
techniques are used for the solution of Eq. (27):
Adomian decomposition method (ADM) and ho-
motopy analysis method (HAM). These two meth-
ods give a series of functions, which first terms
are used for the numerical computation of y(t). It
appears that the obtained approximations of y(t)
by these two methods (for the chosen parameters
in HAM ~ = −1 and p0 = 0) are the same as
if we take the first terms of the series in (34).
Therefore, it can be expected that the numerical
techniques proposed in these studies retain the
aforementioned disadvantage of using the series
expansion (34) for numerical computation: they
work only for sufficiently small times. In contrast,
the numerical technique used in the present work
is appropriate for all times.

For numerical computation of the function y(t)
we use an algorithm based on its representation
as a solution of an integral equation. Applying the
operator Jαt to both sides of equation (28) and
using (31), (52), and the semi-group property (49),
we obtain that y(t) satisfies the following integral
equation

y(t) = − 1

λα1

∫ t

0

(t− τ)α−1

Γ(α)
y(τ) dτ+H(t), (42)

where

H(t) =
1

λα1

(
tα

Γ(α+ 1)
+ λβ2

tα−β

Γ(α− β + 1)

)
.

(43)
Equation (42) is used here for the numerical
computation of the function y(t), applying the so-
called fractional Adams method, originally pro-
posed and analyzed by Diethelm et al. [6], [7].
This is a predictor-corrector method in which as
predictor the fractional Adams-Bashforth method
is used and as corrector the fractional Adams-
Moulton method. For completeness, here we give
the numerical scheme.

To find a numerical solution of Eq. (42) in the
time interval t ∈ [0, T ] consider a uniform grid
{tj = jh, j = 0, 1, ..., N} with some integer N
and h = T/N . Denote by yj the approximation
for y(tj). For the sake of brevity the notation λ =
−λ−α1 is used.

The predictor yPk+1 is determined by the formula

yPk+1 =
λ

Γ(α)

k∑
j=0

bj,k+1yj +H(tk), (44)

where

bj,k+1 =
hα

α
((k + 1− j)α − (k − j)α). (45)

The corrector formula is given by

yk+1 =
λ

Γ(α)

 k∑
j=0

aj,k+1yj + ak+1,k+1y
P
k+1


+ H(tk+1),

where
aj,k+1 =

hα

α(α+ 1)
Aj,k+1 (46)

and Aj,k+1 are defined by

Aj,k+1=


kα+1−(k−α)(k+1)α if j = 0,
(k − j + 2)α+1 + (k − j)α+1

−2(k − j + 1)α+1 if 1 ≤ j ≤k,
1 if j = k + 1.

Using this numerical algorithm, the function y(t)
is computed for several values of the parameters.
The performed numerical experiments indicate
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that this method is fast and stable. Although, due
to the calculation of the integral, it is more time
consuming for larger T , the numerical experiments
with T = 10 and T = 100 indicate that the
method works sufficiently well also for large time
intervals.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we discuss some results for the
function y(t), obtained by the numerical technique
described above. Recall that the graphs of y(t) rep-
resent the time evolution of the pressure gradient.

On Fig. 1 and Fig. 2 plots of the function y(t)
are presented for λ2 = 0, which corresponds to
the case of fractional Maxwell model, considered
in [24]. Comparing these two figures to [24], Fig. 1
and Fig. 2, we observe the same behavior (for
better comparison we have chosen the same values
for the parameter α as in [24]). The time profiles
on Fig. 1 exhibit increasing pressure gradient with
time as for smaller α it increases faster for small
t and slower for large t, whereas for larger α
the situation is opposite: it increases slower for
small t and faster for large t. This is in agreement
with the theoretical observations in Section III
based on the analytical representation (36). Unlike
the figures in [24], where only the time interval
t ∈ [0, 1] is considered, on Fig. 1 we also give
plots for t > 1, which reveal that the pressure
gradient does not grow infinitely with time and
approaches a certain value (A(x)). This confirms
the theoretical observations in Section III. On
Fig. 2, where the influence of the relaxation time
λ1 is illustrated, we see that the pressure gradient
is smaller for larger values of λ1. Therefore this
parameter resists the movement of the flow.

Figures 3–6 correspond to the general case λ2 6=
0.

On Fig. 3 the behavior of the pressure gradient
function for α < β is illustrated. It is seen that
the pressure gradient has a singularity at t = 0
(y(0) = +∞). This was also observed in Section
III. To the best of our knowledge, this feature of
the model has not been discussed before and raises
the question of its physical adequacy. In the works
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Fig. 1. Time profile of the pressure gradient for A = 1,
λ1 = 1, λ2 = 0, and various values of α. Time interval [0, 1]
(above) and [0, 10] (below).

[26] and [27], where the case α ≤ β is considered,
this issue has not been addressed.

On Fig. 4 the case α > β is illustrated. Com-
paring Fig. 3 and Fig. 4 it is seen that the behavior
for α > β is qualitatively different from those
for α < β. For small times the pressure gradient
is monotonically decreasing for α < β (Fig. 3)
and monotonically increasing for α > β (Fig. 4).
However, this monotonic behavior is not retained
for all t. The influence of the fractional parameters
α and β observed on both figures is as follows.
The effect of the fractional parameter α for small
times is opposite to that for large times. The same
holds for the fractional parameter β. In addition,
the effects of the parameters α and β are found to
be opposite to each other.

Plots for the case α = β are given on Fig. 5
and Fig. 6. The influence of the relaxation time
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Fig. 2. Time profile of the pressure gradient for A = 1,
λ2 = 0, α = 0.5 and various values of λ1.
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Fig. 3. Time profiles of the pressure gradient for α < β,
A = 1 and λ1 = λ2 = 1.

λ1 and retardation time λ2 observed on Fig. 5 is
as follows. The pressure gradient increases with
the retardation time λ2 whereas it decreases with
the relaxation time λ1. On Fig. 6 the effect of
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Fig. 4. Time profiles of the pressure gradient for α > β,
A = 1 and λ1 = λ2 = 1.

the fractional parameter α is examined. In order
to capture the peculiarities of the function y(t)
a larger time interval is considered t ∈ [0, 100].
The influence of the fractional parameter resemble
those observed on Fig. 1 in the case of fractional
Maxwell model. This is in agreement with the
similarity in the explicit expressions (35) and (36).

VI. CONCLUSIONS

Employing the mathematical tools of Fractional
Calculus we study in this work the time evolution
of the pressure gradient in a viscoelastic peristaltic
flow with fractional Oldroyd-B constitutive model.
The analysis of the effect of different parameters
shows that for α < β there is an unphysical
singularity. This means that from the previously
considered in [26] and [27] range 0 < α ≤
β ≤ 1 only for α = β the model is physically
meaningful. This is also in agreement with the
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Fig. 5. Time profiles of the pressure gradient for α = β =
0.5, A = 1 and various values of λ1 and λ2, λ1 > λ2.

statement in [30], that the Oldroyd-B constitutive
law is thermodynamically compatible only if the
fractional orders α and β coincide and λ1 ≥ λ2.

In both cases of physical interest: λ2 = 0,
0 < α ≤ 1 (fractional Maxwell model) and
λ1 ≥ λ2 > 0, 0 < α = β ≤ 1 (thermodynam-
ically compatible Oldroyd-B model) the pressure
gradient across one wavelength is monotonically
increasing with time and approaches a certain
stationary value. The same qualitative behavior
will hold for the pressure rise and friction force.

The technique used in this work can be applied
to more general fractional derivative viscoelastic
models of peristaltic transport, such as models
with more complicated geometry (non-uniform,
cylindrical, inclined channels), flows with slip ef-
fects, flows in porous media, etc.
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Fig. 6. Time profiles of the pressure gradient for α = β,
A = 1, λ1 = 10, λ2 = 1. Time interval [0, 10] (above) and
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APPENDIX

Here we summarize some facts from Fractional
Calculus, for details see [12], [16].

The fractional order Riemann-Liouville integral
Jαt is defined by

Jαt f(t) =

∫ t

0
ωα(t− τ)f(τ) dτ, α > 0, (47)
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where

ωα(t) =
tα−1

Γ(α)
, α > 0, t > 0. (48)

Here Γ(·) is the Gamma function. Basic properties
of this function are Γ(1) = 1, Γ(α+ 1) = αΓ(α).
Therefore ω1(t) ≡ 1.

The operators of fractional integration satisfy
the semi-group property:

Jαt J
β
t = Jα+βt , α, β > 0, (49)

or, equivalently,

Jαt ωβ = ωα+β, α, β > 0. (50)

The Riemann-Liouville fractional derivative Dα
t of

order α ∈ (0, 1] is defined by D1
t = d/dt and

Dα
t = D1

t J
1−α
t . (51)

The Riemann-Liouville fractional derivatives and
integrals are related via the identities:

Dα
t J

α
t f = f, α > 0,

and

Jαt D
α
t f = f − (J1−α

t f)(0)ωα(t), α ∈ (0, 1).
(52)

Application of the Laplace transform

L{f(t)}(s) = f̂(s) =

∫ ∞
0

e−stf(t) dt

to the operator of fractional integration gives

L{Jαt f}(s) = s−αf̂(s), α > 0, (53)

which implies the following identity for the
Riemann-Liouville fractional derivative of order
α ∈ (0, 1):

L{Dα
t f}(s) = sαf̂(s)− (J1−α

t f)(0). (54)

Denote as usual by Eα,β(·) the two-parameter
Mittag-Leffler function

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
. (55)

For α ∈ (0, 2), β > 0, the Mittag-Leffler function
has the following asymptotic expansion as t →
+∞

Eα,β(−t) = −
N−1∑
k=1

(−t)−k

Γ(β − αk)
+O(t−N ). (56)

An important particular case is

E1,1(−t) = exp(−t)

and some properties of the function Eα,1(−t)
for 0 < α < 1 resemble the behavior of the
exponential function: Eα,1(−t) is monotonically
decreasing with Eα,1(0) = 1, Eα,1(−∞) = 0.
However, unlike the fast exponential decay of
exp(−t) for large t, the Mittag-Leffler function
admits a slow algebraic decay, which is slower
for smaller α. At t = 0 the opposite picture is
observed: the Mittag-Leffler function admits a fast
decay ( d

dtEα,1(−t)→∞ for t→ 0, see (60)), and
this decay is faster for smaller α.

Recall the Laplace transform pairs

L{ωα(t)} (s) = s−α, (57)

L
{
tβ−1Eα,β(λtα)

}
(s) =

sα−β

sα − λ
. (58)

The following identity is often useful

Jγt

(
tβ−1Eα,β(λtα)

)
= tβ+γ−1Eα,β+γ(λtα),

(59)
where α, β, γ, t > 0. It can be proven by applying
Laplace transform and using (53) and (58).

Another useful property is the following
d
dt
Eα,1(λt

α) = λtα−1Eα,α(λtα). (60)

It can be deduced again by applying Laplace
transform and using (58) or directly from the series
representation (55) of the Mittag-Leffler function.
Integrating (60) and using that Eα,1(0) = 1 we
obtain for α > 0 and t > 0

J1
t

(
tα−1Eα,α(λtα)

)
= − 1

λ
(1− Eα,1(λtα))

(61)
Let f(t) be an integrable on (0, T ) function and

let α ∈ (0, 1). Then the differential equation of
fractional order

Dα
t y(t) = λy(t) + f(t), t > 0, (62)
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has a unique solution given by

y(t) = y0t
α−1Eα,α(λtα) (63)

+

∫ t

0
τα−1Eα,α(λτα)f(t− τ) dτ,

where y0 = limt→0 J
1−α
t y. This result can be

found in [16], p. 137. The easiest way to prove
it is by applying Laplace transform.
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