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Abstract—The Middle East Respiratory Syn-
drome (MERS) has been identified in 2012 and
since then outbreaks have been reported in various
localities in the Middle East and in other parts of
the world. To help predict the possible dynamics
of MERS, as well as ways to contain it, this paper
develops a mathematical model for the disease. It has
a compartmental structure similar to SARS models
and is in the form of a coupled system of nonlinear
ordinary differential equations (ODEs). The model
predictions are fitted to data from the outbreaks
in Riyadh (Saudi Arabia) during 2013-2016. The
results of model simulations indicate that MERS
will eventually be contained in the city. However, the
containment time and the severity of the outbreaks
depend crucially on the contact coefficients and
the isolation rate constant. When randomness is
added to the model coefficients, the simulations show
that the model is sensitive to the scaled contact
rate among people and to the isolation rate. The
model is analyzed using stability theory for ODEs
and indicates that when using only isolation as the
control, the endemic steady state is locally stable and
attracting. Numerical simulations with parameters
estimated from the city of Riyadh illustrate the

analytical results and the model behavior, which
may have important implications for the disease
containment in the city. Indeed, the model highlights
the importance of isolation of infected individuals
and may be used to assess other control measures.
The model is general and may be used to analyze
outbreaks in other parts of the Middle East and
other areas.

Keywords-Middle East Respiratory Syndrome
(MERS); compartmental continuous model; stable
endemic steady state; random coefficients; simula-
tions;

I. INTRODUCTION

Middle East Respiratory Syndrome Coronavirus
(MERS-CoV) emerged as a new human coro-
navirus in June 2012. The first MERS patient
reported in Jeddah, Saudi Arabia, had pneumonia
and renal failure with unknown coronavirus (CoV)
that was isolated from his sputum [23]. Following
identification of the new virus, a subsequent case
from Qatar, that was being treated in the United
Kingdom, was identified. However, the onset of
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the new disease was traced back to an even earlier
event. Indeed, in April 2012 a cluster of what
were diagnosed then as ‘pneumonia’ cases had
occurred in a hospital in Jordan [2], [9]. Currently,
this infection appears to be geographically linked
to the Middle East, with cases that originated
in Jordan, Saudi Arabia, Qatar and United Arab
Emirates. Since then, it spread to several other
countries: Egypt, Kuwait, Turkey, Oman, Algeria,
Bangladesh, Indonesia, France, Germany, Italy, the
United Kingdom, South Korea and the United
States [21].

The virus is classified as coronavirus which is a
single stranded RNA virus. It is similar to Severe
Acute Respiratory Syndrome Coronavirus (SARS-
CoV), which killed almost 10% of the affected
individuals between 2002 and 2003. The mode of
transmission to humans is not completely defined
yet, but evidence suggests that MERS-CoV can
be transmitted to humans via both animals and
humans, and it spreads among people who are in
close contact. Transmission from infected patients
to healthcare personnel has also been observed.
Camels and bats are currently known as natural
hosts and evidence of cases of camel to human
transmission has been reported, see e.g., [19].
The incubation period for the disease is 2 to 14
days [14], [21]. Confirmed cases include only
those with a positive polymerase chain reaction
in accordance with the laboratory guidelines for
virus genetic material. Probable cases are those
that have a link with a confirmed case and a
clinically compatible illness but without definitive
laboratory confirmation. The majority of patients
experienced severe respiratory disease while mi-
nority were reported to have non-severe disease
and some cases were reported as asymptomatic.
Severe disease was defined as admission to an
intensive care unit, use of extracorporeal mem-
brane oxygenation, mechanical ventilation and va-
sopressors. The signs and symptoms include fever,
cough, sore throat, chills and shortness of breath.
Some patients progress to dyspnea and pneumonia.
Complications of the disease include severe pneu-
monia with acute respiratory distress syndrome,

septic shock and multi-organ failure that result in
death. The disease has a high level of case fatality.
Fatal infections were recorded mainly in immune
compromised patients with underlying illness and
co-morbidity was frequently recorded [1], [14].
Currently, there is no specific treatment for the dis-
ease. Its management largely depends on provision
of organ support, and prevention of complications.
In specific circumstances, additional interventions
included empiric use of broad-spectrum antimi-
crobial agents, antivirals and the addition of anti-
fungal agents to minimize the risk of co-infections
with opportunistic pathogens [12], [14].

Mathematical approaches to MERS dynamics
were studied recently in several publications. A
compartmental model was studied in [4] analyz-
ing epidemiological data on the progression of
the MERS-CoV outbreak in April-October 2013
in Saudi Arabia. The model includes community
and hospital compartments, and also distinguishes
zoonotic (index) transmission from human-to-
human (secondary) transmission. The relative con-
tributions of different cases to the overall level
of transmission were evaluated. In [5] statistical
methods were used to compare the characteristics
of MERS and SARS. Some insights, concerning
the nosocomial outbreak in South Korea, from data
fitting with the closed-form solution of Richard’s
model, can be found in [11]. The main concern in
[8] was to design ways to selectively detect and
differentially diagnose only MERS cases among
imported cases with upper respiratory symptoms.
They used a probabilistic model and a Bayesian
approach to help the differential diagnosis based
on a known incubation period. Given an imported
case of MERS, the numbers of new cases and
the transmission were estimated in [17]. Another
compartmental model, based on ODEs, was used
in [22] to study the outbreak of MERS in South
Korea during May-June 2015. Finally, a discrete
compartmental model was constructed and stud-
ied in [18], where the aim was to study spatial
heterogeneity.

To study the dynamics of the disease and to
assess its spread and the effectiveness of various
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measures to contain or eradicate it, this work
develops a compartmental mathematical model for
MERS, which is based on models for SARS [10]
and MERS [4], [22]. We choose to use a con-
tinuous model and not a stochastic one, although
the data was discontinuous and random, since our
model captures the dynamics of the diseases well
and avoids some of the mathematical difficulties
associated with stochastic differential equations.
The model describes the dynamics of five popula-
tions consisting of susceptibles, asymptomatics or
exposed (individuals who carry the virus and can
infect others but have no symptoms), infectious
individuals with symptoms, isolated and recovered
individuals. The virus dynamics and interactions
with animals that may carry it are not included in
the model at this initial stage of its development.
Mathematically, the existence of a unique solution
for the system is straightforward, and here the non-
negativity of the solution is shown. It is found that
the model has a disease-free equilibrium and may
have an endemic equilibrium. Using the system
parameters that were obtained by fitting the model
to the epidemiological data, it is seen that the en-
demic state is locally stable and attracting, which
means that the disease may linger for a long period
of time if treatment or prevention measures are not
applied.

A computer program was written in the pack-
age MAPLE for the numerical simulations of the
model, and the model coefficients were identified
by using an optimization program in MATLAB
together with data that were collected in the city of
Riyadh [20]. Therefore, simulations of the model
were done for Riyadh. To study the sensitivity
of the model to its parameters, simulations with
randomness in some of the coefficients were per-
formed. Among the fitted parameters, the system
is very sensitive to the contact parameter. This
suggests that isolation or quarantining of infected
individuals may be an effective way to control
the disease spread until possible treatment and
vaccination are developed.

We would like to stress that the system pa-
rameters were calibrated from the data collected

between Nov. 5, 2013 and March 17, 2016, a
period of 864 days. The additional data from
March 18, 2016 until Nov. 14, 2016, a period
of 242 days, was added in the figures and was
found to fit very well the predictions of the model
with the original parameters, without any need for
parameter modifications. This provides a consid-
erable confidence in the predictive capabilities of
the model.

Following the Introduction, the mathematical
model is developed in Section II. As noted above,
it has compartmental structure resulting in a cou-
pled system of five ODEs. Partial analysis of the
model is presented in Section III, where the pos-
itivity and boundedness of the solution are estab-
lished. The stability of the two equilibrium states
is described in Section IV. Section V describes
the numerical algorithm we developed for the
numerical simulations of the model, and presents
results of some of the simulations. Additional
sensitivity analysis and simulations are shown in
the remaining sections. In Section VII we point out
the importance of the main contact parameter and
its influence on disease dynamics. We conclude
the paper in Section VIII, where some unresolved
issues and future work can also be found.

II. THE MODEL

In this section, we present a basic model of
MERS dynamics that is based on the SARS model
in [10]. To fix ideas, we use the terminology
of a city in which the disease is spreading. We
deal with whole populations, and do not take into
account their spatial spread. We assume that the
populations are large enough to justify the use
of continuous description, that is, using ordinary
differential equations. If the geographical distribu-
tion of the disease within the city is found to be
important, models with partial differential equa-
tions will be needed, which considerably increase
the mathematical complexity of the model and are
not warranted at this stage of our understanding
of the disease. As was noted in the Introduction,
we describe the dynamics of five subpopulations:
susceptibles S, exposed or asymptomatics E (be-
low we use exposed, as is customary, referring
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to the individuals who carry the virus and can
infect others but have no symptoms), infected I ,
isolated J , and recovered R individuals. These are
functions of time, measured in days.

The susceptible population consists of all the in-
dividuals who are alive and do not belong to any of
the other groups. The sub-population E(t) denotes
the current number of asymptomatic individuals
who have been exposed to the virus but have not
yet developed clinical symptoms of MERS. The
sub-population I(t) denotes individuals with clin-
ical symptoms of MERS. The sub-population J(t)
denotes isolated symptomatic individuals, and the
sub-population R(t) denotes the individuals who
recovered from MERS. It is assumed that those
who are exposed become sick before recovering
and those who are recovered do not become sick
again. These are model assumptions and at this
stage we do not know if this is the case, since
there is no available data.

The disease behavior that is reflected in the
model is as follows. MERS-CoV case fatality
rate is very high, 40%, which explains why each
suspected case of MERS-CoV is isolated imme-
diately, and when the PCR test is positive for the
coronavirus, the patients are isolated in a negative
pressure room to limit the spread of the infection.
The median incubation period is approximately
five days (range 2-14 days) and the median time
from illness onset to hospitalization is approx-
imately four days. In critically ill patients, the
median time from onset to intensive care unit is
approximately five days, and median time from
onset to death is approximately 12 days. The
recovery is observed to be different from one
person to another and depends on the health status
and the approximate time to recovery ranges from
one to two weeks if there are no complications
and extends to a month or more if complications
develop.

The flow diagram of the model is depicted in
Fig. 1.
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Fig. 1: Compartmental structure and flow chart for
the model

The total living population at time t is given by

N(t) = S(t) + E(t) + I(t) + J(t) +R(t). (1)

We denote by P (t) the number of individuals
that are added to the city by birth and from the
outside each day, and the natural death rate (in
absence of MERS) of the population is µ (1/day).
The probability that one contact between a sus-
ceptible and an infected results in infection is
β (1/day); the probabilities that one contact be-
tween a susceptible and an asymptomatic or an
isolated results in infection are εEβ (1/day) and
εJβ (1/day), respectively, where 0 ≤ εE , εJ ≤ 1
are the reduction parameters in the infection rates.

The parameter k (1/day) denotes the rate of
development of clinical symptoms in exposed in-
dividuals. It is assumed that there is no disease-
induced death in the exposed class. We denote by
γ (1/day) the isolation rate of infectives, which is
a control variable since an increase in the isolated
may substantially reduce the spread of MERS if
done properly. The rate coefficients d1 and d2, with
units of 1/day, are the disease-induced death rates
of the infected and isolated, respectively, which are
in addition to the natural death rate µ. Finally, σ1
and σ2 are the recovery rates of the infectives and
isolated, respectively. These model assumptions
lead to the following mathematical model for the
dynamics of MERS.
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Model 1: Find five functions (S,E, I, J,R),
defined on [0, T ], such that for 0 < t ≤ T , the
following hold:

dS

dt
= P − S(βI + εEβE + εJβJ)

N
− µS, (2)

dE

dt
=
S(βI + εEβE + εJβJ)

N
− (k + µ)E, (3)

dI

dt
= kE − (γ + σ1 + d1 + µ)I, (4)

dJ

dt
= γI − (σ2 + d2 + µ)J, (5)

dR

dt
= σ1I + σ2J − µR. (6)

The initial conditions are

S(0) = S0, E(0) = E0, I(0) = I0, J(0) = J0, R(0) = R0.

(7)
Here, S0 > 0 is the initial population before

the break-out of the disease, and E0, I0, J0 and
R0 are nonnegative initial populations. In practice,
one typically assumes that S0 = N(0) > 0,
so that at the start of the epidemic there are
only susceptibles, and all the other populations
vanish. However, for the sake of generality we al-
low nonnegative initial populations and, moreover,
N(0) = S0+E0+I0+J0+R0 so that (1) holds at
t = 0. A summary of the definitions of the model
parameters is given in Table I.

Equation (2) describes the rate of change of the
susceptible population S(t). The second term on
the right-hand side describes the rate at which
the susceptibles become infected with the virus
by being in contact with exposed, infectives and
isolated individuals. The last term is the natural
mortality term. The rest of the equations have
similar structure and similar interpretation. It is
seen in (2) and (6) that the recovered do not
get infected again, which is one of the model
assumptions.

The period during which an individual is ex-
posed or asymptomatic is 2-14 days. The natural
death rate is denoted by µ and using a life ex-
pectancy of 80 years, we obtain that µ = 0.000034
per day. In the absence of disease, the total pop-
ulation of the city is N = P/µ = 5 million.

Then, the added susceptibles population per day
is P = 170. We note that P includes birth and
net population movement between the city and the
outside. The rest of the parameters’ values used in
the simulations are given in Table 2.

Finally, the cumulative deaths induced by the
disease were obtained from the expression

D(t) =

∫ t

0
(d1I(τ) + d2J(τ))) dτ, (8)

with the initial value D(0) = 0.

TABLE I: Symbols and description of parameters
used in the model

Parameter Description

P recruitment rate of susceptible individuals
β effective contact rate
εE reduction factor in transmission rate by exposed

per day
εJ reduction factor in transmission rate by isolated

per day
k rate of development of clinical symptoms in expos-

ed population
µ natural death rate
d1 disease-induced death for symptomatic population
d2 disease-induced death for isolated population
σ1 recovery rate in symptomatic population
σ2 recovery rate in isolated population
γ isolation rate

III. EXISTENCE, POSITIVITY AND

BOUNDEDNESS OF SOLUTIONS

We turn to the analysis of Model 1. The exis-
tence and uniqueness of a local solution follows
from standard considerations for ODEs, since the
right-hand side of the system is locally Lipschitz
continuous. Next, to show that the model makes
sense biologically, we show that the solutions are
non-negative.

Theorem 2: Let the initial conditions satisfy
S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, J(0) ≥ 0, R(0) ≥
0. Then, the solution (S(t), E(t), I(t), J(t), R(t))
of the model is non-negative and uniformly
bounded on each closed interval [0, T ) on which
they exist.

Proof: Let 0 < t < T and denote by λ the
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force of infection,

λ =
βI + εEβE + εJβJ

N
, (9)

where (1) holds, i.e., N = S + E + I + J +R.
It follows from (2) that

dS

dt
= P − λS − µS ≥ −(λ+ µ)S.

Using separation of variables and integration on
[0, t], together with the initial condition yields

S(t) ≥ S(0) exp

(
−
∫ t

0
λ(s)ds− µt

)
> 0,

since S(0) > 0. Similarly, for (3), we have

dE

dt
= λS − (k + µ)E ≥ −(k + µ)E,

which yields

E(t) ≥ E(0)e−(k+µ)t ≥ 0.

It follows from the third and fourth equations
that

I(t) ≥ I(0)e−(γ+d1+σ1+µ)t ≥ 0,

and
J(t) ≥ J(0)e−(σ2+d2+µ)t ≥ 0.

Finally,

dR

dt
= σ1I + σ2J − µR ≥ −µR.

Hence, R(t) ≥ R(0)e−µt ≥ 0. Thus, the solution
is nonnegative whenever it exists.

Next, we show the the boundedness of the
solution. It follows from the previous result that
the solution is non-negative. By adding the five
equations of the model and using (1), we get the
rate of change of the total living population N(t),

dN

dt
= P − µN − d1I − d2J. (10)

Therefore,

P − (µ+ d1 + d2)N ≤
dN

dt
≤ P − µN.

Hence,
dN

dt
+ µN ≤ P,

so that

N(t) ≤ P
∫ t

0
e−µ(t−s) ds+N0e

−µt

≤ P

µ

(
1− e−µt

)
+N0e

−µt.

We conclude that N(t) is positive and uniformly
bounded from above, for all 0 ≤ t < T .

Next, since N(t) > 0 and each one of S,E, I, J
and R is non-negative, it follows that they all are
uniformly bounded, too. This completes the proof.

This result leads to the following corollary about
the global existence and uniqueness of the solu-
tion. Because of its importance, we state it as a
theorem.

Theorem 3: The unique solution
(S(t), E(t), I(t), J(t), R(t)) exists for all
t ≥ 0. Moreover, the solution remains in the set

Ω = {(S,E, I, J,R) ∈ R5
+ :

0 ≤ S + E + I + J +R = N ≤ P

µ
+N0},

which is invariant and compact.
Since the solution is bounded, the system is

uniformly Lipschitz continuous and the global
existence follows.

IV. STABILITY OF THE EQUILIBRIUM STATES

It is straightforward to see that the model has
two steady states: a disease-free equilibrium and
an endemic equilibrium. We next study the stabil-
ity of these two states. We note that most of the
algebraic manipulations were done in MAPLE.

A. Stability of the disease-free equilibrium

The disease-free equilibrium is the state S =
S0 = P/µ and E = I = J = R = 0, obtained
by setting the right-hand sides of the equations to
zero. Moreover, N = S = S0, therefore, the model
reduces to µS = P , which yields the relationship
S0 = P

µ , and the rest of the variables vanish.
We turn to finding the basic reproduction num-

ber, R0, which controls the disease-free equi-
librium and the effective reproduction or control
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number Rc, which controls the stability of the
endemic equilibrium, see e.g., [10]. We note that in
what follows the total population is kept constant,
N = S0.

Let x = (E, I, J,R, S)T , then the model can be
written in the form

dx

dt
= F − V, (11)

where

F =

(
S(βI + εEβE + εJβJ)

N
, 0, 0, 0, 0

)T
and

V =


(k + µ)E

−kE + (γ + d1 + σ1 + µ)I
−γI + (σ2 + d2 + µ)J
−σ1I − σ2J + µR

−P + S(βI+εEβE+εJβJ)
N + µS

 .
Next, to find both reproduction numbers, we

follow [7] and restrict the system to the infected
populations. To compute the Jacobian Ja of the
reduced system, we evaluate the partial derivatives
of F with respect to (E, I, J). Thus,

F =

εEβ β εJβ
0 0 0
0 0 0

 .
Similarly, evaluating the partial derivatives of V
with respect to (E, I, J) gives

V =

k + µ 0 0
−k (γ + d1 + σ1 + µ) 0
0 −γ (σ2 + d2 + µ)


Next, the inverse matrix of V is given by

V −1 =
1

k+µ 0 0
k

(k+µ)(γ+d1+σ1+µ)
1

(γ+d1+σ1+µ)
0

kγ
(k+µ)(γ+d1+σ1+µ)(σ2+d2+µ)

γ
(γ+d1+σ1+µ)(σ2+d2+µ)

1
(σ2+d2+µ)


To calculate Rc we need the spectrum, actually

the spectral radius, of the matrix

FV −1 =

 εEβD1
+ βk

D1D2
+ εJβkγ

D1D2D3

β
D2

+ εJβγ
D2D3

εJβ
D3

0 0 0
0 0 0


where

D1 = k + µ, D2 = γ + d1 + σ1 + µ,

D3 = σ2 + d2 + µ.

Then, the eigenvalues of FV −1 are given by

λ1 =
εEβ

D1
+

βk

D1D2
+

εJβkγ

D1D2D3
, λ2 = λ3 = 0.

(12)
Hence, the control reproduction number is

Rc = ρ(FV −1) = λ1 =
εEβ

D1
+

βk

D1D2
+

εJβkγ

D1D2D3
.

(13)

We note that in various works, see e.g., [10] and
references therein, the basic reproduction number
R0 is defined in the absence of any control mea-
sures, which in our case means γ = 0 and so it
is obtained from Rc above when we set γ = 0,
and used to study the stability of the disease-free
equilibrium. Thus,

R0 =
εEβ

k + µ
+

kβ

(k + µ)(d1 + σ1 + µ)
. (14)

We remark below on the relationship between R0

and Rc.
Here, we assume that γ = 0 so there are

no new infected individuals that become isolated,
however, since the result is locally near the origin,
some isolated individuals might have been present
initially. Moreover, for the sake of uniformity,
we retain the 5D system. We have the following
stability result.

Proposition 4: The disease-free equilibrium of
the model is locally asymptotically stable if R0 <
1 and is unstable when R0 > 1.

Proof: The Jacobin matrix of the model
is given at the disease-free equilibrium, P0 =
(Pµ , 0, 0, 0, 0), by

Ja(P0) =
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−µ −εEβ −β −εJβ 0
0 −(k + µ) + εEβ β εJβ 0
0 k −(d1 + σ1 + µ) 0 0
0 0 0 −(σ2 + d2 + µ) 0
0 0 σ1 σ2 −µ

 .

This matrix has three negative eigenvalues: −µ
(double) and −(σ2 + d2 + µ). The remaining two
eigenvalues are obtained from the 2×2 submatrix

A =

[
−(k + µ) + εEβ β

k −(d1 + σ1 + µ)

]
.

The trace of A is given by

tr(A) = −(k + 2µ+ d1 + σ1)− εEβ,

and it is strictly negative. Next, the determinant is
given by

det(A) = (k + µ)(d1 + σ1 + µ)− (d1 + σ1 + µ)εEβ − kβ.

Dividing by (k + µ)(d1 + σ1 + µ) and using (14)
we get,

det(A)
(k+µ)(d1+σ1+µ)

=1− εEβ
k+µ−

kβ
(k+µ)(d1+σ1+µ)

=1−R0.

Therefore, since the eigenvalues of A are both
negative when det(A) > 0 (recall that tr(A) <
0), we conclude that P0 is locally asymptotically
stable if and only if R0 < 1. When R0 > 1,
the matrix has a positive real eigenvalue and this
means that the disease free equilibrium is unstable.
This completes the proof of the Proposition.

B. Existence and stability of the endemic equilib-
rium

We denote the endemic equilibrium of the
model by P ∗ = (S∗, E∗, I∗, J∗, R∗) such that
P ∗ 6= (S0, 0, 0, 0, 0). To find when it exists, we set
the right-hand side of each equation of the model
to zero. We solve the resulting system in terms of
the equilibrium force of infection at steady state
λ∗, given by

λ∗ =
βI∗ + εEβE

∗ + εJβJ
∗

N∗ , (15)

where N∗ = S∗ +E∗ + I∗ +J∗ +R∗. The system
is given by

0 = P − S∗λ∗ − µS∗, (16)

0 = S∗λ∗ − (k + µ)E∗, (17)

0 = kE∗ − (γ + d1 + σ1 + µ)I∗, (18)

0 = γI∗ − (σ2 + d2 + µ)J∗, (19)

0 = σ1I
∗ + σ2J

∗ − µR∗. (20)

From equations (16) and(17), we obtain

S∗ =
P

λ∗ + µ
, E∗ =

Pλ∗

(λ∗ + µ)(k + µ)
. (21)

We rearrange equations (18)–(20) and write I∗, J∗

and R∗ in terms of E∗. Thus,

I∗ =
k

γ + d1 + σ1 + µ
E∗, (22)

J∗ =
γ

σ2 + d2 + µ

k

γ + d1 + σ1 + µ
E∗, (23)

R∗ =
(

1
µ

(
σ1 + σ2

γ
σ2+d2+µ

))
k

γ+d1+σ1+µ
E∗,

(24)
Substituting (21)–(24) in (15) and simplifying

yields,
λ∗ =

µλ∗(βkD3+εEβD2D3+εJβkγ)
µD1D2D3+µλ∗D2D3+µλ∗kD3+µλ∗kγ+λ∗kσ1D3+λ∗kσ2γ

(25)

Dividing by D1D2D3 and recalling (13), we
obtain

µλ∗ + ( µ
D1

+ µk
D1D2

+ µkγ
D1D2D3

+ kσ1

D1D2
+ kσ2γ

D1D2D3
)(λ∗)2

= µRCλ∗.

Thus,

σ(λ∗)2 + µ(1−Rc)λ∗ = 0,

where

σ =
D3(µD2 + k(µ+ σ1)) + γk(µ+ σ2)

D1D2D3
.

The equation has two solutions, λ∗1 = 0 which
corresponds to the case when Rc = 1, and

λ∗2 =
µ

σ
(Rc − 1) , (26)
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which corresponds to the endemic equilibrium,
when positive.

We conclude that when Rc < 1 the only
equilibrium is the disease-free one. The endemic
equilibrium exists and is unique when Rc ≥ 1.
Then, the values P ∗ = (S∗, E∗, I∗, J∗, R∗) can
be obtained by substituting the value of λ∗2, (26),
into the expressions in (21)–(24).

We summarize this in the following result.
Proposition 5: When Rc > 1 there ex-

ists a unique endemic equilibrium P ∗ =
(S∗, E∗, I∗, J∗, R∗), which is locally asymptoti-
cally stable.

Proof: It remains to show the local stability.
Let S = x1, E = x2, I = x3, J = x4, R = x5
(note that the order here is different from the one
above), denote x = (x1, . . . , x5) and then N =
x1 + x2 + x3 + x4 + x5. We rewrite the system
(2)–(6) in the form

dx

dt
= f = (f1, f2, f3, f4, f5),

where the components of f and the system are
given as
dx1
dt

= f1 ≡ P−β∗
x1(x3+εEx2+εJx4)

x1+x2+x3+x4+x5
−µx1,

(27)
dx2
dt

= f2 ≡ β∗
x1(x3+εEx2+εJx4)

x1+x2+x3+x4+x5
−(k+µ)x2,

(28)
dx3
dt

= f3 ≡ kx2 − (γ + σ1 + d1 + µ)x3, (29)

dx4
dt

= f4 ≡ γx3 − (σ2 + d2 + µ)x4, (30)

dx5
dt

= f5 ≡ σ1x3 + σ2x4 − µx5. (31)

The Jacobian of the system (27)–(31) evaluated
at the disease-free equilibrium P0 = x∗ = (x∗1 =
P/µ, x∗2 = 0, x∗3 = 0, x∗4 = 0, x∗5 = 0) is given by

Ja(P0) =
−µ −εEβ∗ −β∗ −εJβ∗ 0
0 −D1 + εEβ

∗ β∗ εJβ
∗ 0

0 k −D2 0 0
0 0 γ −D3 0
0 0 σ1 σ2 −µ

 .

Let β = β∗ be a bifurcation parameter and
Rc = 1 be the bifurcation point. Recall that the
control reproduction number Rc is given in (13).
Solving the system for β∗ when Rc = 1, we find

β∗ =
D1D2D3

εED2D3 + kD3 + εJkγ
. (32)

Actually, β∗ = β/Rc and Rc is a linear function
of β.

We note that zero is a simple eigenvalue of
Ja(P0), hence, we may use the center manifold
theory to analyze the system (27)–(31) near β =
β∗.

The Jacobian Ja(P0) has a right-eigenvector
associated with the zero eigenvalue at β = β∗

given by w = [w1, w2, w3, w4, w5]
T , where in

terms of w3 = η > 0, we have

w1 = −β
∗(εED2D3 + kD3 + εJγk)

kD3µ
η,

w2 =
D2

k
η, w4 =

γ

D3
η,

w5 =
(σ1D3 + σ2γ)

D3µ
η.

The left-eigenvector v = [v1, v2, v3, v4, v5] of
Ja(P0) associated with the zero eigenvalue at β =
β∗ is given in terms of v2 = ξ > 0 by

v1 = v5 = 0, v3 =
(εEβ

∗ −D1)

k
ξ,

v4 =
εJβ

∗

D3
ξ.

The associated non-zero partial derivatives of f
at the disease-free equilibrium are:

∂2f2
∂x22

= −2εEβ
∗

x∗1
,

∂2f2
∂x2∂x3

= −(εE + 1)
β∗

x∗1
,

∂2f2
∂x2∂x4

= −(εE + εJ)
β∗

x∗1
,

∂2f2
∂x2∂x5

= −εEβ
∗

x∗1
,

∂2f2
∂x23

= −2β∗

x∗1
,

∂2f2
∂x3∂x4

= −(1 + εJ)
β∗

x∗1
,

∂2f2
∂x3∂x5

= −β
∗

x∗1
,

∂2f2
∂x24

= −2εJβ
∗

x∗1
,
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∂2f2
∂x4∂x5

= −εJβ
∗

x∗1
,

∂2f2
∂x2∂β∗

= εE ,

∂2f2
∂x3∂β∗

= 1,
∂2f2
∂x4∂β∗

= εJ .

To obtain the result, we use item (iv) in [3,
Theorem 4.1]. To that end, we let

a = v2

5∑
i,j=1

wiwj
∂2f2
∂xi∂xj

(0, 0)

+v3

5∑
i,j=1

wiwj
∂2f3
∂xi∂xj

(0, 0)

+v4

5∑
i,j=1

wiwj
∂2f4
∂xi∂xj

(0, 0)

= −2v2β
∗

x∗1
(w2εE+w3+w4εJ) (w2+w3+w4+w5)

< 0.

and

b = v2

5∑
i=1

wi
∂2f2
∂xi∂β∗

(0,0) + v3

5∑
i=1

wi
∂2f3
∂xi∂β∗

(0,0)

+v4

5∑
i=1

wi
∂2f4
∂xi∂β∗

(0,0)

= v2 (w2εE + w3 + w4εJ) > 0.

Therefore, we have a < 0 and b > 0 and it follows
now from item (iv) in [3, Theorem 4.1] that
the unique endemic equilibrium point is locally
asymptotically stable when Rc > 1 (which also
means that β∗ < β).

The force of infection λ∗2 and I∗ are functions
of Rc, and Rc is a function of the contact rate
β. At Rc = 1, there is a transcritical bifurcation
and the endemic equilibrium at Rc > 1 is locally
asymptotically stable.

Remark 6: It was found above that the stability
of the disease-free equilibrium is related to R0,
while that of the endemic equilibrium to Rc. An
attempt to study the stability of the disease-free
equilibrium in terms of Rc leads to various addi-
tional conditions that do not seem to have much

merit. However, using R0 < 1 as the condition
for the asymptotic stability for the disease-free
equilibrium and Rc > 1 as the condition for the
asymptotic stability of the endemic equilibrium
leaves a gap in the results. As can be seen below,
in the baseline-case in Section V, R0 = 2.033
while Rc = 1.009, so the disease-free equilibrium
is unstable and the endemic equilibrium is locally
asymptotically stable, and our numerical simula-
tions indicate that it is globally asymptotically
stable. However, the mathematical issue is still
unresolved.

We next discuss the relationship between the
two numbers. It follows from the definitions, in
terms of the model parameters, that

R0 =
εEβ

k + µ
+

kβ

(k + µ)(d1 + σ1 + µ)
,

and

Rc =
εEβ

k + µ
+

βk

(k + µ)(γ + d1 + σ1 + µ)

+
εJβkγ

(k + µ)(γ + d1 + σ1 + µ)(σ2 + d2 + µ)
.

Let

ρ∗ =
εJ

d2 + σ2 + µ
− 1

d1 + σ1 + µ

=
(d2 − εJd1) + (σ2 − εJσ1) + µ(1− εJ)

(d1 + σ1 + µ)(d2 + σ2 + µ)
.

(33)

Then,

R0 −Rc =
βkγ

(k + µ)(γ + d1 + σ1 + µ)
ρ∗. (34)

Therefore, the relationship between R0 and Rc is
determined by ρ∗. It is seen in (33) that when d1
and d2, and σ1 and σ2 have comparable values,
and εJ << 1, then R0 > Rc. Indeed, as was noted
above, in the baseline we have R0 > Rc > 1.

We summarize these observations as follows.
Proposition 7: Let ρ∗ be given in (33). If

ρ∗ ≥ 0 then R0 ≥ Rc,

and there are three possible cases:
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(i) Rc ≤ R0 < 1. The endemic equilibrium does
not exist and the disease-free equilibrium is locally
asymptotically stable;
(ii) Rc < 1 and R0 > 1. The endemic equilibrium
does not exist and the disease-free equilibrium is
unstable (further analysis is needed);
(iii) 1 < Rc ≤ R0. The endemic equilibrium is
locally stable and attracting and the disease-free
equilibrium is unstable.

If

ρ∗ < 0 then R0 < Rc,

and there are three possible cases:
(iv) R0 < Rc < 1. The same as (i) above;
(v) R0 < 1 and Rc > 1. Both the disease-free and
the endemic equilibria are locally asymptotically
stable (further analysis is needed);
(vi) 1 < R0 < Rc. The same as (iii) above.
We conclude that the gaps that make further study
necessary are in cases (ii) and (v).

V. NUMERICAL SIMULATIONS

To study the dynamical behavior of the MERS
model, a numerical algorithm was developed and
implemented in MAPLE and extensive numerical
simulations were run, using the parameter values
listed in Table II. The simulations were run ex-
clusively for the city of Riyadh in Saudi Arabia
since the parameters were obtained by fitting the
model to the data available for the outbreaks of
the disease in Riyadh from Nov. 5, 2013 to Nov.
14, 2016. The parameters P and µ, which are not
associated with MERS, are readily available for
the city, while all the other parameters were fitted
by using an optimization routine in MATLAB,
based on the first 864 days. We would like to point
out, as was noted above, that the additional data
from the following 242 days were found to fit well
into the model without any need to change the
previously fitted parameters.

TABLE II: Model parameter values.

Parameter Parameters value Units
P 170 individual/day
β 0.122 1/day
εE 0.2996 -
εJ 0.0899 -
k 0.1026 1/day
µ 0.000034 1/day
d1 0.0294 1/day
d2 0.0227 1/day
σ1 0.0433 1/day
σ2 0.0475 1/day
γ 0.1501 1/day

A. Baseline simulations

We fitted the MERS model (2)–(6) to the data
(the first 864 days) using MATLAB’s lsqcurvefit
function, which is part of the optimization toolbox.
Cumulative data of the number of reported cases
were obtained from the Saudi Arabian Ministry of
Health website [20]. We fitted the MERS model
to the data using initial values for each parameter.
Using the optimization routine, we obtained better
estimates of the same parameters from the fit. The
values of the parameters are given in Table II.

Using the parameter values listed in Table II, the
endemic equilibrium values are:

P ∗ = (S∗, E∗, I∗, J∗, R∗)

= (4.934777× 106, 22, 10, 21, 42373).

Note that |P ∗| = 4.977202× 106.
The eigenvalues of the matrix Ja(P ∗) are

−0.000034, −0.281059, −0.007857,

−0.070234, −0.000034.

Since all the eigenvalues at P ∗ are negative, it
follows that P ∗ is locally asymptotically stable.

Our numerical simulations indicate that the en-
demic equilibrium is globally asymptotically sta-
ble, as is seen in Fig. 2, where four trajectories of
the system that start at different initial conditions
approach P ∗. However, the proof of the global
stability is not available yet.
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Fig. 2: Stability of the endemic equilibrium. Four
trajectories in the S−E plane (upper) and the S−I
plane (lower) ending in the endemic equilibrium.

The results of numerical simulation are shown
in Fig. 3 with the initial conditions S(0) =
4999990, E(0) = 0, I(0) = 10, J(0) =
0, R(0) = 0. The figures depict the solution
with parameters that provided the best fit to the
observed cumulative cases of MERS and cumu-
lative number of deaths reported in [20] (in the
first 864 days). The observed data, which include
additional 242 days, are plotted in red while the
model predictions are the smooth colored cures.
We note that there were no reported data of the
cumulative number of recovered during the first
182 days, so we set it as zero in the middle
figure, which explains why the whole red graph
is quite below the blue curve. Assuming that the
cumulative number of recovered during the first
182 days was the value taken from the graph made

the fit much better, but it was decided to provide
the graphs with the missing data.

In Fig. 3, the cumulative infected reported cases
of MERS are depicted at the top (T), the cumu-
lative number of recovered in the middle (M) and
the cumulative number of deaths on the bottom
(B).

It is seen that the model with baseline parameter
values predicts that if the epidemic continues on
its current trajectory, in another 11 months there
will be about 1077 reported cases, the cumulative
death count from the disease will be about 375,
and there will be about 696 recovered. This may
turn out to be a very conservative prediction based
on the values of β and γ that were obtained by
curve fitting. We discuss the model’s sensitivity to
these two parameters below, since it is found that
small changes in β can lead to large changes in
the disease dynamics.

B. Simulations with different values of γ

Since the isolation rate γ is currently the main
control parameter, we performed simulations with
three different values of γ to find out the effec-
tiveness of the infected individual’s isolation on
the spread of the disease. This also indicates the
model’s sensitivity to γ.

Fig. 4 depicts the variation of cumulative re-
ported cases of MERS, cumulative number of
recovered, and cumulative number of deaths for
different values of the isolation rate γ. It is found
that as the isolation rate γ increases, the three
populations decrease. Indeed, by differentiatingRc
with respect to γ, we obtain

∂Rc
∂γ

= − βk

D1D2
2

− εJβk

D1D2
2D3

< 0,

which means that Rc decreases as γ increases.
This indicates the impact of isolation in reducing
the reproduction number. This is clearly seen in
Fig. 4 where the lowest curve corresponds to the
highest isolation rate γ = 0.17 and the highest
curve to the lowest isolation rate γ = 0.1501.
The dependence of Rc on γ is shown in Fig. 5,
and once Rc < 1 the endemic equilibrium ceases
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Fig. 3: Baseline model simulations of cumulative
reported cases of MERS (T - green curve); cumu-
lative number of recovered (M - blue curve); and
cumulative number of death (B - brown curve).
The red curves are the observed data for 1107
days.

to exist. Moreover, in the absence of isolation
(γ = 0), we have that Rc = R0.

Next, following [15], we define γc, the critical
value of γ, by letting

Rc(γc) = 1. (35)

Fig. 4: Model simulations with three values
γ = 0.1501, 0.16, 0.17 showing the cumulative
reported cases of MERS (T), cumulative number
of recovered (M), and cumulative number of death
(B). The rest of the parameter values are given in
Table II.

Since Rc(γ) is a decreasing function we have that
Rc > 1 when γ < γc and Rc < 1 when γ > γc.
Thus, we set Rc = 1 and obtain,
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Fig. 5: Rc as a function γ.

γc =
(R0 − 1)D1D3(d1 + σ1 + µ)

D1D3 − εEβD3 − εJβk
.

We note that in the baseline simulations γc =
0.1540.

We conclude that when isolation is the only
disease control measure, the isolation rate constant
γ needs to be well above γc to make MERS
die out. However, in the baseline simulation γ =
0.1501 < γc, and hence the endemic equilibrium
is locally asymptotically stable.

VI. PARAMETER RANDOMNESS AND

SENSITIVITY ANALYSIS

In this section we introduce randomness into
the model parameters. This allows us to better
understand the model’s dependence on the pa-
rameter values. Moreover, to use the model as
a predictive tool, we must find out how these
predictions change when the values of the model
parameters change. Clearly, small changes in the
solution caused by changes in the value of a
parameter indicate that there is low sensitivity to
the parameter and an approximate value is suffi-
cient, while considerable changes in the solution
caused by small changes in a parameter indicate
that a more precise parameter value is needed for
obtaining reliable predictions. We note that the
measurability of the solutions with respect to the
random parameters is a consequence of the general
measurability results in [13].

We introduce randomness into three parameters:
β– the effective contact rate, εE– the reduction
in the transmission rate from exposed to infected
with clinical symptoms, and γ– the isolation rate
of those with clinical symptoms. The rest of the
parameters were kept at baseline values.

For each parameter, we let the probability space
be (Ω,F , P ), where Ω is the sample space, F
is the Borel σ-algebra, and P is the probability
function. The latter was chosen in all cases as the
uniform probability. We run 100 simulations, each
over four years, using the relevant coefficient that
was varying randomly in Ω. At each computational
time step we choose the highest and the lowest
values of the 100 solutions and constructed an
envelope that contains all the solutions. These
envelopes are depicted in the figures. However,
we note that these envelopes themselves are not
solutions. In each case we tried to adjust the
sample space ω so that the available data (from
the first 864 days) falls within the envelopes.

The data were collected for 3 years for the
infected and deaths, and two years and 6 months
for the recovered (the recovered data were not
available in the first 182 days). These simulations
provide the predictions for the next 11 months, till
the end of October 2017. The last data point was
from Nov. 14, 2016. As was mentioned above, the
red plotted points are the data while the colored
curves are the model predictions.

A. Sensitivity with respect to β

We begin with the system sensitivity to the vari-
ation in the effective contact rate β. In the baseline
setting β = 0.1220. We let β, the random variable
for the contact rate, be given by β = β+ω, where
β = 0.1220, and ω was chosen randomly from the
sample space

Ωβ = [−0.032, 0.0021].

We used a random β in each one of the 100
simulation runs, and each simulation was for a
period of four years. The choice of Ωβ was based
on the fact that the values 0.09 ≤ β ≤ 0.1241 led
to envelopes that contained the known data.
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Fig. 6: Variations during the period of four years
in cumulative reported cases of MERS (T), cu-
mulative number of recovered (M), and cumula-
tive number of deaths (B), as ω varies randomly
annually in Ωβ and so β varies in the interval
[0.09, 0.1241].

The results with random β are shown in Fig. 6.
The top curve depicts the maximum value and the
bottom curve shows the minimum value of the
solutions at each day. It is seen that the minimum
and the maximum values agree well with the

data of the cumulative reported cases of MERS,
cumulative number of recovered and cumulative
number of deaths. The variations in the cumulative
reported cases of MERS are depicted in Fig. 6
(top) where the upper and lower envelopes reach
at the end of the fourth year the maximum and
minimum values of 1909 and 29, respectively.
The cumulative number of recovered (middle)
shows maximum and minimum values of 1223 and
19, respectively. The variations in the cumulative
number of deaths (bottom) show maximum and
minimum values of 659 and 10, respectively. How-
ever, the real interest in this simulation is in the
predictions of the upper envelopes, which depict
the maximal values of the cumulative variables.
We conclude that the system is sensitive to the
contact rate coefficient β. Below, because of its
importance, we discuss the effects of a wider range
for β.

B. Sensitivity with respect to εE

We turn to the system sensitivity to the trans-
mission reduction factor εE . In the baseline setting
εE = 0.2996. We let εE = εE + ω, where
εE = 0.2996 and ω is chosen randomly from the
sample space

ΩεE = [−0.2896, 0.0184].

Therefore, εE ∈ [0.01, 0.318]. Again, the choice of
ΩεE was such that the resulting simulations include
all of the data points (for the first 864 days).

We used a random εE in each year of the
100 runs (each one was for four years!). The
simulations are shown in Fig. 7. The variations
of the cumulative reported cases of MERS are
depicted in Fig. 7 (top) where the upper and lower
envelopes reach maximum and minimum values of
about 2182 and 30, respectively. The cumulative
numbers of recovered (middle) reach maximum
and minimum values of about 1396 and 19, re-
spectively, and the cumulative numbers of deaths
(bottom) reach maximum and minimum values
of about 752 and 10, respectively. We find that
the model is sensitive to the variations in the
transmission reduction factor εE . Since the lower
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limits have already been exceeded, we use them
to depict the sensitivity to the parameter.

Fig. 7: Variations in the transmission reduction
factor εE lead to variations in the cumulative
reported cases of MERS (T), cumulative number
of recovered (M), and cumulative number of death
(B), as ω varies randomly in ΩεE , so that εE varies
in [0.01, 0.318].

C. Sensitivity with respect to γ

We study next the system sensitivity to the
isolation rate γ, which was assumed to be constant
in previous simulations, at the baseline value.

We let γ be given by γ = γ + ω, where
γ = 0.1501 (the baseline value) and ω is chosen
randomly from the sample space

Ωγ = [−0.0061, 0.0169].

Therefore, the isolation rate constant γ varies in
the range 0.144 ≤ γ ≤ 0.167.

We used random γ in each one of the 100
runs. The results of the numerical simulations with
random isolation rate γ are shown in Fig. 8. It is
seen that the minimum and the maximum values
agree well with the data (the full 1107 days) for the
cumulative reported cases of MERS, cumulative
number of recovered, and cumulative number of
death in the time period for which the data is
available. The variations of the cumulative re-
ported cases of MERS are depicted in Fig. 8 (top)
where the envelopes reach maximum values of
about 2537 and 238, respectively. The cumulative
numbers of recovered (middle) reach maximum
values of about 1620 and 155, respectively, and the
cumulative numbers of deaths (bottom) reach max-
imum values of about 876 and 83, respectively.

D. Combined sensitivity with respect to β, εE and
γ

Finally, for the sake of completeness, we present
the system sensitivity to the combined randomness
in β, εE , and γ. It was assumed that each year the
variables (β, εE , γ) were given by (β, εE , γ) =
(β, εE , γ) + (ωβ, ωεE , ωγ), where the variations
were the same as the individual cases above.
ω = (ωβ, ωεE , ωγ) was randomly chosen from the
sample space

Ωcomb =

[−0.032, 0.029]×[−0.2896, 0.0184]×[−0.0061, 0.0169].

The results of the numerical simulations with
random contact rate β, the transmission reduction
factor εE , and the isolation rate γ are shown in
Fig. 9. The variations of the cumulative reported
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Fig. 8: Variations with respect to γ lead to vari-
ations in the cumulative reported cases of MERS
(T), cumulative number of recovered (M), and cu-
mulative number of death (B) as ω varies randomly
in Ωγ so that γ varies in the interval [0.144, 0.167].

cases of MERS (left) show that the envelopes
reach maximum values of about 1978 and 31,
respectively. The cumulative numbers of recovered
(middle) reach maximum values of about 1268 and
20, respectively. The cumulative number of deaths
(right) reach maximum values of about 684 and

Fig. 9: The case of combined variations in β, εE
and γ. Variations in cumulative reported cases of
MERS (T), cumulative number of recovered (M),
and cumulative number of death (B), as ω varies
randomly in Ωcomb.

11, respectively. Again, we find that the system is
quite sensitive to the combined random variation
of β, εE and γ within the indicated ranges.

We note that the results of the combined varia-
tions are very similar to those for separate varia-
tions.
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E. Comparison of the sensitivity analyses

A comparison of the results above for β, εE
and γ indicates that within the chosen ranges,
the system is sensitive to each one of these pa-
rameters, and with comparable sensitivity to all
three combined. This reinforces the importance
of the contact number and the isolation rate in
the model predictions. However, as we discuss in
the next section, when we slightly increase the
randomness range for the contact rate constant
β, the sensitivity result changes considerably. We
conclude that the model predicts, assuming that
the same trend continues and there are no changes
in the virus transmission or new countermeasures,
that at the end of the next 11 months (i.e., by end
of October 2017) the cumulative cases of reported,
recovered and deaths will be below 2320, 1480 and
800, respectively.

VII. ON THE SENSITIVITY TO β

The contact rate coefficient β plays a signifi-
cant role in the spread of MERS disease, as is
seen in most infectious diseases. The simulations
presented in this work are based on data collected
in the city of Riyadh in Saudi Arabia, and the
baseline value of β reflects it. We used the value
β = 0.1220 that was obtained from the best fit to
the data pertaining to Riyadh. In the sensitivity
analysis we found that the range 0.09 ≤ β ≤
0.1241 well contained the observed data.

However, during mass gatherings, especially
where the human density is large, the situation may
be very different. In such events the MERS-CoV
virus can be easily transmitted through human-
to-human contacts, leading to a higher value of
β. So we studied the model predictions with
larger values of the contact rate. We found, as
we depict below, that in such cases the model
predicts substantially higher numbers of infected
and deaths. An additional important issue that may
compound the situation is when such a mass gath-
ering includes individuals from different locations
and possibly from different countries. When those
who are exposed travel back to their places of

origin, they may spread the disease to other places,
see e.g., [6].

Fig. 10: Simulation results for the cumulative
reported cases of MERS (T) and the cumulative
number of deaths (B). Parameter values used are
β = 0.12200 – dashed lower curves; and β =
0.12887 – solid curves.

To assess and illustrate the importance of the
contact rate, in additional to the sensitivity results
above, we run numerical simulations with different
values of β. We found that varying the effective
contact rate β, while keeping all the other parame-
ters fixed at the baseline values, has a considerable
effect on the population. In Fig. 10, the variation
of cumulative reported cases of MERS and deaths
are shown for two different values of β. A small
increase above the baseline value, leads to a large
increase in both the symptomatic population and
the cumulative number of deaths. This emphasizes
the fact that in the absence of vaccination or
effective drugs or treatment, the spread of the
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disease may be largely controlled by decreasing
the contact rate.

Fig. 10 depicts two very different scenarios: us-
ing the baseline value β = 0.12200 results in about
1530 cumulative reported cases of MERS over 5
years; while the slightly larger value β = 0.12887
results in about 298, 178 newly infected cases over
the same time period. Similarly, the baseline value
results in about 532 cumulative death cases over 5
years, while β = 0.12887 results in about 100, 000
cumulative deaths over the same time period. It is
clear that there is a qualitative difference between
the two cases, while the difference between the
values of β is just 7%. The question whether this
sensitivity is just a mathematical artifact of the
model or a real property of the disease is an open
question that will be resolved with additional data.
However, one must be very careful in treating
each outbreak of the disease in crowded events
by immediate isolation and reduction of human
contacts.

VIII. CONCLUSION AND OPEN ISSUES

This work presents a compartmental model for
the outbreak of MERS. It aims at the study of the
disease dynamics and assessment of various dis-
ease containment measures, since currently there
is no treatment or vaccination for the disease.

The analysis of the model shows that it is well-
posed and possesses a disease-free state and may
posses an endemic equilibrium state. The non-
negativity of the solution is shown. Using the
baseline values of the model parameters that were
fitted from data for the city of Riyadh, the endemic
equilibrium state is found to be locally asymptot-
ically stable, which means that the disease may
be contained, but not eradicated. To eradicate the
disease, as long as treatment or vaccination are
not available, one must increase the isolation rate
γ and decrease the contact number β so that the
disease-free equilibrium becomes asymptotically
stable. We note that in such a case the endemic
equilibrium does not exist and the disease will
eventually die out.

A computer code was written in the package
MAPLE and simulations of the disease dynamics

were performed. Based on the data from Riyadh
gathered over a period of 36 months (during the
years 2013-2016) the baseline model coefficients
were identified. Actually, the coefficients were
identified from the data of the first 864 days of
the epidemic. The data for the additional 242 days
was found to fit well into the model thus fitted. The
predictions for the next 11 months were obtained,
based on this data fitting. It is seen that the disease
will affect an increasing number of individuals,
predicting a cumulative number (over 4 years, till
about October 2017) of about 1077 reported cases,
696 recovered and 375 deaths. However, sensi-
tivity analysis indicates that the system is quite
sensitive to the contact number β, the transmission
reduction factor εE and the isolation parameter
γ. Indeed, the system sensitivity to β and εE is
comparable, while the sensitivity to γ is more
pronounced. When the combined sensitivity to the
three parameters was conducted, it was found that
the combined sensitivity was comparable to that
of γ, reinforcing the importance of the isolation
rate in the model predictions.

When slightly increasing (by 7%) the value of
the contact rate constant β, the result changes
considerably and the disease becomes more viru-
lent. We conclude from the sensitivity analysis that
under the assumption that the same trend continues
and there are no changes in the virus transmission
or new countermeasures such as vaccination, that
by the end of the next 11 months (i.e., by end of
October 2017) the maximal cumulative cases of
MERS will be below 1909, the recovered below
1223, and the number of deaths below 659. These
results may be of help in policy decisions by
the health authorities. However, there must be
considerable attention paid to the disease spread
because small changes in the rates may yield large
changes in the numbers of affected individuals.

The model is quite general and flexible. If the
assumptions or the rate constants change because
of new data, it is easy to modify the model to
include the new developments. Moreover, the virus
dynamics and interactions with animals that may
carry it are not included in the model at this initial
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stage of its development. It may be of interest
to investigate if addition of these topics, which
will make the model considerably more complex,
improves its predictive power.

An interesting issue that was not studied here,
but needs to be added is the dependence of the
parameters, especially the contact number β, on
the state of the immune system of the susceptible
person. There may be very different values asso-
ciated with a person with healthy immune system
and one with a compromised one. However, there
is no current data that would allow us to address
this issue, and the valu of β was obtained from
the currently available data.

We note that the question of the global asymp-
totical stability of the endemic equilibrium when
Rc > 1 is unresolved, yet, although our numerical
experiments indicate that in the baseline case it is,
indeed globally, asymptotically stable (Fig. 2).

We plan to use the model to study the disease
dynamics in other localities in the Middle East, as
there is considerable growth in the disease and the
available data. The relationship between Rc and
R0 warrants further mathematical analysis. Also,
we will employ statistical methods to analyze
some of the data, to make the model easier to use
by the authorities and policy makers.
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