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Abstract—A wide variety of natural and labo-
ratory systems can produce patterns of ripples,
hexagons, or squares. The formation of stable
square patterns from partial differential equation
models requires specific cubic nonlinearities involv-
ing higher-order derivatives. Motivated by plant
phyllotaxis, we demonstrate that the coupling of
more than one pattern-forming system can produce
square patterns without these special nonlinearities.
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I. INTRODUCTION: LATTICE PATTERNS IN
NATURAL AND LABORATORY SYSTEMS

Patterns of ripples (Fig. [I] (a)) or hexagons
(Fig. [1] (b)) are observed in a wide variety of nat-
ural and laboratory systems. Ripples dominate the
surface, for example, of the saguaro cactus shown
in Fig. 2] (a). They appear as stripes on zebras, on
sandy beaches, and in cloud formations. Hexagons,
on the other hand, are evident in the surface

morphology of the cactus of Fig. |2| (b). Both
ripples and hexagons may be observed in Raleigh-
Bénard convection experiments [8], the Rosen-
zweig instability in ferrofluids [12], nanoscale
structures formed by bombarding a binary ma-
terial by a broad ion beam [1], [2], [7], [29],
geological formations [17]], and landscape-scale
vegetation patterns in drylands [4]], [[6], [18], [19].
Different physical, chemical, or biological mecha-
nisms are at play in these systems, yet remarkably
similar patterns form.Fig. [T] shows patterns that
result from numerical simulations of the Swift-
Hohenberg equation [31]]

%; = au — 2PV?u — Vi + N(u),
where N (u), a nonlinear function of u, is chosen
to be

ey

N(u) = pu® +yu® + 6V - (|Vul|*Vu).

Depending on choices of coefficients for the non-
linear terms, the surface u(x,y, -) reaches a steady
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state that is a pattern of ripples (Fig [I] (a)),
hexagons (Fig [T] (b)), or squares (Fig [I] (c)).

lE: f

Fig. 1: Gray-scale plots of u(x,y,t) at time t =
10000 resulting from numerical 51mulat10ns of Eq.
(T). The parameter values are P = 1.1, v = 10,
and (a) 6=0,0=0,(b) 3=2,=0,(c) 5 =0,
0 = 1. The spatial domain is —60 < x,y < 60.

Fig. 2: Cacti displaying planforms of (a) ripples,
(b) hexagons, and (c) squares.

The steady-state solutions are approximately
given by the sum of only a few Fourier modes.
That is, for the case of ripples,

u(z,y, ) ~ Aetk- @) +c.c., 2

where A is a complex amplitude, and c.c. denotes
the complex conjugate. For the case of hexagons,
there is a triplet 121, Eg, Eg, of wavevectors that are
of the same modulus k. = ]k| j =1,2,3 and
satisfy the condition k1 + kg = kg (see Fig.|3| (a))
such that

~ E?:1Aje“zf'(z’y) +cc, 3

and for the case of squares, there is a pair of or-
thogonal wavevectors ki, ky of the same modulus
k. = |k1| = |k2| (see Fig. (b)) such that

U(J:?y’ )

u(z,y, ) ~ k() fee.  (4)

Mathematical analysis of Equation (I)) proceeds
by first performing a linear stability analysis of
the homogeneous steady-state solution u = 0.

lee
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Fig. 3: Wavevectors for Fourier decompositions of
(a) hexagon patterns (3) in which there is a triad
of wavevectors satisfying /<:1 + k2 = k'g, (b) square
patterns (@), and (c) square patterns produced by a
coupled pattern-forming system, in which there are
overlapping triads of wavevectors satisfying k1 +
Eg = Eg and EQ + Eg = E4.

This determines the modulus k. of wavevectors
that will be present in the pattern. All Fourier
modes A(t)e* (%) with wavevector k on a circle
of radius k. are linearly unstable so that their
amplitudes A(t) grow in time for ¢ ~ 0. Once the
amplitudes become large enough, nonlinear func-
tions of these amplitudes become large enough to
dampen the growth and to allow for interactions
between the modes that determine the resulting
steady-state pattern [5]], [14]].

While there is an abundance of examples of
ripple and hexagon patterns in laboratory and
natural systems, square patterns are relatively rare.
As one example, in it is shown that a cubic
nonlinearity of the form dV - (|Vu|?Vu) in the
equations of motion describing the surface evolu-
tion of a crystalline material being bombarded by
a broad ion beam results in a pattern of squares.
We propose in this paper an alternative to cubic
terms involving higher-order derivatives, namely
the coupling of two pattern-forming systems, that
can also result in a pattern of squares.

The idea that coupled mechanisms may result in
square patterns comes to us from observations of
patterns on plants. Section 2 describes these plant
patterns and a model for plant pattern formation
proposed in that couples biochemical and
biomechanical mechanisms. Although we suggest
in that this model can produce square patterns,
this paper gives the first numerical and analyti-
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cal evidence that this is the case by numerical
simulations and analysis of a simplified system
given in Section 3 that captures the key features
of the original model. Numerical simulations of
the simplified system produce square patterns for
certain choices of parameters. The results agree
with linear stability analysis and weakly nonlinear
analysis of the simplified system, as given in the
Appendix.

II. PHYLLOTAXIS AND A SYSTEM OF COUPLED
PATTERN-FORMING EQUATIONS

Phyllotaxis refers to the arrangement (faxis) on
plants of leaves (phylla) or their analogs such as
bracts on a pine cone, seeds in a seedhead, or
spines on a cactus. We describe in Section IL.A
how a pattern of squares underlies many of these
phyllotactic patterns. In Section II.B, we review a
systems of coupled PDEs, proposed in [23]] as a
model for the formation of phyllotactic patterns on
plants.

A. Phyllotactic planforms and the Fibonacci se-
quence

Fig. 4: (a) A pinecone with the bracts numbered in
order of their distance to the center. Also marked
are eight counterclockwise spirals (in yellow) and
thirteen clockwise spirals (in red) formed by con-
necting adjacent bracts. (b) From [3]], a sunflower
seed head with clockwise and counterclockwise
spirals marked. The spiral families are different
near the outer boundary of the seed head compared
to the center.

The square bracts on the pinecone shown in
Fig. ] (a) have been numbered in sequence of
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their distance from the center of the cone. Con-
necting bracts that have adjacent sides results in
the eight (yellow) counterclockwise spirals and
thirteen (red) clockwise spirals. The numbers of
spirals in the clockwise and counterclockwise spi-
ral families are called the parastichy numbers for
the pattern. The pair of parastichy numbers 8
and 13 is not unusual. Indeed, the spiral num-
bers observed on plants are typically consecu-
tive members of the Fibonacci sequence {F;} =
1,1,2,3,5,8,13,21,....

The parastichy numbers may vary even within
one plant’s pattern. This is illustrated by the sun-
flower seed heads of Fig. ] (b) and Fig. 5] The
transition between spiral numbers in the Fibonacci
sequence can, in fact, be continuous. To under-
stand this, consider the function

N
w(r,o) = Z_:A <1§]> cos(kj(r) - &), (5)
7j=1
of polar coordinates, radius  and angle o. In (§),
Z = (r,0), and the amplitudes A(p) = ép”TQH and
wavevectors Ej = (l;(r), %) depend on the radius
r. We give phenomenological derivations of these
forms of A(p) and the radial wavenumber Li(r)
in [22], to illustrate how parastichy numbers
may change continuously in spiral phyllotaxis; we
do not claim that these are the functions observed
on plants. In , we numerically calculate a
function /1( p) from phyllotactic patterns produced
by a PDE model. Figs. [5] and [6] show plots of
Equation (5) for Fj in the Fibonacci sequence.
The bottom panels of Fig. [] show the graph of the
function A(Fij) for various values of the radius

' 3
r, namely ri,7o = Sri,73 = Sri,ry = 3y,

and r5 = ¢ry, as marked in the figure. A self-
similarity in the pattern becomes apparent: The
vector of amplitudes for » = r; is equal to the
vector of amplitudes for r = r; = ¢r; after
shifting the Fj. That is, writing A;(r) = fl(g),
(‘..,Ag(’l“l),A13(T1),A21(T1),A34(T1), ) =
(coy A13(dr1), A21(dr1), Asa(@r1), Ass(Pr1), o).
Also note that, at » = ry, Ag = A3y < A13 =
Aoy, and at r = 15, A13 = Ass < A9 = Aszy.
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Fig. 5: Plot of the function given by Equation (5)),
replicating a sunflower seed head.

Recalling that written in terms of the index j,
F6 = g, F7 = 13, Fg = 21, Fg = 34, and
F19 = 55, we also note a corresponding relation-
ship of wavevectors: at r = ry, EG + E7 = Eg, and
E7 + /28 = Eg, whereas at r = 7o, E7 + Eg = Eg,
and Eg + Eg = Ew.

The key observation is that the square patterns
that are evident at radii r = r1 and r = 75
are formed not by only two Fourier modes with
wavevectors as in Fig. [3] (b), but by overlapping
triads of modes that satisfy summation relations
similar to the wavevectors of Fig. |3| (a) that
produce hexagons. As depicted in Fig. [3] (c), in
order for this to occur, two of the vectors are
larger in modulus than the other two. These are
the wavevectors corresponding to the smaller am-
plitudes. For example, at r = rq, the wavevectors
Eﬁ, Eg corresponding to the smaller amplitudes
Ag = As4 are longer than the wavevectors E7, Eg
corresponding to the larger amplitudes A3 = Ag;.

B. A mechanistic model for phyllotactic patterns

In this section, we review a system of partial
differential equation that has been proposed as a
model for the formation of phyllotactic patterns
and that incorporates biochemical and biophysical
mechanisms, each of which could produce a pat-
tern on its own.
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Fig. 6: Top: Graph of the function . Bottom:
Graphs of A(p = r/m;) as a function of m;
for various values of r, r = ry,ro = 3ri,13 =

3
%7‘1,7‘4 = %7“1, and rs = (,257"1.

Growth of a shoot tip or formation of flowers
occurs in regions of active cell growth and division
at apical meristems. A schematic diagram of a
shoot apical meristem (SAM) is shown in Fig. [7]
Small bumps called primordia on the plant surface,
which will become leaves, form not at the very
center of the SAM, but in an annular region which
we call the generative region and which is marked
as Region 2 in Fig.[7]

What mechanisms lead to the formation of pri-
mordia in the generative region? There is evidence
for both biomechanical and biochemical mecha-
nisms which may interact with each other.

The idea of the biomechanical mechanism is as
follows: If the outer skin (the tunica) of the plant is
growing more quickly than the inner tissue, then
a compressive stress will build up in the tunica.
If that compressive stress increases above a large
enough threshold, then the tunica will become
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unstable and buckle under the stress. Biologist
Paul Green proposed in the 2000’s that primordia
are the result of this buckling [9]-[L1]].

The plant hormone auxin influences cell growth,
and other experiments suggest that auxin itself
may be spatially patterned in the generative region,
with primordia forming where there is a higher
auxin concentration [15]], [16]. Auxin is produced
uniformly throughout the generative region, but
the key idea of the groups of Kuhlemeier and
Meyerowitz [16], is that PIN1 proteins in
cell walls transport auxin from cells with lower
concentrations of auxin to cells with higher auxin
concentrations. This produces an instability that
allows for pattern formation.

The biomechanical and biochemical mecha-
nisms may interact in that stress states can im-
pact the action of PINI proteins. In [23], we
incorporate both mechanisms into a mathematical
model of three partial differential equations for the
tunica surface deformation w(z,y,t), a potential
F(x,y,t) for the stresses in the tunica, and the
auxin concentration difference g(z,y,t) from a
mean auxin concentration.

We refer the reader to [23] for a complete
description of this model, which reads, in nondi-
mensionalized parameters,

Cmwy + A%w + PAw + kw + yw? (6a)
+ CAF — [F,w] =0,

A’F + Ag — CAw + %[w, w] =0, (6b)

Cogt + DgAQg + HAg +dg+ g% + k1V(gVyg)
+ ke V(VgV2g) — bBAF =0,
(6¢)

where [f, g] = JrxGyy + fyyGuz — 2fryGzy- Equa-
tions (6a) and (6b) are the Foppl-von Karman
equations for a thin elastic to which a compressive
stress has been applied. Equation is a contin-
uum approximation of a spatially discrete model
proposed in for auxin transport.

Both the mechanical system (62 [6b) and the
auxin system (6c) may produce an instability of
the homogeneous state w = F = g = 0 to a
pattern. For the mechanical system, this instability
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Fig. 7: A schematic of the plant shoot apical
meristem (SAM). Cells form but primorida do not
form at the center of the SAM (Region 1). Region
2 is the annular generative region where primoria
form. In Region 3, no new primordia form, but
there is active cell generation and differentiation.

occurs if the compressive stress, expressed in the
nondimensional parameter P, exceeds a critical
value. For the auxin system, this instability occurs
if the relative magnitude of auxin transport com-
pared to auxin diffusion, expressed in the nondi-
mensional parameter H, exceeds a critical value.
If both the mechanical instability and the auxin
instability are active, the possibly different natural
wavelengths of the patterns that would result from
either instability alone allow for differences in
phyllotactic configurations (the underlying lattice)
and the surface deformation. In [23]] we analyze a
variety of scenarios in which the elastic and auxin
instabilities may cooperate or compete.

III. SQUARE PATTERN FORMATION IN COUPLED
EQUATIONS OF SWIFT-HOHENBERG TYPE

Equations (6a) and are both of Swift-
Hohenberg type (I)) with the addition of nonlinear
terms that couple the equations. We expect there-
fore for the following simpler and more analyti-
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cally tractable system of coupled Swift-Hohenberg
equations for two fields u(z,y,t) and v(z,y,t) to
produce similar steady-state patterns:

ug + A%u + 2PAu+ u + aqv
+ 51112 + B3uv + 557)2 + ")/1'LL3 =0
v+ A%0 + 2HAY + Lv + asu (7b)
+ Bov® + Byvu + Beu® + yv° = 0.

(7a)

This system has the uniform steady-state solu-
tion u(z,y,t) = v(x,y,t) = 0. Linear stability
analysis, given in the Appendix, reveals that in
the absence of linear coupling (a1 = ags = 0),
u(z,y,t) = 0 is stable for P < P, = 1, but
unstable to Fourier modes with wavevectors of
modulus close to |k| =1 for P > P, = 1. Simi-
larly, v(z,y,t) = 0 is stable for H < H, = /L,
but unstable to Fourier modes with wavevectors of
modulus close to |k| = V'L for H > H. = /L.
The modified conditions for instabilities in the
presence of linear coupling are given the the
Appendix, but the key point is that the parameter L
determines how the the wavelength of the pattern
favored by the equation for v compares to that
for u. If L = 1, then both equations would yield
patterns of the same natural wavelength, but if L
is larger (smaller) than 1, then the wavelength of
the pattern favored by the equation for v will be
smaller (larger) than that favored by the equation
for u.

If P=PFP.+ex and H = H. + ex, where
X ~ O(1), are slightly above their respective
bifurcation thresholds (as measured by the small
parameter €), Fourier modes with moduli close
to 1 and v/L grow in amplitude with time and
interact via the nonlinear terms in the equations.
The wavevectors for these modes are depicted as
the two circles in Fig. 3| (c). In the Appendix, we
demonstrate a weakly nonlinear asymptotic anal-
ysis that allows us to derive a system of ordinary
differential equations for the amplitudes of these
excited Fourier modes. This analysis begins with
an Ansatz for the form of the solution, namely

u=¢ Z;\;l(Aje”;ff—l—A;e’iEﬂ) +&2uy +edug+ ...

v=¢ Zjvzl (Bje“;ff + B;fe_“;ff) +e2v +e3vg+...(8)
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Here, N is the number of interacting modes
in the Fourier expansion of the order-e term,
A = A(T = ¢t), Bj = Bj(T = et), and
e2uy 4 e3ug + ..., and 2v; + £3v9 + ... are the
correction terms. A condition for solvability of
the correction terms leads to a set of ordinary
differential equations for the time-evolution of the
complex amplitudes A;(t) and Bj(t).

The result of a numerical simulation of Equa-
tion for a choice of parameter values that
includes nonlinear coupling terms but not linear
coupling (ay = ap = 0) is shown in Fig.
The initial conditions are low-amplitude white
noise. We employ a Fourier spectral method with
periodic boundary conditions and a fourth-order
exponential time differencing Runge-Kutta method
for the time stepping as the numerical technique,
and the spatial grid is 256 x 256.

The Fourier transform of the pattern shown
in Fig. [§] (a) is shown in Fig. [§] (b). There are
two circles of excited wavevectors, as marked in
Fig. [8] (c). The reason for this is the parameter
choice L = 4.7 in (7), which allows for the
wavevectors of modulus v/4.7 ~ 1.47 to be excited
by the field v, while wavevectors of length 1 are
excited by the field u (see the linear stability anal-
ysis in the Appendix). These wavevectors interact
via nonlinear terms in Equations (7)), and a discrete
set of Fourler modes W1th wavevectors k:l, ey E4
such that ky + ky = k3 and ko + k3 = Ky, as
marked in Fig. [§] (¢) (which may be compared to
Fig. 3] (¢)), dominates the pattern.

Motivated by the results of the numerical sim-
ulation, we carry out in the Appendix the weakly
nonlinear asymptotic analysis, choosing in Equa-
tion N = 4 and the overlapping triad condi-
tions ki + k‘g = k:3 and k‘g + kg = k4 This results
in a system of eight ordinary differential equations
for the amplitudes A;,B;, j = 1,...,4 of the
Fourier modes in (8). This is the system (I35). A
numerical simulation of (I3) for the parameter val-
ues of the simulation in Fig. [8]is shown in Fig. 9]
The amplitudes reach a steady state in which
A2:A3:BQZBg andA1:A4:B1:B4.
This is consistent with the Fourier spectrum shown
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Fig. 8: (a) Gray-scale plot of u(z,y,t) at time t =
25000, resulting from numerical simulations of the
system (7). The parameter values are P = 1.1,
H=22L=47 a1 =a9=0, 1 = -3, B2 =
3, B3 = B4 =1, and B5 = Bg = —5. The spatial
domain is —120 < z,y < 120. (b,c) the Fourier
transform of a portion of the surface u(z,y,t)
at time ¢t = 25000. The domain in wavevector
k = (kg, ky)-space is —0.8 < ky, k, < 0.8. The
wavevectors El, ... ,E4 are marked in panel (c).

in Fig. [§] (b,c), in which the modes on the circle
of larger radius have smaller amplitude. It is also
consistent with the motivation given in Section
II.A of patterns observed in plant phyllotaxis.
Other possible patterns and their stability would
be found by a bifurcation analysis of the amplitude
equations (I3)). The relevance of this analysis to
plant phyllotaxis would require that the length
scale of the patterns produced by the system (6]
are in accord with those observed on plants. In
[23]], we provide suggestions on experiments to
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Aj, B; Ap(t) = As(t) = Ba(t) = Bs(t)

0.07F
0.06 f
0051 Ar(t) = Aa(t) = Br(t) = Bu(t)
0.04F
0.03}
0.02F

001F

Fig. 9: Numerical solution of the amplitude equa-
tions @[) for the parameter values P = 1.1,
H:2.2,L:4.7,Oé1ZOéQZO,ﬁlz—&
P2 =3, 83 =Ps=1, and 5 = B = —5.

determine some of the parameter values relevant
to plants. Although motivated by phyllotaxis in
this paper, the framework of coupled pattern-
forming systems is relevant to other phenomena.
This includes nanoscale pattern formation induced
by bombarding a binary alloy by a broad ion
beam [I]I, [2], [7], [29]. In these experiments,
collision cascades induced by the ions hitting the
surface of the alloy result in the sputtering of
material from the surface. Curvature-dependent
sputter yield and phase separation are two indepen-
dent pattern-forming mechanisms that may both
contribute to the observed pattern. Squares can
also appear in Turing patterns: Recently, Li and
colleauges form patterns of squares in simulations
of coupled reaction-diffusion equations [20].
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APPENDIX: LINEAR AND NONLINEAR
ANALYSIS

In this Appendix, we provide the details of the
linear stability analysis and the nonlinear analysis
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(the derivation of the nonlinear amplitude equa-
tions) for the system (7).

Linear stability analysis

The system has the uniform steady-state
solution u = ugs = 0, v = vy = 0. We will examine
the stability of this solution by introducing a small
perturbation of this solution and determining if the
perturbation has linear growth or decay. Write the
perturbation as

u = ug + ue*Tert

v = vy + DethTeot )
where k = (kz,ky), and @ and ¢ are constants.
Inserting (9) into the linearization of Equation (7)),
we obtain

@\ _ [-k*+2Pk* -1 o @
7 (v) - ( —ay  —k*+2HE? L) (v) ’
(10
where k% = k2 + k:g This vector equation implies

that o is an eigenvalue of the matrix in Equation
(T0). The two solutions for o are

ou(F) + o0 (F) i«mk’) —ou(F)

o (k) =

where o, (k) = —k* + 2Pk* — 1 and o,(k) =
—k* 4+ 2HK? — L. We will use o (k) to denote
the larger of the two eigenvalues.

Note that if © = 0, we have only the equation
ot = —k* + 2Pk%@ — 4 which reduces to o =
—k* +2Pk* — 1 = o,(k) after dividing through
by 4. Similarly, 0 = o,(k) when v = 0. The
coupling terms alter these values, and for positive
a1, o4 (k) is always larger than either o, (k) or
ou(K). Since o is the growth rate for the system
and instabilities occur when o > 0, the coupling
terms actually help create an instability. The choice
of o, is non-trivial for L # 1 even in the case
where there is no linear coupling (a; = ag = 0);
o = oy (k) for some values of k and o = o, (k)
for others. By definition, we always choose the
larger of the two values.

In the case of no linear coupling (a; = as = 0),
we have the following: For P <1, O'U(E) < 0 for
all .
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For P = 1, 0y(1) = 0 and oy(k) < 0 for all
k # 1.

For P > 1, o, (k) > 0 for certain values of k
inside a finite band centered around |k| = 1.
Similarly,

For H < /L, o, (k) < 0 for all k.

For H = VL, 0,(VL) and o,(k) < 0 for all
k+# VL.

For H > \/L, o,(k) > 0 for certain values of k
inside a finite band centered around |k| = v/L.

The parameters P and H thus serve as bifurca-
tion parameters with respective bifurcation values
P =P, =1and H = H, = VL. In the
absence of linear coupling, the uniform steady-
state solution is linearly stable for P < P, and
H < H,,.. Perturbations with certain wavevectors
are unstable for P > P.,. and H > H,,. Recall that
for general values of o1 and ap (with a;ag > 0),
the modified value of o (k) will be greater than
either o, or o, (say o* for the general case).

We identify the set of active wavevectors, k, to
be those for which o (k) > —c* for some small
—o%* < 0. The goal is to analyze the cases where
o4 1is just above zero, when the active modes
begin to interact through the nonlinear terms in
the equations.

Nonlinear Analysis

For o above the critical value of o4 = 0, there
are active modes, and these will interact through
the nonlinear terms in (7). We derive evolution
equations for the amplitudes of the active modes
by asymptotically expanding the solutions u and
v with respect to a small parameter ¢ measuring
how far o is above 0. That is, we assume that the
bifurcation parameters are close to their respective
critical values: for x ~ O(1),

P=PFP,+ex=1+¢x
H=H, +ex=VL+ex (12)

We also assume that the coefficients of the cubic

terms are of order 6_11

Y12 = 1,2, i ~ O(1).
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As an Ansatz for the form of the solution to (7)),
we assume that © and v are an order-€ perturbation
from the steady state solution plus correction terms
that are of higher order in ¢:

— N K& | A% ,—ik
u=e) ;i (A" + Aje

i%) 4 e2uy +Sup + ...
v=e¢e Z;yzl(BjeiEff—&—B;‘e_“;if) +&2v1 +e3vg +...(13)

Here, N is the number of interacting modes in
the Fourier expansion of the order-e term, A; =
Aj(T = et), B; = Bj(T = et), and e?uy +&3ug +

., and £2v; + £3vy + ... are the correction terms.
Inserting (T3) into the system (7) and collecting
coefficients of powers of ¢ yields, at order € simply
the expression 0 = 0, but at order €2, we obtain
the relations

(A2 4+ 2P, A+ l
2 Y0, Ajetts
N A ks, A _f_i
_ZJ 1(dTe ki +ﬁe kj)
N L
7ﬂ1(2] 1A elk z +A* - ’j ac)2
(ZJ 1 Aj elka:-i-A* —iky
X(Zj-vzl Bjethi® + B;e—ikﬂ?)
_65@:;\[:1 Byt 4 Bre~iki)?
—A1(TL, Aje™T 4 AteiRiT)3

Rl»—t

(A% +2H..A + L)v; =
ZXZJ  Bj ik m+B* -

N J et iz iq,-a‘i
2= (dT *; +dT6 qu)ﬂ
—a Z] 1(14 ezk z A* - k-aﬁ)
(ZJ 1B ezk T +B* —'k_»f)2
(Z] 1A62kx+A*7kf)

><<z§i1 B 4 Bre= ki)
(T A+ A3
72(2] 1Bezk:c+B* —ik; & )3

The first of these equations has the form (A% +
2P, A + 1)u; = Ce*¥ where P,, = 1 and
k| = 1 (recall that this value was found to be
critical for instabilities in the linear case with no
coupling when P > 0). This equation has the form
up = Detk?. Thus, if the coefficient of eFi7 on
the right-hand side of (I4) is nonzero, resonance

Biomath 5 (2016), 1612181, |http://dx.doi.org/10.11145/j.biomath.2016.12.181

allows the solution to grow without bound, and
our asymptotic expansion is invalid since the cor-
rection terms are no longer small. Our solvability
condition is therefore that the coefficient of e**s¥
on the right-hand side of (T4) be zero.

We now examlne the case of (]ED for N = 4,
where kl + k:2 = k‘3, and k:2 + k3 = k4 Requiring
that the coefficients of the /%% terms, j =1...4
sum to zero results in a set of eight differential

equations for the time evolution of the amplitudes
Aj and Bj, j =1...4 which read

dd — 9y A; —a1 By — 1 A5 A3 —453(A§B3 + A3B3)
—B5B3 B3 — 351 A1 (23 4,7 — |A1[?)

dd2 = 2x Ay — a1 By — Bi(Af Az + A5Ay)
—B3(A1Bs + A3 BY + AyB3 + A By)
—B5(Bi Bs + B3 By)
—31A2(2 32, |42 —

|42/?)

dAs _ 2xAsz — a1 By — B1(A1 Az + A5 AY)
—B3(A1B2 + A2 By + A3By + A4Bj)
—Bs(B1By + B3 B,)

—31 45235, 4,2 — [45]?)

s — 2y Ay — a1 By — 1 ArAs —453(14233 + A3By)
—B5BaBs — 391 A4(2 371|451 — [A4f?)

4B — 9yBy —ay A, — $2B3 B3 —454(35143 + B3 A3)
—B6A5 A3 — 3% B1(232;_, | Bj|* = | Bi[?)

B2 — 2xBy — asAy — Bo( B Bs + B} Ba)
—B4(ByAs + B3 A} + BaAj + B3 Ayg)
—B6(ATAs + A3Ay)
—342Ba(2 32—, |B;[* — | Ba|?)

9Bs — 2\ B3 — ap Az — Bo(B1 B2 + B3 By)
—Ba(B1As + By A1 + B3 Ay + B4 A3)
—B6(A142 + A5 A,)

~ 4
—3%1B3(232,, |B;* — |Bs))

4By — 2xBy— Ay — 2B B3 —454(32143 + B3 Ay)
—P5AsA3 — 3%2B4(23,_1 | Bj|* — | Bal?).
(14

Now observe that for k2 =
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—k* 4+ 2Pk -1
k214 ek — 1
= —k* 4+ 2k% — 1 4 2eyk?
= 2¢ex.

ou(k) =

-,

We obtain a similar relation for o, (k). This allows
us to rewrite the linear terms in the amplitude
equations as 2yA4; = flau(E)Ai and 2yB; =
e Loy (k)B;.

Recalling that T' = et, we rescale A; and B; as

. dA; dA;dT  dA;

Ai=edi dt AT dt ~ dr”
. dB; dB;dT"  dB;

Bi = &b dt  dT dt _ dT°
di = £y

Using these and the earlier rescaling 412 = €712,
we obtain, after multiplying through by &2, the
following set of differential equations (the hat
notation has been suppressed on all A; and B;):

% = JU(E)Al —o1 By — 51A§A3
—B3(A3B;3 +4ABB§) — Ps B3B3
*3’Y1A1(2 Zj:l |Aj|2 - |A1|2)

dAy

= O’u(k)AQ — a132 — ﬂl(ATAg, + A§A4)
—B3(A1Bs + A3BY + AyB; + A3 By)
—B5(B1 B3 + B3 B,)
=3 A2(2 305, 1457 — |4s/?)

243 = 5, (k)As — a1 B3 — B1(A1 Ay + A5 Ay)
—B3(A1Bs + A3By + A5By + Ay B3)
—f5(B1B2 + B3 By)
=311 45(2 307 |45 — [4s]?)

s = 5, (k) Ay — a1 By — B1ArAs
—63(A2B3 +4A3.BQ) — ﬂ5BgB3
=371 A44(2 375|457 — [A4]?)
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(1]

(2]

(3]
(4]

(5]
(6]

(7]

in coupled ...

By — 5, (k)B1 — az Ay — B2 B3B3
—Ba(B3 Az +4B?,A§) — BsA5 A3
_3'7231(2 Zj:l |Bj‘2 - |Bl|2)

B2 — 5,(k)Bs — asAs — B2(Bi Bs + B3 By)
—Ba(Bi Az + B3 A7 + B4 Aj + B3 Ay)

—B6(AT Az + A3Ay)

—37%2B5(2 32, | B2 — |Bs?)

4Bs — 0,(kK)Bs — asAs — B2(B1 By + B3 By)
—B4(B1Az + By Ay + B5 Ay + B4 A3)

—B6(A142 + A5 Ay)

~372B3(23,_, |Bj | — |Bs]?)

By — ,(k)By — asAy — B2 B2 B3
—B4(B2 A3 +4B3A2) — e A2A3
—372B4(2 Zj:l |Bj‘2 —|Baf?).
(15)
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