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Abstract—In this work we discuss some method-
ological aspects of the creation and formulation
of mathematical models describing the growth of
species from the point of view of reaction kinetics.
Our discussion is based on familiar examples of
growth models such as logistic growth and en-
zyme kinetics. We propose several reaction network
models for the amiloid fibrillation processes in the
citoplasm. The solutions of the models are sigmoidal
functions graphically visualized using the computer
algebra system Mathematica.
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I. INTRODUCTION

A field of considerable interest is the study
of various biological growth processes and the
application of mathematical models that facili-
tates the understanding of these processes. Growth
processes usually evolve in time as sigmoidal
functions. There exists a vast literature on sig-
moidal functions. The field is characterized by
a huge number of studies on real world growth
phenomena and attempts to explain the intrinsic

mechanisms of these phenomena using various
mathematical methods [7], [8], [21], [33].

Sigmoidal growth functions are usually intro-
duced in three main ways. Often growth functions
are defined by an explicite arithmetic expression.
Another way is to define them as a solution of a
problem formulated in terms of a differential equa-
tion or a system of (integro-)differential equations.
A third way is to formulate a chemical reaction
network that induces (via the mass action law) a
dynamical system, that in turn imply sigmoidal so-
lution(s). This approach makes use of the reaction
network theory—a well established field of applied
mathematics (mathematical chemistry) that studies
the behavior of real world chemical systems. In
many situations the reaction network-approach can
be applied to biological phenomena and has the
advantage of suggesting possible (bio)-chemical
mechanisms of the processes and phenomena un-
der investigation.

In this work we are going to illustrate the
above mentioned approaches for the formulation
and study of growth functions on several familiar
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examples such as the Verhulst logistic function and
Henri enzyme kinetic reaction network. We shall
then formulate some models that can be possibly
used to explain the growth of amiloid fibrils in the
cell citoplasm.

Sigmoidal growth curves typically have three
parts (phases): lag, log and stationary parts. It is
a challenging question to characterize mathemat-
ically these phases. The lag phase is practically
important in many medical and biotechnological
applications as this phase is responsible for the
acceleration or inhibition of the process and the
possibility of controlling the lag phase depends
on the understanding of the hidden mechanisms of
the corresponding process. The reaction network-
approach to growth process modelling provides
namely certain knowledge about the specific in-
trinsic mechanisms of the process.

II. BIOLOGICAL GROWTH/TRANSITION

MODELS: THREE CASE STUDIES

In this section we present three case studies of
familiar growth models in order to illustrate pos-
sible mechanisms of growth formulated in terms
of reaction networks. Growth and transition are
related processes, as a species (reactant, popula-
tion) A grows for the expenses of another species
B. In some situations this can be also expressed
as “species B transits (transforms) into species
A”. The transition can be in both directions (re-
versible). The process can be catalyzed by a third
species C, which in particular can coincide with
some of the species A,B (autocatalysis).

Three familiar forms for presentation of the
models will be illustrated by means of case studies.
Explicitly formulated growth curves (models), also
known as “empirical” models, are briefly denoted
as E-type models. Models formulated in terms of
systems of differential equations (dynamical sys-
tems) are denoted as D-type models. Finally, mod-
els formulated in terms of a (chemical) reaction
network of certain reactants (species, populations)
are classified as R-type models. Note that a model
can have several types of formulation. An R-type
model can be reformulated into a D-type model

for the concentrations of the reactants by means
of the mass action law [6], [32]. For some growth
models all three formulation types are available,
as shown in case studies 1 and 2 below.

A. Case study 1: saturated growth

The saturated growth is not sigmoidal one, as
no lag phase is present. Nevertheless this growth
model is practically important and is a good illus-
tration of the three model types.

A (chemical) reaction network comprises a set
of reactants, a set of products (often intersecting
the set of reactants), and a set of reactions [6],
[30], [32].

Consider the simple reaction network consisting
of the two species (reactants) S, P and a transition
reaction of S transforming into P with rate k,
symbolically:

S
k−→ P. (1)

In a situation when it is meaningful to speak
of concentrations of the reagents (reacrants), e. g.
when reaction (1) takes place in a liquid medium,
then the concentrations s, p of the species S, P ,
resp., obey the mass action law and we obtain the
dynamical system

ds/dt = −ks,
dp/dt = ks.

(2)

Let us formulate an initial value problem (IVP)
assuming initial conditions s(0) = s0 = 1, p(0) =
p0 = 0. Then the first equation of (2) has as
solution the exponential decay function:

s(t) = exp(−kt). (3)

To find an expression for the concentration p of
the product species P , we note that the conser-
vation law for system (2): s′ + p′ = 0, induces
s(t) + p(t) = s0. Substituting s = s0 − p = 1− p
in the second equation of (2) we have

dp/dt = k(1− p). (4)

Equation (4) with p(0) = 0 has as solution

p(t) = 1− exp(−kt). (5)
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In this case study all three formulation types for
the growth function p are present: the R-type (1),
the D-type (2) and the E-type formulae for the
saturation growth of p (5) as well for the decay of
s (3).

Consider now reaction (1) slightly modified by
adding a reaction in the reverse direction. The R-
type formulation is then:

X
k−→←−
k−1

Y,

which is a shortcut for the following reaction
network:

X
k−→ Y, Y

k−1−→ X. (6)

Applying the mass action law to (6) we obtain the
following D-type model for the evolution of the
concentrations x, y of the reactants X,Y , resp.:

dx/dt = −kx+ k−1y,
dy/dt = kx− k−1y.

Again an IVP can be considered by specifying

Fig. 1. Solutions to the saturation-decay model (6)

the initial conditions x(0) = x0, y(0) = y0.
The solutions x, y are graphically visualized on
Fig. 1 for x0 = 1.0, y0 = 0.0. Assuming
k ≥ k−1 means that x decays and y is growing.
The saturation growth process has no lag phase.

Remark. Finding an R-type formulation for a
certain D-model is called realization of the D-
model [6]. It is instructive to look for a realization

of the Malthusian D-type model x′ = kx. A
possible realization is: X k−→ X +X . According
to this R-type model species X reproduces without
using any resources, which may be a rather rough
approximation of a real process (in the long term).

A generalization of the decay-saturation mech-
anism for many (more than two) species is dis-
cussed in [24]. There we study an extension of
the reaction network (6). Let us rewrite the latter
in the form:

X1
k12−→ X2, X2

k21−→ X1. (7)

Reaction network (7) can be extended for n
species X1, X2, ..., Xn, so that each pair of species
interacts, that is:

Xi
kij−→ Xj , i = 1, ..., n, j = 1, ..., n, i 6= j. (8)

For example, for n = 3 we have six reactions

X1
k12−→ X2, X2

k21−→ X1,

X2
k23−→ X3, X3

k32−→ X2,

X3
k31−→ X1, X1

k13−→ X3.

(9)

From the R-type formulations (8), (9) one can
straightforward obtain the corresponding D-type
models applying the mass action law, cf. [24], [40].

B. Case study 2: Verhulst logistic growth

The logistic function is a smooth sigmoidal
function finding numerous applications in bio-
chemical, population and cell growth phenomena
[26], [41]–[43]. Consider the following autocat-
alytic reaction network:

U +X
k−→ X +X. (10)

A possible “biological” interpretation of reaction
network (10) in the context of population dynam-
ics can be the following: the nutrient substrate (or
species) U is utilized (consumed) by species (pop-
ulation) X leading to a reproduction of species X ,
thereby k is a specific growth rate of the process.
Assuming that U and X are uniformly spaced in
a certain volume (or area), then we may denote
the biomass of population X by x and the mass
(or concentration) of the (nutrient) substrate U by
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u and apply the mass action law, to obtain the
dynamical system

du/dt = −kxu,
dx/dt = kxu.

(11)

Adding initial conditions u(0) = u∗ > 0, x(0) =
x∗ > 0 to (11), one obtains a corresponding IVP.
The solution of (11) for u∗ = 1.0, x∗ = 0.1
is visualized on Fig. 2. The conservation relation
du/dt + dx/dt = 0 implies u + x = x∗ + u∗ =
const = a. Let us assume a = 1 meaning that the
initial conditions are normalized by 1/a, setting
u∗ := u∗/a < 1, x∗ := x∗/a < 1. We then
substitute u = 1 − x in the differential equation
for x to obtain the Verhulst differential equation:

dx

dt
= kx (1− x) , x(0) = x∗ < 1. (12)

The solution x to IVP (12) passing through the

Fig. 2. Solutions to (11) with u(0) = u∗ = 1.0, x(0) =
x∗ = 0.1..

point (0, x(0) = x∗ = 1/2) is the (basic) logistic
sigmoid function:

x0(t) =
1

1 + e−kt
. (13)

We see that the logistic model admits all three
formulation types: the E-type (13), the D-type (11)
or (12) and the R-type (10).

In analogy to the generalisation of the decay-
saturation R-type mechanism for many (more than

two) species (8) we can generalize the logistic R-
type mechanism i) introducing a reversible reac-
tion, and ii) introducing many (more than two)
species.

For the case of a reversible reaction we have:

X1 +X2
k12−→ 2X2, 2X2

k21−→ X1. (14)

For the case of a (irreversible, closed) food
chain of three species we have

X1 +X2
k2−→ 2X2,

X2 +X3
k3−→ 2X3,

X3 +X1
k1−→ 2X1.

(15)

Reaction networks (14), (15) can be easily gen-
eralized for n species X1, X2, ..., Xn. This demon-
strates again the notational power of the R-type
model formulations.

The basic logistic function (13) is a sigmoidal
function with asymptotes limt→−∞ x0(t) = 0,
limt→∞ x0(t) = 1. Due to x′′0(0) = 0, x0 has
an inflection at 0, inflection point is (0, 1/2), cf.
Fig. 3. Assume that the tangent to the graph of
function (13) through the inflection point (0, 1/2)
intersects the abscissa at the point (−δ, 0), δ > 0.
The slope κ of the tangent through the inflection
point (0, 1/2) is equal to κ = x′0(0) = k/4. Thus,
we have (1/2)/δ = k/4, hence δ = 2/k. The
value of δ may be called log time (or high rate
time period).

C. Lag time

The so-called lag time is a mathematical char-
acteristic of the concept of lag phase which is the
low rate time period of a sigmoidal process. We
are going to define and calculate the lag time of
the logistic model. To this end consider the shifted
logistic function on R:

xγ(t) = xγ(k; t) =
1

1 + e−k(t−γ)
. (16)

Function (16) has an inflection point (γ, 1/2)
and its slope κ at t = γ is κ = k/4. Let (γ −
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Fig. 3. A logistic function (13) with γ = 0 and reaction rate
k = 40.

δ, 0), δ = 2/k be the point where the tangent
through the inflection point intersects the abscissa.
Assume that γ ≥ δ. The value

tlag = γ − δ = γ − 2/k (17)

is called the lag time of the logistic model (16),
cf. [39]. Expression (17) has been obtained from
the E-type logistic model (16), however (17) can
be derived from the D-type model as well. Indeed,
from (12) we obtain

x′′ = (kx(1− x))′ = kx′(1− 2x),

showing that, if the initial condition x(0) is less
than 1/2, then (since x′ is positive) at some point
γ > 0 with x(γ) = 1/2 there exists an in-
flection (satisfying 1 − 2x(γ) = 0). Thus, at γ
we have x(γ) = 1/2, x′(γ) = κ, x′′(γ) = 0.
Substituting the time t = γ in (12) we obtain
x′(γ) = kx(γ)(1−x(γ)) implying κ = k(1/2)(1−
1/2) = k(1/4), hence κ = k/4. Thus, again
(1/2)/δ = k/4, hence δ = 2/k and (17) holds
true.

Let us examine the solution x0 of the IVP
problem (12) with initial condition x0(0) = 1/2.

Proposition II.1. The solution x0 of (12) with ini-
tial condition x0(0) = 1/2 has an inflection point
(0, 1/2). Any shifted solution xγ(t) = x0(t − γ)
has an inflection point at (γ, 1/2).

Proof. Let x be an arbitrary solution to (12),
then we have (1/k)x′ = x(1 − x), hence

(1/k)x′′ = x′(1 − x) − xx′ = x′(1 − 2x). Due
to x′ > 0, x′′ can be zero only for values of t
satisfying 1− 2x = 0, that is x(t) = 1/2. This is
true for all solutions of (12), in particular for so-
lution x0, satisfying initial condition x0(0) = 1/2.
Hence, due to x′′0(0) = 0, we have that x0 has an
inflection at 0. �

Similarly, any shifted solution xγ(t) = x0(t−γ)
has an inflection point at t = γ, as

xγ(γ) = x0(t− γ)|t=γ = x0(0) = 1/2.

Problem. Find the value of γ so that the shifted
function xγ(t) = x0(t − γ) satisfies the initial
condition xγ(0) = x0(−γ) = x∗ for a given x∗,
0 ≤ x∗ ≤ 1/2.

To solve the above problem we make use of the
E-type formulation of the logistic model.

Let x0(−γ) = x∗ < 1/2, γ > 0, then x∗ is the
initial value for the D-type model (12) having as
solution the shifted function xγ , that is xγ(0) =
x∗. Using the E-type presentation (13), the latter
gives (1 + ekγ)−1 = x∗, hence

γ =
1

k
ln

1− x∗

x∗
.

Therefore

tlag = γ − 2

k
=

1

k

(
ln

1− x∗

x∗
− 2

)
.

In order to have tlag ≥ 0, the restriction x∗ ≤
(e2 + 1)−1 should be satisfied. We summarize the
above calculations in the following

Proposition II.2. If the initial value x∗ of the
IVP (12) is such that x∗ ≤ (e2 + 1)−1, then the
sigmoidal solution x = x(t) has a positive lag
time.

Proposition II.2 shows that the D-type model
(12) should have a sufficiently small initial condi-
tion in order to possess a positive lag time. Growth
processes with positive lag time are typical for
bio-chemical reactions, that is reactions involving

Biomath 5 (2016), 1607311, http://dx.doi.org/10.11145/j.biomath.2016.07.311 Page 5 of 11

http://dx.doi.org/10.11145/j.biomath.2016.07.311


S. Markov, Building reaction kinetic models for amiloid fibril growth

functional proteins, such as enzymes, receptors,
ligands, as well as population models.

Finally we shall point out one more charac-
teristic property of the lag time of the logistic
growth function. To this end let us first note
that any sigmoidal function induces two simple
(non-smooth) functions—a so-called cut (or ramp)
function and a step function. More specifically
consider the shifted logistic function (16) with
inflection point (γ, 1/2) and slope κ = k/4 at
t = γ. The tangent through the inflection point hits
the abscissa t the point A = (γ − δ, 0), δ = 2/k
and hits the horizontal line with ordinate 1 in the
point B = (γ + δ, 1). The segment of the tangent
between the two points A,B together with the
parts of the abscissa before A and the part of the
horizontal line with ordinate 1 after point B is
the graph of the cut function cγ induced by the
logistic function xγ . Similarly one defines the step
function through the inflection point of the logistic
function [2]. We can now formulate the following

Proposition II.3. [12] The uniform distance be-
tween any logistic function and its induced cut
function is (1− e−2)−1.

Noticing that the uniform distance mentioned in
the above proposition is the value of the logistic
function at the point γ−δ, we see that this distance
does not depend on the slope κ of the logistic
function (and the induced cut function as well).
For a situation when κ is small it seems not natural
to consider the point γ − δ as a definition of the
lag time. That is why in a series of papers we
propose another definition of lag time, namely γ−
δ′ wherein δ′ is the Hausdorff distance between the
sigmoidal function and the induced step function
[17]–[25].

D. Case study 3: growth models using Henri’s
reaction scheme

Biochemical processes involve functional pro-
teins. The simplest reaction network involving a
protein has been first formulated by Victor Henri
[9], [14], [15], [16]. The Henri reaction network
involves two fractions of the enzyme (free and

bound) denoted E and C, resp.:

S + E
k1−→←−
k−1

C
k2−→ P + E. (18)

It is assumed that the rate parameters k1, k−1, k2
are positive constants such that k1 > k−1. Re-
action scheme (18) describes the reaction mech-
anism between an enzyme E with a single ac-
tive site and a substrate S, forming reversibly an
enzyme-substrate complex C, which then yields
irreversibly a product P . Reaction scheme (18)
says that during the transition of the substrate S
into product P the enzyme E bounds the sub-
strate into a complex C having specific properties
different than the properties of the free enzyme
and thus being necessarily considered as a separate
substance.

Denoting the concentrations s = [S], e =
[E], c = [C], p = [P ] and applying the mass
action law to Henri’s reaction scheme (18) we
obtain the following system of ODEs:

ds/dt = −k1es+ k−1c,
de/dt = −k1es+ (k−1 + k2)c,
dc/dt = k1es− (k−1 + k2)c,
dp/dt = k2c,

(19)

If the three rate constants k1, k−1, k2 are known,
system (19) can be treated as an IVP with initial
conditions

s(0) = s0, e(0) = e0, c(0) = c0, p(0) = p0,
(20)

usually s0 > 0, e0 > 0, c0 = 0, p0 = 0.

System (19) has two conservation laws: e′+c′ =
0 and s′+ c′+ p′ = 0. These two relations can be
used to reduce the system to two equations:

ds/dt = −k1(e0 − c)s+ k−1c,
dc/dt = k1(e0 − c)s− (k−1 + k2)c.

(21)

Proposition II.4. The solution p of the IVP (19)–
(20) is a sigmoidal function.

Proof. The solutions of (19)–(20) are smooth
functions. The first equation implies that s is
monotonically decreasing function tending to zero
with t −→∞ (note that k1 > k−1 and e ≤ e0, c ≤
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Fig. 4. Solutions to (19) with initial conditions s(0) =
0.5, e(0) = 1.0, c(0) = 0.0 p(0) = 0.2.

c0 are bounded). Equation p′ = k2c ≥ 0 implies
that p is a monotone increasing function. Function
c increases from c(0) = 0 up to a maximum value
c(t∗) achieved at some time t∗ (not necessarily
unique) and then decreases tending to 0 with the
exhaustion of s, see the second equation in (21),
so c′(t∗) = 0. Hence p′′(t∗) = k2c

′(t∗) = 0.
meaning that p has an inflection at t∗. From
s′+c′+p′ = 0 we have s+c+p = s0 showing that
p(t)t−→∞ = s0. Therefore function p is sigmoidal.
�

The solutions to (19) with initial conditions
s(0) = 0.5, e(0) = 1.0, c(0) = 0.0 p(0) = 0.2
are visualized on Fig. 4. In practice the rate con-
stants k1, k−1, k2 are often not known and have to
be determined for every specific enzyme-substrate
pair. The contemporary approach to this task is
to consider the rate constants as parameters in
the dynamic system (19) and to compute them by
fitting the solutions of the system to time course
experimentally measured data [11].

The Verhulst and Henri reaction network mod-
els (10), (18) present two useful mechanisms for
studying biochemical and biological growth. Var-
ious combinations of these two models have been
proposed for the study of the EPS production [27],
[28], [34].

III. R-TYPE MODELS FOR AMILOID

FIBRILLATION

Recent intensive research into the physico-
chemical properties of amyloid and its formation
into fibrils in the citoplasm points attention to
growth models [3], [29], [38], [31]. In [39] the
authors consider the growth of aminoid fibrils and
look for a mechanistic explanation of the process
in terms of a biochemical reaction network. Fibril
is an olygomer composed by monomers, thus
Shoffner–Schnell model [39] involves two reac-
tants: fibril F and monomer M , and additionally
the intermediate reactant C. Reacrant C is the
fibril “in action”, that is the fibril that at the
given time moment is in the process of storing the
monomer molecule (adding it to self in a compact
form).

The Shoffner-Schnell model describes the
mechanism of the fibril growth in details and leads
to interesting results. For educational purposes we
present below several simple R-type models that
may be helpful in illuminating certain particular
steps of the fibril growth process and certain issues
of interest (such as the lag phase). All presented
models make use of the Verhulst and Henri reac-
tion networks.

A. A basic Verhulst-Henri model

Let M be the total amount (concentration) of
monomer, F be the fibril and C = M -F be the
monomer-fibril complex at the time t of aggre-
gation [3], [29], [38], [39]. After aggregation the
complex C turns into fibril F , that is, the added
monomer molecule M converts into (part of) the
fibril F . A simple reaction network model of these
processes is

M + F
k+−→←−
k−

C
kc−→ F + F. (22)

Reaction scheme (22) is almost same as (18) with
product P substituted by fibril F (obtained as
result of the aggregation of the monomer M ). On
the other side reaction network (22) can be seen
as an extension of Verhulst reaction network (10)
by involving an intermediate catalyst C.
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Denoting the concentrations m = [M ], f =
[F ], c = [C] and applying the mass action law
to reaction scheme (22) we obtain the following
system of three ODE’s:

dm/dt = −k+fm+ k−c,
df/dt = −k+fm+ (k− + 2kc)c,
dc/dt = k+fm− (k− + kc)c.

(23)

If the three rate constants k+, k−, kc are known,
system (23) can be treated as a Cauchy ODE IVP
with initial conditions

m(0) = m0, f(0) = f0, c(0) = c0, p(0) = p0,
(24)

thereby m0 > 0, f0 > 0, c0 = 0, p0 = 0.
A conservation law for system (23) is m′ +

f ′ + 2c′ = 0 implying the relation m+ f + 2c =
const = m0 + f0 = a. We have m = a − f − 2c
in system (23) reducing it to

f ′ = −k+f(a− f − 2c) + (k− + 2kc)c,
c′ = k+f(a− f − 2c)− (k− + kc)c.

(25)

From (25) we have f ′ + c′ = kcc. Assuming that
the monomer m is abundant in a time interval
∆ we can apply the QSSA principle and assume
that c′ is approximately equal to 0 in ∆, and
accordingly, in ∆ we have approximately f ′ = kcc
[1], [4], [5], [13], [32], [35], [36], [37]. Hence, for
some t∗ ∈ ∆ we have f ′′(t∗) = kcc

′(t∗) = 0,
hence function f has inflection and has a sig-
moidal form. In addition, from f ′ + c′ = kcc and
c′(t∗) = 0, we obtain the slope at the inflection
point: f ′(t∗) = kcc(t

∗) > 0. We thus proved the
following

Proposition III.1. The solution f of the IVP (23)–
(24) is a sigmoidal function. The slope at the
inflection point is f ′(t∗) = kcc(t

∗) > 0.

The solutions m(t), f(t) of model (23) are vi-
sualized on Figure 5 for the following input data
k+ = 0.1, k− = 0.05; kc = 0.2;m0 = 10; f0 =
0.1; c0 = 0 (in the time interval [0, 200]). It should
be noted that the fibril growth sigmoid function
possesses a clearly expressed lag phase.

Remark. The inverse problem—so-called pa-
rameter identification problem—is to find out val-

Fig. 5. Graphs of the solutions m, f of model (23)

ues for the rate parameters and the initial condi-
tions by fitting (some of) the solutions to available
time course experimental measurements. Compu-
tational tools for the solution of this problem are
proposed in [10], [11].

B. Three variants of the basic model

Our basic model describes the aggregation of
the monomer while the monomer is compressed
and becomes part of the fibril.

Below we propose three more reaction net-
works. All they involve an intermediate product P
representing the aggregated monomer before turn-
ing into fibril. The three models present possible
mechanisms for the transition of the aggregated
monomer into fibril particles.

Reaction network 1. An intermediate product
P is added as follows:

M + F
k+−→←−
k−

C
kc−→ F + P, P

kp−→ F. (26)

Here the transition of the aggregated monomer
P into fibril follows the decay-saturation mecha-
nism (1). Applying the mass action law we obtain
the ODE system

dm/dt = −k+fm+ k−c,
df/dt = −k+fm+ (k− + kc)c+ kpp,
dc/dt = k+fm− (k− + kc)c,
dp/dt = kcc− kpp.

(27)
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Fig. 6. Graph of the solutions m, f, c, p of model (27)

A conservation law for system (27) is m′ +
f ′ + p′ + 2c′ = 0. The solutions of the system
are visualized on Fig. 6. for the following data:
k1 = 2.62; k2 = 0.62; k3 = 2.62; k4 =
0.63; m0 = 1; f0 = 0.05; c0 = 0; p0 = 0.

Reaction network 2. An intermediate product
P is involved as follows:

M + F
k+−→←−
k−

C
kc−→ F + P

kp−→ F + F. (28)

The transition of the aggregated monomer P
into fibril according to reaction network (28 fol-
lows the Verhulst autocatalitic mechanism (10).
Applying the mass action law we obtain the ODE
system:

dm/dt = −k+fm+ k−c,
df/dt = −k+fm+ (k− + kc)c+ kpfp,
dc/dt = k+fm− (k− + kc)c,
dp/dt = kcc− kpfp.

(29)

A conservation law for system (29) is m′+f ′+
p′ + 2c′ = 0.

Reaction network 3. Here an intermediate
product P is added as follows:

M + F
k+−→←−
k−

C
kc−→ F + P

k′−→←−
k′′

Cp
kp−→ F + F. (30)

In the above reaction network (30 the transition of
the aggregated monomer P into fibril follows the

Henri enzyme kinetic mechanism (18). Applying
the mass action law we obtain:

dm/dt = −k+fm+ k−c,
df/dt = −k+fm+ (k− + kc)c

+ k′′cp − k′fp+ 2kpcp,
dc/dt = k+fm− (k− + kc)c,
dp/dt = kcc− k′fp+ k′′cp,
dcp/dt = k′fp− (k′′ + kp)cp.

(31)

A conservation law for system (31) is m′+f ′+
p′ + 2c′ + 2c′p = 0.

IV. CONCLUSION

The proposed reaction networks (R-models)
(22), (27), (29), (31) together with the implied re-
action dynamical systems of equations (D-models)
describe possible biochemical mechanisms of the
fibril elongation in the citoplasm. The proposed
models can be used to fit time course data for
real measurements of fibril growth using fitting
simulation procedures for the identification of the
parameters. The variants producing a good fit
will be considered as candidate for a probable
mechanism of the amiloid fibrillation process on
the base of its generating reaction network.

The application of mathematical modelling in
the field of amiloid fibrillation necessarily focuses
attention to the lag phases of the growth curves
that appear as model solutions. Therefore it is an
open problem to study the above discussed models
with respect to this practically important issue.
In particular the various reaction networks can be
compared with respect to the lag phases of their
solutions under various sets of parameters and
initial conditions of the related differential IVPs.
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