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Abstract—This paper presents a stochastic model
of the Tuberculosis(TB) infection with treatment in
a population composed of four individuals compart-
ments: susceptible individuals, latent infected indi-
viduals, active infected individuals and recovered
individuals after the therapy. A preliminary survey
of the model is performed on the stability before
approaching the crucial left of the topic. The aim in
this paper is to control the treatment frequency in a
stochastic model of the TB infection while minimiz-
ing the cost of the measures. Then, we formulate an
optimal control problem that consists in minimizing
the relative cost of the dynamics of TB-model in
order to reduce the prevalence and the mortality due
to this infection. The optimal problem is solved by
applying the Projection Stochastic Gradient Method
in order to find the optimal numerical solution.
Finally, we provide some numerical simulations of
the controlled model.

Keywords-Stochastic Model of TB; local and
Global Stability; Optimal Control; Functional Cost;
Projection Stochastic Gradient.

I. INTRODUCTION

The tuberculosis (TB) continues to make a lot
of victims in our societies despite of the exist-

ing treatment: the Bacillus Calmette- Guerin. The
vaccine anti tubercular is used for preventive treat-
ment for children. Nevertheless, other medicines
exist as Rifampicin, Isoniazid, Pyrazinamide... for
the curative treatment of the patients [23]. The
expenses are enormous when the treatment is long.
The tuberculosis is one of the causes of elevated
mortality in humane communities irrespective of
the enormous financial resources made by world-
wide governments for the treatment of this disease
in the purpose of its eradication. So there is the
necessity to integrate to a set of the available con-
trol an optimal measure that consists on respecting
the dose of the treatment to short length in order
to reduce this infection.

In this paper, we consider a stochastic model
of the Tuberculosis (TB) infection in presence of
treatment in a population composed of four com-
partments of individuals: susceptible individuals,
latent infected individual, active infected individ-
uals and recovered individuals after the therapy.
The mathematical model of TB infection include
in addition to the deterministic term, a stochastic
term that translates the random noise. The random
nature of this model is due to the fact that the
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contraction of the Mycobacterium Tuberculosis,
the vector agent of the TB infection and his trans-
mission within the population are done in an ran-
dom manner according to the variable efficiency of
control of the immune system of the individuals.
The infection of TB contracts itself mainly by the
inhalation of the bacteria distributed by the cough
or the sneeze of a sick individual. The vector agent
of this infection accommodates itself to the level of
the lungs of an individual exposition susceptible of
contamination and the immune system of this one
controls and maintains the infection in the latent
state; otherwise there is the risk that this infec-
tion develops itself toward the active state. While
supposing that only the infected individuals of
active TB transmit the infection, they must observe
some hygienic rules, they must adopt a positive
behavior with respect to the susceptible individuals
(who must also take precaution), to follow the
treatment up to finish as early as possible (in less
than one year), constitute measures of adequate
control. A preliminary survey of the model is
performed before introducing a function of control
representing the necessary dose of medicines in
order to control the frequency of the treatment and
to reduce considerably and quickly the prevalence
of the disease. The main objective is the control
of the treatment frequency in the stochastic model
of the TB infection. So we formulate an optimal
control problem that consists in minimizing the
relative cost of the dynamics of the model in order
to reduce the prevalence and mortality due to this
infection. To solve this optimal control problem,
we are going to apply the Stochastic Gradient
Method with Projection in order to find the optimal
numeric solution. Finally, thanks to the numerical
simulation tool, we simulate this model without or
with control as well as the optimal solution and the
associated cost function in order to characterize an
optimal decision.
In epidemiology and others domain as biology,
demography, economy..., many stochastic models
deriving from their deterministic formulation. The
reference of the literature for a variety of well-
known stochastic models deriving from their de-

terministic counterparts include the books [1], [5],
[6], [7], and [22]. Our contribution is first in Sub
Section II.A, the formulation of a stochastic model
of TB with treatment from a deterministic model
of TB-only (Sharomi [18]) which is formulated
along the lines of the model in Feng and al. [26].
Secondly in Sub Section II.B, we change this
stochastic model by perturbations or by an affine
change of variables affine to lead the survey of
the stability of the random equilibrium because the
used transformation keeps the law of probability
of an random variable [12]. Finally in Sub Section
III.A, we control the treatment frequency in this
stochastic model in order to reduce mortality due
to the infection. The continuation of the paper is
like follows: we recall the results that concern
the projection method in Sub Section III.B. The
gradient projection method is applied to the model
in Sub Section III.C, and the numerical simulations
are plotted in Sub Section III.D.

II. STOCHASTIC MODEL OF TB WITHOUT

CONTROL

We start this section by the description of the
variables and parameters of the model (see Table
I) then follows it by the presentation of the model.

A. Diagram and Mathematical Stochastic Model
of TB

Fig. 1. Diagram of the stochastic model of TB with treatment
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TABLE I
RANDOM VARIABLES AND PARAMETERS DESCRIPTION

Variable Description

St = S(t) Susceptible individuals number

Lt = L(t) Number of the TB- infected individuals

in the latent state

Tt = T (t) Number of the TB-infected individuals

in the active state

Rt = R(t) Number of recovered individuals

λI Force of TB infection

in presence of the treatment

λr Force of exogenous infection again

Parameters Description

Λ Recruitment rate of susceptible individuals

µ Naturel mortality rate

σ Progression rate of TB-infected individuals

from latent state to active state

ρ Infection rate of recovered individuals

n Proportion of susceptible individuals

that enter in (T) by infection

βT Number of effective contact

of susceptible with TB vector

δT Mortality rate caused by TB

ηr Proportion of infected individuals

by exogenous infection again

ηT Proportion of recovered individuals

by par the active TB-infected

τ Treatment rate of TB

The diagram of the stochastic model of the TB
infection is given by Fig 1.

The mathematical stochastic model of TB infec-
tion in the presence of treatment is written under
the compact form by the following equation (1)
(its formulation uses [1], [5], [6], [7], and [22])

dXt = f(t,Xt)dt+G(t,Xt)dWt, (1)

where Xt = (St, Lt, Tt, Rt)
T is a 4-dimensional

random vector of the states St, Lt, Tt, Rt;
Wt = (W j

t )Tj=1,...,m=10, is a 10-dimensional
Brownian motion process and is defined on a space
of (Ω,F , {Ft}t≥0, P );

f(t,Xt) = (fi(t,Xt))
T
i=1,...,d=4 is a vectorial

function of evolution with components fi =
fi(t,Xt) defined by

f1 = Λ− (µ+ λI)St,
f2 =nλISt−(µ+σ+λr)Lt+ρRt,
f3 =(1−n)λISt+(σ+λr)Lt−(µ+ δT +τ)Tt,
f4 = τTt − (µ+ ρ)Rt,

(2)

G = G(t,Xt) = (Gij)i=1,...,d=4;j=1,...,m=10 below
is a (4× 10)−dimensional matrix such that

G =

(
M1 O2×3

O2×3 M2

)
, (3)

where

O2×3 =

(
0 0 0

0 0 0

)
,

M1 =

(
G11 G12 G13 G14 0 0 0

0 0 G23 0 G25 G26 G27

)
,

M2 =

(
G34 0 G36 0 G38 G39 0

0 0 0 G47 0 G49 G410

)
,

with
G11 =

√
Λ, G12 = −

√
µSt,

G13 = −G23 = −
√
nλISt,

G14 = −G34 = −
√

(1− n)λISt,

G25 = −
√
µLt,

G26 = −G36 = −
√

(σ + λr)Lt,

G27 = −G47 =
√
ρRt,

G38 =−
√

(µ+δT )Tt, G39 =−G49 =−
√
τTt,

G410 = −
√
µRt.

(4)

The TB force of infection λI is defined by:

λI = βT
Tt + ηTRt

N
(5)

with
N = St + Lt + Tt +Rt

The force of exogenous infection λr is defined by:

λr = βT
ηrTt
N

. (6)
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B. Analysis of the solution of model and Stability

In this part, we are going to show the existence
and the uniqueness of the global solution positive
of the model (1). We also address the existence
and stability characterization of the Disease
Free-Equilibrium (DFE) and of the endemic
equilibrium point.

1) Existence and Uniqueness of solution:
Consider a region Ω ⊂ R4

+ defined by

Ω={(St, Lt, Tt, Rt)∈R4
+;St+Lt+Tt+Rt≤

Λ

µ
}.

Then, we has the following result:

Theorem 1. Let (S0, L0, T0, R0) ∈ Ω an ini-
tial condition. Then there is a unique solu-
tion of the stochastic model (1) denoted Xt =
(St, Lt, Tt, Rt)

T such that

P{Xt = (St, Lt, Tt, Rt)
T ∈ Ω} = 1 ∀ t ≥ 0.

Proof: See Appendix A.

2) Stochastic Stability of the random DFE: Let
us recall the following that will a very helpful in
the sequel

Lemma 1. Let p ≥ 2, x, y ∈ R+ and ε > 0
sufficiently small

xyp−1 ≤ ε1−p

p
xp +

(p− 1)ε

p
yp

x2yp−2 ≤ 2ε
2−p
2

p
xp +

(p− 2)ε

p
yp

Proof: The inequalities above can be demon-
strated with the help of the inequalities of Young:

for p, q > 0 and
1

p
+

1

q
= 1,

xy ≤ xp

p
+
yp

q
.

Proposition 1. The stochastic model (1) admits
a random equilibrium point without TB (Disease-

Free random Equilibrium)
[
X0 =

(
Λ

µ
, 0, 0, 0

)]

that is exponentially p-stable if p ≥ 2 and globally
asymptotically stable.

Proof: By translation, we can always bring
back a random equilibrium point Xe to Xe = 0
like in [25].

The existence of X0, disease-free random equi-
librium point is proved by the following change
variable for the stochastic model (1)

S̃t =
Λ

µ
− St. (7)

As a consequence, the stochastic model (1) reads
as

dX̃t = f̃(t, X̃t)dt+ G̃(t, X̃t)dW̃t, (8)

wherein

X̃t=(S̃t, Lt, Tt, Rt)
T , W̃ =(Wi)

T , i = 2, ..., 10.,

f̃(t,Xt) = (f̃i(t,Xt))
T
i=1,...,4 = (f̃i)

T
i=1,...,4 such

that

f̃1 = λ̃I

(
Λ

µ
− S̃t

)
− µS̃t,

f̃2 =nλ̃I

(
Λ

µ
−S̃t

)
−(µ+σ+λ̃r)Lt+ρRt,

f̃3 = (1− n)λ̃I

(
Λ

µ
− S̃t

)
+ (σ + λ̃r)Lt

− (µ+ δT + τ)Tt,

f̃4 = τTt − (µ+ ρ)Rt.
(9)

The noise G̃ = G̃(t, X̃t) is a matrix (4 × 9)
given by

G̃ =

(
M̃1 O2×3

O2×2 M̃2

)
, (10)

where

O2×2 =

(
0 0

0 0

)
,

M̃1 =

(
G̃12 G̃13 0 0 0 0

0 G̃23 0 G25 G26 G27

)
,

M̃2 =

(
G̃34 0 G36 0 G38 G39 0

0 0 0 G47 0 G49 G410

)
,

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077 Page 4 of 17

http://dx.doi.org/10.11145/j.biomath.2017.05.077


Bongor Danhree et al., Optimal control of the treatment frequency in a stochastic model of Tuberculosis

with

G̃12 = −
√
µS̃

t
, G̃34 = (1− n)

√
λ̃I

(
Λ

µ
− S̃t

)
,

G̃23 = n

√
λ̃I

(
Λ

µ
− S̃t

)
, G̃13 =

√
λ̃I

(
Λ

µ
− S̃t

)
,

λ̃I = βT
Tt + ηTRt(

Λ

µ
− S̃t

)
+ Lt + Tt +Rt

,

λ̃r = βT
ηrTt(

Λ

µ
− S̃t

)
+ Lt + Tt +Rt

.

The existence of a disease-free random equi-
librium of the model (8) gives the existence of
disease-free random equilibrium of (1). In fact,
Denote by X̃(0) ≡ 0 ∈ R4. The equalities
f̃(t, 0) = 0 and G̃(t, 0) = 0 are verified for t ≥ 0.
So X̃(0) a disease-free random equilibrium of the
model (8). Therefore, we have

S̃t = 0, Lt = 0, Tt = 0, Rt = 0,

that gives St =
Λ

µ
, Lt = 0, Tt = 0, Rt = 0,

i.e., X0 =

(
Λ

µ
, 0, 0, 0

)
is a disease-free random

equilibrium of the model (1).
Now, consider a Lyapunov function:

V =
1

2p

(
K

(
Λ

µ
−S̃t

)p
+K1L

p
t +K2T

p
t +K3R

p
t

)
(11)

with K > 0,K1 > 0,K2 > 0,K3 > 0, p ≥ 2.
Let us note by A a differential operator asso-

ciated to the stochastic model (1), operating on a
function V = V (t, x) ∈ C1,2(R×Rd) by

AV =
∂V

∂t
+f(t, x)

∂V

∂x
+

1

2
tr[GT (t, x)

∂2V

∂x2
G(t, x)].

Then

AV =−[K1(µ+σ+λr)L
p
t +K2(µ+δT +τ)T pt

+K3(µ+ρ)Rpt ]+K1nλIStL
p−1
t +K1ρRtL

p−1
t

+K2(1− n)λIStT
p−1
t +K2(σ + λr)LtT

p−1
t

+K3τTtR
p−1
t +

1

4
(p−1)[KG2

11

(
Λ

µ
− S̃t

)p−2

+KG2
12

(
Λ

µ
− S̃t

)p−2

+K
1

n
G2

23

(
Λ

µ
− S̃t

)p−2

+K1G
2
23L

p−2
t +K1G

2
47L

p−2
t +K2G

2
34T

p−2
t

+K2G
2
36T

p−2
t +K3G

2
49R

p−2
t +K1G

2
25L

p−2
t

+K1G
2
36L

p−2
t +K2G

2
38T

p−2
t +K1G

2
49T

p−2
t

+K3G
2
47R

p−2
t +K3G

2
410R

p−2
t ]

The application of the lemma 1 and the theorem
given by Afanas’ev in [24], allows us to obtain
finally

AV ≤ −[K1(µ+σ+λr)L
p
t +K2(µ+ δT + τ)T pt

+K3(µ+ ρ)Rpt ]

AV ≤ 0 (necessary to demonstrate).

Therefore, X0 =

(
Λ

µ
, 0, 0, 0

)
is exponentially

p−stable (p ≥ 2).
For, p = 2, we say that X0 is exponentially 2-
stable or stable in mean square [24]. In the sense
of Lyapunov, X0 is globally asymptotically stable.
It marks the end of the proof.

3) Stability of the endemic random equilibrium:

Preliminary: Suppose that the infection of TB
evolves of manner linear i.e. without random
noise G(Xt, t) ≡ 0. Then the model (1) become
dXt = f(Xt, t)dt which admits a basic reproduc-
tion number Rτ0 given by:

Rτ0 =
βT (µ+ ρ+ τηT )[(1− n)µ+ σ]

(µ+ σ)[(µ+ ρ)(µ+ δT ) + µτ ] + µρτ
.

(12)
If Rτ0 > 1, then the model dXt = f(Xt, t)dt
admits a unique endemic equilibrium point bio-
logically meaningful, X∗ that is locally asymp-
totically stable [18]. The existence of a random
endemic equilibrium [X∗ = (S∗, L∗, T ∗, R∗)] is
guaranteed by the condition Rτ0 > 1 almost surely
(see [8]). At this random endemic equilibrium
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[X∗ = (S∗, L∗, T ∗, R∗)T ] we have [λI = λ∗I ] and
[λr = λ∗r ] such that

λ∗I =
µ+ ρ+ τηT
ηr(µ+ ρ)

λ∗r . (13)

and
a2(λ∗I)

2 + a1λ
∗
I + a0 (14)

where

a0 = (1−Rτ0)(µ+ρ+τηT ){(µ+σ)[(µ+ρ)(µ+δT )

+µτ ]+µρτ},

a1 = (µ+ρ+ τηT ){(µ+ρ)(µ+σ) +n[δT (µ+ρ)

+µτ ]+µτ}+ηr(µ+ρ)[(µ+ρ)(µ+δT )+µτ ],

a2 = ηr(µ+ρ).

If Rτ0 = 1 ie. a0 = 0, the equation (14) admits a
hopeless solution corresponding to X0 the unique
equilibrium without TB and it admits another
solution to the real negative part corresponding to
the endemic equilibrium which is biologically not
pertinent.

If Rτ0 < 1 ie. a0 > 0, then a2a0 < 0 and if the
discriminant of (14) is positive i.e. a2

1−4a2a0 > 0.
It follows itself that the equation (14) admits two
solutions to part real negatives that corresponding
to two equilibriums no pertinent.

If Rτ0 > 1 ie. a0 < 0 then according to the
Descartes rule of sign, the equation (14) admits
one positive solution

λ∗I =
−a1 +

√
a2

1 − 2a2a0

2a2

corresponding to an endemic equilibrium X∗.
Now, suppose that the random noise of the

dynamic system of TB has a nature to perturb
the states variables St, Lt, Tt, and Rt of the
stochastic term G(t,Xt) around of S∗, L∗, T ∗, and
R∗ respectively (see also [25]). Then the model (1)
becomes

dXt = f(t,Xt)dt+G(t,Xt −X∗)dWt, (15)

that can be centered to X∗ by the change variables

Y1 =St−S∗, Y2 =Lt−L∗, Y3 =Tt−T ∗, Y4 =Rt−R∗
(16)

The linearized system of (15) around X∗ =
(S∗, L∗, T ∗, R∗)T as in [4] takes the form

dYt = fy(Yt)dt+Gy(Yt)dξt, (17)

where fy = fy(Yt) = Jf (X∗).Yt with Jf (X∗)
the jacobian matrix of f at X∗;
Yt = Y = (Y1, Y2, Y3, Y4)T ; ξt = (W i

t )i=2,...10;

fy=


−∂11 ∂12 ∂13 ∂14

∂21 −∂22 ∂23 ∂24

∂31 ∂32 −∂33 ∂44

0 0 τ −(µ+ρ)



Y1

Y2

Y3

Y4


wherein

−∂11 = µ+λ∗I

(
1− S∗

N∗

)
, ∂12 = −λ∗I

S∗

N∗
,

∂13 = (λ∗I − βT )
S∗

N∗
∂14 = (λ∗I − βT ηT )

S∗

N∗
,

∂21 = nλ∗I

(
1− S∗

N∗

)
+ λ∗r

L∗

N∗
,

−∂22 = nλ∗I
S∗

N∗
+λ∗r

L∗

N∗
+µ+ρ,

∂23 = −n(λ∗I − βT )
S∗

N∗
+ (λ∗r − βT ηr)

L∗

N∗
,

∂24 = −n(λ∗I − βT ηT )
S∗

N∗
+ λ∗r

L∗

N∗
+ ρ,

∂31 = (1− n)λ∗I

(
1− S∗

N∗

)
− λ∗r

L∗

N∗
,

∂32 = −(1−n)λ∗I
S∗

N∗
+λ∗r

(
1− L∗

N∗

)
+σ,

∂33 =(n−1)(λ∗I−βT )
S∗

N∗
+(λ∗r−βT ηr)

L∗

N∗
+µ+δT+τ,

∂34 = −(1− n)(λ∗I − βT ηT )
S∗

N∗
− λ∗r

L∗

N∗
;

and Gy(Yt) =
Gy12 Gy13 Gy14 0 0 0 0 0 0

0 Gy23 0 Gy25 Gy26 Gy27 0 0 0

0 0 Gy34 0 Gy36 0 Gy38 Gy39 0

0 0 0 0 0 Gy47 0 Gy49 Gy410

,
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with

Gy12 = −
√
µY1, Gy13 = −Gy23 = −

√
nλIY1,

Gy14 = −Gy34 = −
√

(1− n)λIY1,

Gy25 = −
√
µY2,

Gy26 = −Gy36 = −
√

(σ + λr)Y3,

Gy27 = −Gy47 =
√
ρY4,

Gy38 = −
√

(µ+ δT )Y3,

Gy39 = −Gy49 = −
√
τY3, Gy410 = −

√
µY4.

(18)
.

Theorem 2. The stochastic model (1) ad-
mits a random endemic equilibrium [X∗ =
(S∗, L∗, T ∗, R∗)] exponentially 2-stable and glob-
ally stable if the following conditions (i.), (ii.)
are satisfied:

(i.) : Rτ0 > 1

(ii.) :



∂11 >
1
2

(
ω1 + κ1βT (1 + ηT )Λ

µ

)
∂22 >

1
2(ω2 + µ)

∂33 >
1
2

(
ω3 + βT

Λ
µ

(
c2
c3

+ 1
)

+ κ2

)
µ+ ρ > 1

2(ω4 + κ3).

where, for all real constants ci > 0, i = 1, ..., 4,
we have

κ1 =1+n
c2

c1
+(1−n)

c3

c1
; κ3 =ρ

(
c2

c4
+1

)
+µ;

κ2 = σ

(
c2

c3
+ 1

)
+τ

(
c4

c3
+ 1

)
+µ+δT ;

and ωi > 0, i = 1, ..., 4 such that

ω1 = 2λ∗I
S∗

N∗
+
c2

c1

(
nλ∗I

(
1− S

∗

N∗

)
+λ∗r

L∗

N∗

)
+

c3

c1
(1− n)λ∗I

(
1− S∗

N∗

)
,

ω2 = nλ∗I

(
1− S∗

N∗

)
+ nβT (1 + ηT )

S∗

N∗

+ 3λ∗r
L∗

N∗
+ ρ+

c3

c2
(λ∗r + σ)

ω3 =
c1

c3
λ∗I
S∗

N∗
+
c2

c3
+

(
nβT

S∗

N∗
+ λ∗r

)
+ λ∗r

+ (1−n)

(
λ∗I

(
1− S

∗

N∗

)
+βT ηT

S∗

N∗

)
+σ

ω4 =
c1

c4
λ∗I
S∗

N∗
+
c2

c4

(
nβT ηT

S∗

N∗
+λ∗r

L∗

N∗
+ρ

)
+

c3

c4
(1− n)βT ηT

S∗

N∗
.

Proof: The trivial solution Yt = 0 of the
linearized system (17) corresponds to the equilib-
rium X∗ that the existence is guaranteed by the
condition (i).
Consider now the Lyapunov function defined by:

V y=V y(Y )=
1

2

4∑
i=1

ciY
2
i , ci>0, i=1, ..., 4. (19)

Then

AV y=−c1∂11Y
2

1−c2∂22Y
2

2−c3∂33Y
2

3−c4(µ+ρ)Y 2
4

+

3∑
i,j=1

4∑
i 6=j

ci∂ijYiYj+
1

2

4∑
i,j=1

tr(GyGyTij
∂2V y(Y )

∂Yi∂Yj
)

AV y = −c1

(
µ+ λ∗I(1−

S∗

N∗
)

)
Y 2

1 −c2(nλ∗I
S∗

N∗

+λ∗r
L∗

N∗
+µ+ρ)Y 2

2 −c3[(1−n) (λ∗I − βT )
S∗

N∗

+(λ∗r−βT ηr)
L∗

N∗
+µ+δT +τ ]Y 2

3 −c4(µ+ρ)Y 2
4

+

3∑
i,j=1

4∑
i 6=j

ci∂ijYiYj+
1

2

4∑
i,j=1

tr(GyGyT )ij
∂2V y(Y )

∂Yi∂Yj
.

To increase the last two terms of AV y(Y ) that we
pose:

sum1 =

3∑
i,j=1

4∑
i 6=j

ci∂ijYiYj ,

sum2 =
1

2

4∑
i,j=1

tr(GyGyT )ij
∂2V y(Y )

∂Yi∂Yj
.

sum1 =

3∑
i,j=1

4∑
i 6=j,∂ij>0

ci∂ijYiYj+

3∑
i,j=1

4∑
i 6=j,∂ij<0

ci∂ijYiYj
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≤ 1

2

3∑
i,j=1

4∑
i 6=j,∂ij>0

ci∂ij(Y
2
i + Y 2

j )

+

3∑
i,j=1

4∑
,i6=j,∂ij<0

ci∂ijYiYj

sum1 ≤
1

2

3∑
i,j=1

4∑
,i6=j,∂ij>0

ci∂ij(Y
2
i +Y 2

j )

sum1 ≤
1

2
{[2λ∗I

S∗

N∗
+
c2
c1

(
nλ∗I

(
1− S∗

N∗

)
+ λ∗r

L∗

N∗

)
+
c3
c1

(1− n)λ∗I

(
1− S∗

N∗

)
]c1Y

2
1 + [nλ∗I

(
1− S∗

N∗

)
+nβT (1 + ηT )

S∗

N∗
+ 3λ∗r

L∗

N∗
+ ρ+

c3
c2

(λ∗r +σ)]c2Y
2
2 +

[
c1
c3
λ∗I
S∗

N∗
+
c2
c3

(
nβT

S∗

N∗
+ λ∗r

)
+(1−n)(λ∗I

(
1− S∗

N∗

)
+βT ηT

S∗

N∗
)+λ∗r+σ]c3Y

2
3 +[

c1
c4
λ∗I
S∗

N∗
+
c2
c4

(nβT ηT
S∗

N∗

+λ∗r
L∗

N∗
+ρ)+

c3
c4

(1−n)×βT ηT
S∗

N∗
]c4Y

2
4 }.

From where

sum1 ≤
1

2
{ω1c1Y

2
1 + ω2c2Y

2
2 + ω3c3Y

2
3 + ω4c4Y

2
4 }

and

sum2 =
1

2
{c1(G2

12 +G2
13 +G2

14) + c2(G2
23 +G2

25

+G2
26 +G2

27) + c3(G2
34 +G2

36 +G2
38 +G2

39)

+ c4(G2
47 +G2

49 +G2
410)}+

1

2
{(κ1λI + c1ρ)Y1

+ c2µY2 + (λr(c2 + c3) + κ2)Y3 + κ3Y4}

sum2 ≤
1

2
{
(
κ1βT

Λ

µ
(1 + ηT ) + ρ

)
c1Y

2
1 + c2µY

2
2

+

(
βT

Λ

µ

(
c2
c3

+ 1

)
+ κ2

)
c3Y

2
3 + κ3Y

2
4 }.

Hence

AV y ≤ −
(
∂11 −

1

2

(
ω1 + κ1βT (1 + ηT )

Λ

µ

))
c1Y

2
1

−
(
∂22 −

1

2
(ω2 + µ)

)
c2Y

2
2 −[∂33−

1

2
(βT

Λ

µ

(
c2
c3

+ 1

)

+ω3 + κ2)]c3Y
2
3 −

(
µ+ ρ− 1

2
(ω4 + κ3)

)
c4Y

2
4 .

According to the condition (ii.), we has AV y ≤ 0
marking the end of this proof.

The random endemic equilibrium [X∗ =
(S∗, L∗, T ∗, R∗)T ] of the model (1) exists when-
ever Rτ0 > 1 and condition (i.) is fulfilled. It is
exponentially 2-stable and globally asymptotically
stable in sense of Lyapunov if the supplementary
condition (ii.) is satisfied.

We study in the following section, the optimal
control of the treatment frequency in a stochastic
model of TB. The condition Rτ0 < 1 is needed
for the effective stability of TB in a population
because the biological pertinence of the endemic
equilibrium exists whenever Rτ0 > 1 almost surely.
The control permits then to adjust this endemic
situation unstable.

III. OPTIMAL CONTROL OF THE TREATMENT

FREQUENCY IN THE TB MODEL

A. Optimal control problem

Let (Ω,F , {Ft}t≥0, P ) a complete filtered prob-
ability space {Ft}t≥0 produced by a standard 10-
dimensional Brownian Motion {Wt}t≥0. Let T >
0 a fixed real number named the horizon of the
finite time. Let’s note by L2(Ω,FT ,R) the space
of random variables. FT -measurable to real values
and integrable square and by L2

F (0; T ,R) a space
of process Ft- adapted to real values and integrable

square such that E[

∫ T
0
|Xt|2dt] < +∞.

Let K ∈ Uad a compact convex sub set of
L2(0, T ). Consider an optimal control problem
that consists in minimizing the cost J (., .), the
objective function defined for the time t ∈ [0, T ],
the state X ∈ R4 and function of control u ∈ Uad
by:

J (X,u) =

∫ T
0

E[ϕ(Xt, ut)]dt+

∫ T
0
h(ut)dt,

(20)
relative to the state Xt ∈ R4 of the TB model
governed in general by:{
dXt=f(t,Xt, ut)dt+G(t,Xt, ut)dWt, t∈ [0,T ]
X0 = X(0) ∈ R4

(21)
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and in particular by:{
dXt=f(t,Xt, ut)dt+G(t,Xt)dWt, t∈ [0,T ]
X0 = X(0) ∈ R4

(22)
where u = ut : τ 7−→ u(t)τ , for all rate τ of (2).
This part deals with the study of the particu-
lar case where the control doesn’t appear in the
stochastic term. The control is said optimal when
this dose reached its value optimal positive i.e.
u = uop > 0. If this optimal value is not reached,
i.e. u ∈ [−1; 0[∪]0;uop[, then the control is said
less efficient; it is said without effect when u = 0
and finally the control is said efficient when the
optimal value is passed) i.e. u ∈]uop, 1]. The aim
is therefore to control the frequencies of the TB
treatment in order to reduce number of new cases.
The problem of the optimal control is translated
to:

Find an admissible control optimal u = u∗ such
that

J (X,u∗) = min
u∈K⊂Uad

J (X,u) (23)

ie. J (X,u∗) ≤ J (X,u) ∀ u ∈ K ⊂ Uad

Set F (u) = J (X,u), then the optimal control
problem (23) becomes a optimization problem

F (u∗) = min
u∈K⊂Uad

F (u), (24)

wherein F (u) is a functional convex.

B. Gradient Projection Method

We want to solve (24) by the projection stochas-
tic gradient method. For this purpose, let us recall
the results that concern the projection method on
a convex closed K an the stochastic algorithm:

Proposition 2. Let, H a Hilbert space, provided
with a norm ‖.‖ induced by the scalar product
(·|·) and let K ⊂ H a nonempty convex closed
set. Then for all u ∈ H ,

1) an unique ũ ∈ K exists such that

‖u− ũ‖ = min
v∈K
‖u− v‖ for all v ∈ K,

where ũ = PK(u) is the orthogonal projec-
tion of u on K.

2) ũ is charcterized by

ũ = PK(u)⇐⇒ (ũ− u | v − ũ) ≥ 0

Proof:
1) The existence of ũ ∈ K holds true because

K is closed. Let’s suppose that the dimension
of H is finite. Let us consider K∩B(u; ‖u−
v‖) the intersection of K with a ball B. On
this compact, the function v 7−→ ‖u− v‖ is
continuous. Of all minimizing sequence we
can extract a convergent sequence, its limit is
ũ. The uniqueness comes from the convexity
of K and Pythagoras’ theorem.

2) For the characterization of ũ; suppose ũ =
PK(u) then we has for all v ∈ K

‖u−ũ‖ = min
v∈K
‖u−v‖ =⇒ ‖u−ũ‖ ≤ ‖u−v‖

Let v ∈ K, pose vε = ũ + ε(v − ũ) ε ∈
]0; 1[ vε ∈ K which implies that

‖u−ũ‖2 ≤ ‖u−vε‖2 = ‖u−ũ‖2+ε2‖v−ũ‖2

+2ε(ũ− u | v − ũ)

‖u− ũ‖2 ≤ ‖u− ũ‖2 + ε2‖v − ũ‖2

+2ε(ũ− u | v − ũ)

Dividing by ε then we obtain

0 ≤ ε‖v − ũ‖2 + 2(ũ− u | v − ũ)

=⇒ (ũ− u | v − ũ) ≥ 0

Reciprocally, let’s suppose that
(ũ− u | v − ũ) ≥ 0

0 ≥ (u− ũ | v− ũ) = (u− ũ | v−u+u− ũ)

0 ≥ ‖u− ũ‖2 + (u− ũ | v − u)

Applying the inequality of Cauchy-Schwarz,
we have

0 ≥ ‖u− ũ‖2 − ‖u− ũ‖‖v − u‖

=⇒ ‖v − u‖ ≥ ‖ũ− u‖
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Proposition 3. The algorithm of the stochastic
gradient consists in making evolve the variable
u of the optimization problem (24) according to
the formula of the following recurrence convergent
sequence (un)n≥0 of limit u:

un+1 = un + qn(−∇F (un))

where qn > 0 with lim
n−→+∞

qn = q and ∇ denotes
the gradient.

1. Initialization : u0 ∈ H
2. u = un is for n ≥ 0
a) Calculate ωn = −∇F (un)

Choisir qn ≥ 0 such that
F (un − qnωn) ≤ F (un − qωn) ∀q > 0
un+1 = un + qnωn
b) Calculate vn+1 = PK(vn+1)
c) Test the covergence of the iteration
εn = ‖un+1 − un‖ :
− if εn < ε Stop
− otherwise : u = un+1 and repeat
iteration.

(25)

C. Projection gradient method applied to the
stochastic model of TB with control

Proposition 4. Consider H = U is a Hilbert
space and Uad ⊂ U a closed convex subset. Let
PK the projection operator on K defined in U by
PK(ω) = PKω ∈ K; ∀ ω ∈ U , then problem (24)
admits an unique solution u or an optimal control
such that

u = u(·) = PK [u− q(· |F ′(u))]

Proof: H = U is a Hilbert space and Uad ⊂ U
a closed convex subset. The necessary and suffi-
cient condition of the optimality problem (24) is
given by

(F ′(u) | v − u) ≥ 0 ∀ v ∈ K.

Let PK the projection operator on K defined in U
by PK(ω) = PKω ∈ K; ∀ ω ∈ U , such that we
have

(PKω−ω | PKω−ω)= min
u∈K⊂Uad

(u−ω | u−ω) ∀ω∈U.

It is equivalent to

(PKω−ω | v−PKω) ≥ 0 ∀v∈K ⇐⇒ ω=PKω.

It follows that the solution u of (24) is given by

u = u(·) = PK [u− q(· |F ′(u))].

Indeed, the optimality condition gives

(F ′(u) | v − u) ≥ 0 ∀ v ∈ K,

then for q > 0 we have

q(· | F ′(h)) | v−u)≥0 =⇒ (q(· | F ′(h)) | v−u)≥0

=⇒ (u− u+ q(· | F ′(h)) | v − u) ≥ 0.

With ω = u − q(· | F ′(h)), the last implication
gives

(u−ω | v−u) ≥ 0⇐⇒ u = PKω

⇐⇒ u = PK [u− q(· | F ′(h))]

For the optimal control problem of the treatment
frequency of TB, we are going to define the
following iteration scheme for n = 0, 1, ...{

(v | un+1

2
)=(v | un)−qn(v | F ′n(un)), ∀v∈U

un+1 = PK(un+ 1

2
),

(26)
where F ′n is the functional approached to the nth

iteration of F ′n.
The convergence of this scheme, and the calcu-

lation of F ′n. are given in [17],[13]. For u(·) an
optimal control and X(·), the optimal stat corre-
sponding to X(·) and for v(·) ∈ U ⊂ L2(0, T )
such that vp = u(·) + qv(·), 0 < q < 1, then we
have for all v ∈ L2(0, T ),

F ′n(u)(v) = lim
q−→0

Fn(u+ qv)− Fn(u)

q

= E[

∫ T
0
ϕ′(X)D(X)(v)dt] +

∫ T
0
h′(u)dt, (27)

where

D(X)(v)=

∫ t

0

[
f ′X(s,X,u)D(X)(v)+f ′u(s,X,u)v

]
ds

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077 Page 10 of 17

http://dx.doi.org/10.11145/j.biomath.2017.05.077


Bongor Danhree et al., Optimal control of the treatment frequency in a stochastic model of Tuberculosis

+

∫ t

0
G′X(s,X)D(X)(v)dWs,

d(D(X)(v))=[f ′X(t,X,u)D(X)(v)+f ′u(t,X,u)v]dt

+G′X(t,X)D(X)(v)dWt.

We define a adjoint functional p, Ft-adapted and
defined by
−dp = [ϕ′(X) + pf ′X(t,X, u)− pG′X(t,X)

.(G′X(t,X))tr]dt+ pG′X(t,X)dWt,
p(T ) = 0

(28)

such that E[

∫ T
0
|pt|2dt] < +∞.

The right hand side of the equation (27) permits
to get finally F ′n(u)(v) from (28), that reads as

F ′n(u)(v) =

∫ T
0

E[p(f ′(t,X, u) + h′(u)]vdt,

(29)
The Projection Gradient Method applied to the
stochastic model of TB with control, consist there-
fore in considering the system (30) of two equa-
tions (22) and (28) in order to solve it numerically,
dXt=f(t,Xt,ut)dt+G(t,Xt,ut)dWt, t∈ [0,T ],
−dp=[ϕ′(Xt)+pf ′X(t,Xt, ut)−pG′X(t,Xt)

.(G′X(t,X))tr]dt+ pG′X(t,Xt)dWt,
X0 = X(0) ∈ R4 p(T ) = 0.

(30)
The numerical resolution of (30) uses the iteration
scheme (31) below for n = 0, 1... and then the
Euler scheme for the two equations of (30) (see
[17]) ,

(v|un+ 1

2
)=(v|un)−qn(v|E[pn(f ′u(t,Xn,un))]

+ h′(un)), ∀v ∈ U
un+1 = PK(un+ 1

2
),

(31)
where Xn, un and pn are the present steps of the

functions constructed.

D. Numerical Simulations

Algorithm[17]:
Stage 1 To choose the arbitrary initial control

For n = 0, 1, · · ·, let u = un, to
make the buckle iteration of Stage 1 to
Stage 5;

Stage 2 To use the implicit Euler scheme for the
discretization in time of the SDE (22)

Stage 3 To use the implicit Euler scheme for
the discretization in time of the adjoint
equation; (28)

Stage 4 To use the iteration scheme (31) of the
gradient method to update the controls;
um
n+ 1

2

=um−qn(E[pm(f ′u(tm,Xm,um))]

+ h′(um)), m = 0, 1, · · ·,mmax

umn+1 = PK(un+ 1

2
);

Stage 5 Calculate en = ‖un − un+1‖. If en
is small enough, then exit. Otherwise;
let u = un+1 repeat the buckle iteration
from Stage 2 to Stage 5.

TABLE II
PARAMETER VALUES AND REFERENCES

Parameters Values References
Λ variable Estimate
µ 0.02 [18]
σ 1/33 [18]
ρ 0.04 [18]
δT 0.2 [18]
n Variables Estimates

ηr , ηT 0.4, 0.06 [18]
βT , τ Variables Estimates

For the following figures, we take ϕ(x, u) =

(x2 + u2)exp(
−t

x2 + u2
), h(x) = x2, n = 0.05,

en < 10−7, p0 = 0.01 and the rest Λ, βT , τ , X0

are variable.
Fig.2 give a schematic plot of the model (1) not

depending of u. The aim is to show, for a initial
condition given, the asymptotic behavior of the so-
lution around a random endemic equilibrium when
the hard epidemic a long time Rτ0 > 1. While,
Fig.3(resp. Fig.4) shows a numerical illustration
of optimal control u, see (a) and (b) (resp. of cost
F (u), see (c) and (d)). The orthogonal projection
of the minimum point of F (u) on the closed subset
[−1; 1], gives a numerical value of optimal control
u∗; e.g. the minimum point • of F (u) represented
in (c), is valued as F (u∗) = 2.7066 giving u∗ = 0
if u0 = 1. Thanks to Matlab, we can value the
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cost F (u∗) and the optimal control u∗ for a control
initially chosen u0 as Fig.6.
In Fig.5, the trajectory without control, see (t.1),
(resp. with control, see (t.2)) of the active infected
individuals T is creasing between 0 and 2 years
(resp. decreasing between 0 and 1 year and is
annulling constantly thereafter). (t.3) and (t.4)
show that a control of treatment intervened 0.5
years equal to 6 months after the infection, permits
to reduce to nothing numbers of the active infected
individuals of TB.
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Fig. 2. Numerical Simulations of the model (1) without
control (i.e. not depending of u), showing the asymptotic
behavior of the solution when Rτ0 > 1 at different initial con-
dition: (i) : X0 = (S0, L0, T0, R0) = (50, 12, 5, 10), Λ =
10, βT = 0.8, τ = 0.08, Rτ0 = 2.3710 > 1 and, (ii)X0 =
(S0, L0, T0, R0) = (50, 1, 1, 1), Λ = 8, βT = 0.9, τ =
0.08. Rτ0 = 3.5565 > 1.
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Fig. 3. Numerical simulations of a control u: (a) and (b)
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Fig. 4. Numerical Simulation of a cost functionF (u) (c) and (d)
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Fig. 5. Trajectories without and with control of the model
(1). For Λ = 5, βT = 0.08, τ = 0.08, u0 = 0.08, X0 =
(1, 1, 1, 1).

Let’s note that initial value of sequence qn is
chosen as q0 = 0.1 for Fig.6 and (d); q0 = 0.6 for
Fig.4 (c).

IV. CONCLUSION

The stochastic model (1) of TB without control
admits for an initial state X(0), a positive and
unique solution Xt ∈ Ω of probability one. It exist
for this model an unique disease equilibrium free
(DEF) exponentially 2-stable and globally asymp-
totically stable (in Lyapunov sense). Under a given
condition, the model (1) admits a random endemic
equilibrium exponentially p-stable (p ≥ 2) and
globally stable. The introduction of a treatment
control function in model (1) gives an optimal
control problem governed by model (22). The
Projection Gradient method permits to determine
numerically the optimal control as well as the cost
function corresponding to this problem.
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Fig. 6. Numerical Simulations of the control u and the
function cost F (u) for the different initials values of u0. We
obtain:

If u0 = 0.2 then F (u∗) = 2.7073 and
u∗ = uop = 0.03606;

if u0 = 0.5 then F (u∗) = 2.9166 and
u∗ = uop = 0.01607;

if u0 = 0.8 then F (u∗) = 3.3071 and
u∗ = uop = 0.0000;

and if u0 = 1 then F (u∗) = 3.6673 and
u∗ = uop = 0;

For example, with a treatment rate equal to
τ = 8% and with an initial value equal to u0 = 0.2
of the function control, we obtain u∗ = 0.3606, the
admissible optimal control and F (u∗) = 2.7073,
the cost. Also with τ = 8% and u0 = 1, we obtain
u∗ = 0. We therefore deduce that the optimal
control is without effect when u0, the initial dose
of the medicines taken by a patient ranges from
80% to 100 %. On the other hand the optimal
control is efficient admissible when this initial
dose is lower to 50 %. Thanks to the presence of
the optimal control in the stochastic model (1) of
TB, we can reduce considerably and quickly (less
than one year) the number of the active infected
individuals. As in Fig.5(t.2) and Fig.7 (t.3)-(t.4),
the trajectory with control of the active infected
individuals T is decreasing between 0 and 1 year
and becomes null constantly thereafter. This work
is therefore a contribution that enters well in the
same line of struggle against mortality due to
the infections that several governments as well as
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Fig. 7. Trajectory without and with control of TB active
infected individuals T. With βT = 0.08 for t.3 and βT =
0.8 for t.4.

humanitarian associations advocated so much.

APPENDIX A: PROOF OF THEOREM 1

Let Nt = St+Lt+Tt+Rt, the random variable
giving the total number of the population at the
time t. We have

dNt = (Λ− µNt − δTTt)dt− ξ<G,dW (t)>.

where

ξ<G,dW (t)> = (
√
µSt +

√
µLt +

√
(µ+ δT )Tt+√

µRt −
√

Λ)d$(t),

with $ = Wi i = 1, ..., 10. because Wi follow the
same law of probability, namely the normal law.
We need to show that if Xt = (St, Lt, Tt, Rt)

T ∈

R4
+ for all t ∈ [0; tε[ where tε is the explosion

time, then we have for P -almost surely (P−as)

Nt <
Λ

µ
.

In fact, if Xt ∈ R4
+ for all t ∈ [0; tε[, then Nt is

given such that for P−as.:

dNt = (Λ− µNt − δTTt − ξ<G,dW (t)>)dt

≤ (Λ− µNt)dt

According to the lemma of Gronwall, we obtain:

Nt ≤
Λ

µ
+ (N0 −

Λ

µ
)e−µt P − as.

And as by hypothesis (S0, L0, T0, R0) ∈ Ω i.e.

N0 −
Λ

µ
≤ 0,

we have then Nt <
Λ

µ
P − as.

The terms f(t,Xt) and G(t,Xt) of the stochastic
model (1) being locally Lipschitz, there is an
unique local solution Xt = (St, Lt, Tt, Rt)

T for
all t ∈ [0; tε[ fixed. Therefore, the unique local
solution Xt = (St, Lt, Tt, Rt)

T ∈ R4
+.

In the sequel we show that Xt is global solution
P−almost surely i.e. tε =∞.

Let n0 > 0, an integer sufficiently large such

that (S0, L0, T0, R0) ∈
[

1

n0
;n0

]4

.

Set Et = {St, Lt, Tt, Rt} and for all integer
n ≥ n0, we define the stop-times tn = inf {Hn}
with Hn ={
t∈ [0,tε] : minEt∈

[
0;

1

n

]
ormaxEt∈ [n; +∞[

}
.

(tn)n>0 is an increasing sequence and convergent;
denote by

t∞ = lim
n−→∞

tn

then t∞ ≤ tε.
Let us show that t∞ = ∞ so that we has tε =

∞. For it, let us suppose by absurd that t∞ <∞,
there is θ > 0 such that for all p ∈]0; 1[ we have
P{t∞ ≤ θ} > p. Consequently, there is an integer
n1 ≥ n0 such that for all set An = {tn ≤ θ}, we
have

P{An} > p n ≥ n1. (32)
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Let us consider the function V defined on R4
+ and

to values in R+ such that

V =−ln
(
µSt
Λ

)
−ln

(
µLt
Λ

)
−ln

(
µTt
Λ

)
−ln

(
µRt
Λ

)
.

Using the multidimensional Itô formula on the
interval [0; min(τn; θ)], we have for all t ≥ 0

dV = dV (Xt) = [
∂V (Xt)

∂t
+

4∑
i=1

fi(t,Xt)
∂V (Xt)

∂Xi
t

+
1

2

4∑
i,j=1

(GGT )ij
∂2V (Xt)

∂Xt∂X
j
t

]dt

+

4∑
i=1

10∑
j=1

GijdW
j
t

∂V (Xt)

∂Xi
t

,

where for i = 1, 2, ..., 4; j = 1, 2, ..., 10,

G = (Gij); and (GGT )ij =

10∑
k=1

Gik.Gkj .

Therefore

dV = 2[4µ+ σ + δT + τ ]dt+
5

4
(λI + λr)dt

+
1

2
[µ

1

St
+ (µ+ σ)

1

Lt
+ (µ+ δT + τ)

1

Tt

+ (µ+ ρ)
1

Rt
]dt− 1

2
{Λ(4St − 1)

S2
t

+ (nλISt+ρRt)
(4Lt−1)

L2
t

+[(1−n)λISt

+ (σ+λr)Lt]
(4Tt−1)

L2
t

+τTt
(4Rt−1)

L2
t

}dt

− 1

St
(G11dW

1
t +G12dW

2
t +G13dW

3
t

+ G14dW
4
t )− 1

Lt
(G23dW

3
t +G25dW

5
t

+ G26dW
6
t +G27dW

7
t )− 1

Tt
(G34dW

4
t

+ G36dW
6
t +G38dW

8
t +G39dW

9
t )

− 1

Rt
(G47dW

7
t +G49dW

9
t +G410dW

10
t ).

We further obtain the following inequations:

dV (Xt) ≤Mdt− 1

St
(G11dW

1
t +G12dW

2
t

+G13dW
3
t +G14dW

4
t )− 1

Lt
(G23dW

3
t

+G25dW
5
t +G26dW

6
t +G27dW

7
t )

− 1

Tt
(G34dW

4
t +G36dW

6
t +G38dW

8
t

+G39dW
9
t )− 1

Rt
(G47dW

7
t +G49dW

9
t

+G410dW
10
t ) P − as.

with

M =
5

2
[4µ+σ+δT +τ +

1

2
βT (1+ηT +ηr)] > 0.

Which implies by integration that∫ ∧tnθ
0

dV ≤M
∫ ∧tnθ

0
dt−[

4∑
k=1

(∫ ∧tnθ
0

G1k

St
dW k

t

)

+

7∑
k=3,6=4

(∫ ∧tnθ
0

G2k

Lt
dW k

t

)
]

−[

9∑
k=4,6=7

(∫ ∧tnθ
0

G3k

Tt
dW k

t

)

+

10∑
k=7,k 6=8

(∫ ∧tnθ
0

G4k

Rt
dW k

t

)
], (33)

where ∧tnθ = tn ∧ θ = min(tn; θ).
Taking the mathematical expectations for all terms
of inequations (33), we obtain

E[V (Xtn∧ θ)] ≤ E[V (X0)] +Mθ (34)

Let a set An = {tn ≤ θ}. Denote by IAn (resp.
I{An) the indicator function of An (resp. of the
complementary {An). Thus

E[V (Xtn∧θ)]=E[V (Xtn∧θ)IAn ]+E[V (Xtn∧θ)I{An ]

According to the definition of function V , we have
V (Xtn∧ θ) ≥ 0. Hence

E[V (X0)]+Mθ≥E[V (X∧tnθ )IAn ]+E[V (X∧tnθ )I{An ]

E[V (X0)] +Mθ ≥ E[V (Xtn)IAn ]
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Thanks to the continuity, it exists at least one of

the components Xtn equals to n or to
1

n
. So

V (Xtn) ≥ min
{
−ln

(µn
Λ

)
;−ln

( µ

Λn

)}
V (Xtn) ≥ min

{
ln

(
Λ

µn

)
; ln

(
Λn

µ

)}
,

and consequently

E[V (X0)] +Mθ ≥ E[V (Xtn∧ θ)IAn ]

≥ P{An} ×min

{
ln

(
Λ

µn

)
; ln

(
Λn

µ

)}
.

Hence

P{An}=P{tn≤θ}≤
E[V (X0)]+Mθ

min

{
ln

(
Λ

µn

)
; ln

(
Λn

µ

)} .
(35)

Taking the limit when n −→ +∞ in (35), we
found that

0<p< lim
n−→+∞

P{An}=P{t∞ ≤ θ}=0 ∀θ≥0,

which is a contraction, then t∞ = ∞ i.e. that we
have P{t∞ =∞} = 1.

Otherwise, t∞ ≤ tε, we therefore conclude that
t∞ = tε =∞ P − as.
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