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Abstract—This work presents and simulates a mathe-
matical model for the dynamics of a population of Wood
Frogs. The model consists of a system of five coupled
impulsive differential equations for the larvae, juveniles
(early, middle, and late) and the mature adult populations.
A simulation result depicts possible dynamics of the frogs’
population when during one year the larvae population
dies out. This provides a tool for the study of the resilience
of the population and the conditions that may lead to its
survival and flourishing or extinction.
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I. I NTRODUCTION

We present a model for a Wood Frog population and a
preliminary simulation of its solutions. This research is
motivated by more than two decades of field observations
of a population of Wood Frogs, which has been recently
reported in Berven [3]. The aim is, once the model is val-
idated by comparison with experimental data collected
in [3], to study the conditions that allow for the survival,
and possible flourishing of the population.

The model is of the compartmental type (see, e.g.,
[1], [5], [6] and the references therein) and consists of a
system of five nonlinear ordinary differential equations
(ODEs), and includes impulses that describe the tran-
sitions from one population to the next. The equations
describe the dynamics of the larval aquatic stage, and
juvenile and adult stages, which are terrestrial, in the

development of the frogs’ population. When the larvae
metamorphose and become juveniles, they leave the pond
over a period of two weeks, and it is found in [3]
that there is considerable merit in dividing the juvenile
population into three groups, those who leave the pond
early, late, and in the middle. In this manner we obtain
the five compartments with the associated impulsive
ODEs.

Whereas the applied interest in the model, once it has
been validated by comparison with the data from the
field, is to study the conditions for the survival of the
population, the mathematical interest lies in the facts
that the aquatic larval stage is separate from the other
stages, and the interactions are via transfer conditions at
prescribed times, and the resulting impulses.

The long-time interest in the model lies in its ability
to provide for qualitative and quantitative predictions on
the overall populations growth that will allow to better
understanding and management of the populations.

The model is described in the following section, then,
we present the results of a typical computer simulation
of the model which shows the dynamics and the recovery
from a year without any larvae. In the conclusions
section we also mention some unresolved questions that
we plan to address in the future.

II. T HE MODEL

We construct a model for the dynamics of a Wood
Frog population. The stages of the life cycle of the
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frogs that we concentrate on are the larvae, juveniles,
and mature adults. The first one is aquatic, and the
other two are terrestrial, a fact that leads to a nonstan-
dard model with impulses and possibly time dependent
periodic coefficients. The field data obtained from the
population study in Berven [3] allows us to use ODEs.
The model deals with the total populations because the
spatial distribution of the populations is not taken into
account.

The frogs’ life cycle we model is as follows. The eggs
are produced in very large numbers in the spring, over
a period of two weeks, and those that survive become
larvae. The larvae that survive undergo metamorphosis in
the summer and become juveniles. These become mature
adults over the next 1-4 years. We note that since the
hatching rate of the eggs is constant, at about 90%, for
the sake of simplicity we omit the eggs compartment.
An interesting observation made in [3] leads us to split
the juvenile population into three groups, those who
leave the pond at the beginning of the first week, and
the beginning and end of the second week, since these
juveniles’ rates of growth and maturation are different.

We denote byL and M the total numbers of larvae,
and mature frogs, respectively, and byJe, Jm and Jl

the three subpopulations, early, middle, and late, of the
juveniles, all functions of timet (measured in days).
We let [0, T ] denote the time interval over which the
populations grow, or have been under observation.

We describe the rate of change of each population per
day. The model is of the compartmental type, and is
depicted schematically in Fig. 1.
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Fig. 1. Compartmental structure and flow chart

The eggs hatch within two weeks after fertilization.
The larval period lasts about eight to ten weeks. So
counting from the laying and fertilization of the eggs,
the early larvae metamorphose into juveniles within 10
weeks, and the later ones one and two weeks later. Since
these periods are relatively short, compared to the rest
of the dynamics of the population, e.g., the life span
or growing to maturity, we model these changes using

impulsive differential equations (see, e.g., [1] and also
[4], [2] and the references therein).

We start the time countt = 0 on the day of the
eggs’ fertilization and assume that initially the number
of larvae that successfully hatch isL0, and so the larvae
population undergoes a discontinuous change on that day
by jumping from no larvae toL0. Then, at the same
day at the yeark (for k = 1, 2, ..., T ), that is at the
times tk = 365k, all the eggs hatch andL jumps from
zero larvae (before hatching) to the number that hatched,
σM(tk), which is proportional to the mature population
M at that time. The proportionality rate constantσ is
the fertility rate of the mature female frogs (which are a
third of the matures).

The splitting of the juveniles into the three groups of
early, middle, and late ones is based on the observation
that when the larvae population is large, those who
metamorphose and leave earlier develop and mature
faster. We denote byτe, τm, and τl the respective days
in the year on which the first second, and third group of
larvae become earlyJe, middleJm, and lateJl juveniles,
respectively. The data in [3] indicates that we may set
approximatelyτe = 75, τm = 80, and τl = 85 days,
but these choices are somewhat arbitrary, however, in
the model we keep the general notation. We assume that
at the timestk + τe the fractionδeL becomes ‘early’
juveniles, at the timestk +τm the fractionδmL becomes
‘middle’ juveniles, and attk + τl the rest of the larvae
become ‘late’ juveniles. At the exceptional times the
larvae population jumps discontinuously, that is impulses
take place. At the beginning of each year, at timetk, for
k = 1, 2, 3, . . . , the larvae population is

L(tk + 0) = σM(tk).

At times tk + τe, tk + τm, and tk + τl we have,

L(tk + τe + 0) = (1− δe)L(tk + τe − 0),

L(tk + τm + 0) = (1− δm)L(tk + τm − 0),

L(tk + τl + 0) = 0.

The equation for the larvae population is

dL

dt
= −µLL, t 6= tk, tk + τe, tk + τm, tk + τl,

for k = 1, 2, 3, . . . . Here, the mortality rate is

µL = µL(t, L) = µ1L + µ2L(t)L(t),

where, following [7], we letµ1L represent the density
independent part andµ2L(t)L(t) is the density dependent
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part that depends on the available resources and, hence,
may be time dependent.

We turn to the describe the rates of growth of the ju-
venile populations. In normal circumstances, e.g., when
food is sufficient or the weather is mild, a juvenile is
ready for reproduction in the next mating and egg laying
season, that is the next spring. However, some, especially
the late ones, may become fertile only in the second year.
We assume that the different juvenile populations have
different mortality rates, set as

µr(t) = µ1r + µ2r(t)Jr(t),

for r = e,m, l, whereµ1r represent the density indepen-
dent rates, andµ2rJr are the density dependent parts.
We denote byαe, αm, and αl the rates at which the
juveniles mature and move to theM population, which
may be time dependent, to take into account possible
changes in the environmental conditions and, also, are
likely to be periodic functions reflecting the availability
of food and growth rates of the juveniles. We denote by
βr

s (r, s = e,m, l, r 6= s) the influence of population
Ls on Lr, which may describe the competition for food.
However, the experimental data is not clear about it, so
we assume that these rate coefficients are small.

Thus, the population growth equations forJe are

dJe

dt
= −µe(t)Je(t)− αe(t)Je(t)− βe

mJm(t)Je(t)

−βe
l Jl(t)Je(t), t 6= tk + τe,

and similar equations hold forJm and Jl. Here, k =
0, 1, 2, . . . is the kth year. Moreover, we assume that
the competition for food between the juveniles and the
mature frogs is negligible, since the mature frogs feed
on larger insects. Otherwise, a term of the form−γs

MM ,
for r, s = e,m, l, has to be added to the equations that
describe the dynamics ofJe, Jm, andJl.

The compartment of mature frogs is assumed to con-
tain a homogeneous population the growth of which is
governed by the equation

dM

dt
= αeJe + αmJm + αlJl − µMM,

where µM = µM (t, M) = µ1M + µ2M (t)M(t) is the
mortality rate consisting of density independent term
µ1M , and density dependent termµ2M .

Collecting the equations and conditions above yields
the following model consisting of five impulsive dif-
ferential equations for the larvae, juvenile and mature
populations.

The model for the dynamics of the Wood Frog popu-
lation is:

Find five functions:(L(t), Je(t), Jm(t), Jl(t), M(t)), for
0 ≤ t ≤ T , such that, fortk = 365k, k = 0, 1, 2, . . . ,

dL(t)
dt

= −(µ1L + µ2L(t)L(t))L(t),

t 6= tk, tk + τe, tk + τm, tk + τl, (1)

L(0) = L0, (2)

L(tk) = σM(tk), k 6= 0, (3)

L(tk + τe + 0) = (1− δe)L(tk + τe − 0), (4)

L(tk + τm + 0) = (1− δm)L(tk + τm − 0), (5)

L(tk + τl + 0) = 0, (6)

dJe(t)
dt

= −(µ1e + µ2e(t)Je(t))Je(t)− αeJe(t)

−βe
mJm(t)Je(t)− βe

l Jl(t)Je(t),

0 < t 6= tk + τe, (7)
dJm(t)

dt
= −(µ1m + µ2m(t)Jm(t))Jm(t)− αmJm(t)

−βm
l Jl(t)Jm(t)− βm

e Je(t)Jm(t),

0 < t 6= tk + τm, (8)
dJl(t)

dt
= −(µ1l + µ2l(t)Jl(t))Jl(t)− αlJl(t)

−βl
eJe(t)Jl(t)− βl

mJm(t)Jl(t),

0 < t 6= tk + τl, (9)

Je(tk + τe + 0) = Je(tk + τe − 0)

+δeL(tk + τe − 0), (10)

Jm(tk + τm + 0) = Jm(tk + τm − 0)

+δmL(tk + τm − 0), (11)

Jl(tk + τl + 0) = Jl(tk + τl − 0)

+L(tkτl − 0), (12)

dM(t)
dt

= αeJe(t) + αmJm(t) + αlJl(t)

−(µ1M + µ2MM(t))M(t), (13)

M(0) = M0, (14)

Je(0) = Jm(0) = JL(0) = 0. (15)

Here,L0 is the number of larvae andM0 is the number
of adult frogs att = 0, i.e., at the beginning of the first
year (k = 0). At that time there are no juveniles, (15).
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Fig. 2. Larvae vs. t for 41 years

III. S IMULATIONS

An algorithm for the numerical solutions of the model
was constructed and implemented in Maple, using the
numerical solverdsolve. The main issue in designing
the algorithm was the need to solve the equations be-
tween the various times of impulse or transfer, and over
different time intervals in each year different equations
were solved. In particular, the equation for the larvae,
(1), was solved in yeark only in the intervals356k <
t < 365k + 75, 356k + 75 < t < 365k + 82, and
356k + 82 < t < 365k + 90, and thenL(t) = 0 for
356k + 90 < t < 365(k + 1), that is until the first day
of the following year.

The various input data were either taken or estimated
from [3], or chosen reasonably, and taken as follows.

µL1 = 2.8 10−3, µL2 = 110−7, µe1 = 610−4,

µe2 = 210−9, µm1 = 610−3, µm2 = 3.33 10−9,

µl1 = 610−3, µl2 = 110−8,

µM1 = 3.5 10−3, µM2 = 1.6 10−8;

αe = 610−4, αm = 510−4, αl = 410−4,

βe = 610−6, βm = 510−6, βl = 410−6,

δe = δm = δl = 0.5,

τl = 75, τm = 82, τl = 90.

The figures depict a typical run of 41 years, starting
with L0 = 540, 000 larvae, no juveniles, andM0 = 3000
mature frogs. The number of eggs per mature female was

Fig. 3. Matures vs. t for 41 years

Fig. 4. Early juveniles vs. t for 41 years

σ = 600 (a characteristic of Wood Frogs ([3])), and a
third of the mature population was females. Under these
initial conditions, there is a large drop in yeark = 1,
and then the populations grow steadily, and in longer
simulations (not presented here) they level off to what
seems to be steady oscillations. The yearly oscillations
are of interest since they cannot be observes directly.
To study the effects of a year with harsh conditions, the
larvae population was set to be zero in the yeark = 21.

The larvae population in Fig. 2 is set to zero at day
90 of each year, since all the larvae leave the pond by
then. Then, on the first day of the next year a batch of
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Fig. 5. Middle juveniles vs. t for 41 years

Fig. 6. Late juveniles vs. t for 41 years

larvae that is proportional to the mature population, (3),
appears in the pond from the fertilized eggs. Similarly,
on days75, 82 and90 portions of the early, middle and
late juveniles, respectively, move from the pond to join
the juveniles from the previous year. These impulses
cause the solutions in Figs. 2, 4–6 to be discontinuous.
It is seen that there is leveling or stabilization of the
populations due to the density dependent mortality rates
in the equations.

Since in the year 21 there were no larvae, the other
four populations clearly had considerable drops. Never-
theless, the whole population recovered over the follow-

ing 10 years, reaching a similar behavior as before the
drop. Unfortunately, the weather conditions in Michigan
this year were such that the larvae in the pond were
wiped out completely, and this result allows us to hope
that next year the population will begin to recover.

The trends in the behavior of the system seem to be
similar to what was observed in [3], however the details
were not observed, and a number of the coefficients were
chosen ‘reasonably.’ Finally, there is strong indication
that periodic solutions are possible.

IV. CONCLUSION

The paper presents a new compartmental model, using
impulsive ODEs, for the dynamics of a population of
Wood Frogs, based on the field observations of Berven
[3]. Then, it depicts computational results for the devel-
opment of the larvae, juveniles (early, middle, and late)
and the mature frogs populations. Under the given choice
of the parameters the populations grow and stabilize
in about 20 years. The introduction of environmental
adverse conditions that wiped out the larvae population
in year 21 show that it takes about 10 years for the
population to fully recover.

The next stages in this research will be to validate
the model by comparing the relevant predictions to the
observations in [3]. Once we have confidence in the
model, we plan to use it to assess the possible behavior
of the population when the environmental conditions are
adverse as a result of bad weather. We plan to use the
model and the numerical simulations to study various
possible future scenarios for the population.

The well-posedness of the model, its analysis and
stability will be described elsewhere. Moreover, is seems
from the numerical results, that the model has periodic
solutions, and it is of interest to establish this mathema-
tically.
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