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Abstract—The goal of this paper is to outline a
novel method of detecting topographical eye diseases
using a mobile phone. Because the shape of the
eye is of concern, its exterior will be evaluated.
The description and current implementation of the
technique will be discussed, where the keratoconus
disease is used as an example. The technique uses
pictures taken of the eye using the onboard camera,
and each one is compared to idealized images
rendered in the phone. The pictures taken will be
compared to the idealized images to search for the
presence of the disease.
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I. INTRODUCTION

The goal of this paper is to present a novel
method of detecting topographical eye disorders
which makes use of a mobile phone. The goal
is to allow anyone to find diseases in their early
stages and warn them to check with a doctor. It
works by taking pictures from the camera and
comparing them to rendered images of idealized
eye shapes. Mobile phones were chosen to provide
an accessible method of looking for diseases: they
are fast, cheap, and packed with sensors [7]. As

a result, the goal of accessibility has dictated the
method developed here.

It was determined that no additional hardware
must be connected to the phone in order to make it
truly accessible. Many papers such as the one writ-
ten by Yoon et al [14]; Maeda et al [9]; and Beling
da Rosa [5] show eye disease detection methods
that require the use of external accessories. On
contrast, this method only uses the accelerometers,
gyroscope, and camera.

This paper is focused on topographical disorders
that affect the shape of the eye, and are not trivial
to detect without equipment of some sort. This
is because shape variations are on the millimeter
scale. This makes them a perfect match for a
mobile phone. This method can be applied to the
keratoconus disease, which distorts the cornea of
the eye into a cone-like structure. Typical shapes
are rounded and ellipsoidal in nature. However, the
cone-like shape affects refraction of light entering
the eye and hampers vision [13]. Figure 1 shows
this effect by presenting a map of the sagittal
curvature of a diseased eye. The sagittal curvature
is defined as a reciprocal of the normal distance
from the corneal surface to the optical axis line
within the eye. This map is indicative of the shape
of the corneal surface. Keratoconus is manifested
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Fig. 1. A topographic map of a diseased cornea
[12]

in different ways in these maps; in this example,
the bean-shaped red region is an indicator.

Section II will introduce optical terminologies,
followed by Section III which has previous work.
In Section IV, we will present a novel method for
detecting the disorders of the eye.

II. THE BLINN-PHONG LIGHTING MODEL

Due to the fact that this paper involves cam-
eras and computer rendering, it is important to
introduce the terminologies used. The computer
rendering uses an optical approximation scheme to
simulate the interaction with materials and light.
This scheme is known as the Blinn-Phong shading
model [2]. In this model, light reflected off a
surface can be broken into three components: the
ambient, diffuse, and specular component. The
ambient component is - as the name suggests -
the background light of the scene. The diffuse
component is caused by light striking the surface
and scattering around at multiple angles. This
causes a smooth, chalky effect that is visible in
Figure 2. Finally, the specular component governs
the ”shininess” of the surface - the outgoing light
scatters in one specific direction. Equation (1) is

Fig. 2. A Sphere with only diffuse components enabled

Fig. 3. The scattering patterns of diffuse and specular light
[6]

Fig. 4. The vectors used in the Blinn-Phong equation [8]

the Blinn-Phong shading equation.

(1)c = (N · L) · d+ (N ·H)α · s+ a

The values a, d, and s are the colors of the
ambient, diffuse, and specular components respec-
tively. In addition, α is the specular component
and controls the shininess. The vector N is the
surface normal of the material, L is the vector
from the light source to a point on the surface,
and H is the vector that lies halfway between the
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normal and light vector. These vectors can be seen
in Figure 4. The output of this equation is a pixel
color value. This equation was applied to all pixels
being rendered.

III. PREVIOUS WORK

A. Three-dimensional Reconstruction Methods

Plenty of literature has been found for three-
dimensional shape reconstruction as it is a famous
problem in computer vision. To begin, Balzer and
Werling describe in [1] the formulation of the
problem involving the reconstruction of specular
surfaces, as well as some methods. Unfortunately,
they require the use of a screen to project fringes,
which cannot be achieved with only a mobile
phone. Looking further, Crispell, Lanman, et al
show how to reconstruct surfaces using only a
camera in [4]. However, their method works by
detecting depth discontinuities, which do not exist
on an eye. Another work by Zhang, Tsai, and
Shah that is shown in [15] describes how they
did reconstruction with a camera. It used a static
camera with a moving light source. This setup
does not seem appropriate for the goals, as it
would require deliberate and precise movement of
light sources. In addition, the approach used by
Magda, Kreigman et al shown in [10] can be used
for reconstruction, but their setup contradicts the
imposed restrictions.

Yoon, Prados, and Sturm show in [14] how they
performed three-dimensional reconstruction. Their
work is based on multiple photographs of the ob-
ject at different, known positions. An initial shape
was then fed into the algorithm. Their algorithm
projected one of the photographs onto the shape,
and drew this projection from the perspective of
the other images within software. The rendered
images and their corresponding photographs are
then compared for their dissimilarity. After com-
puting an error value, it was minimized by using
variational calculus, and the process was be ap-
plied again for different pictures to give an iterative
improvement of the shape. This method fits within
the requirements of the setup, but is computation-
ally intensive and complex to implement.

B. Other Methods

Techniques to scan for eye disorders without any
sort of reconstruction have also been used. Maeda
et al showed in [9] how they could detected kera-
toconus using a device called a videokeratoscope.
Even though it does require an external piece
of hardware, it shows in detail how to classify
diseased eye using discriminant analysis. Further-
more, André Luı́s Beling da Rosa detailed in [5]
how to detect and classify diseased eyes using
external hardware that projects circular rings onto
the eye. The imperfections on the eye shape will
distort those projections, which are then detected
and analyzed with Zernike polynomials.

IV. CURRENT WORK

As seen above, literature on this problem is
scarce. For this reason, we developed a new
method that can practically detect the diseases.

A. Procedure

The technique presented relies on taking a series
of pictures of the eye and comparing them with
computer-generated images. The user moves the
phone in a circular arc around the eye while
taking a series of pictures. At the same time,
the accelerometers and gyroscope compute the
exact position and orientation of the phone at the
instant each photo was taken. Internally, images
of an idealized eye are being be rendered from
the perspective of the position and orientation data
collected at the time of each photograph. Each
picture then has a corresponding synthetic image,
and they are compared to find diseases. Figure 5
gives a graphical description of this procedure.

Rendering the image requires a high level of
accuracy, which is provided by real-time computer
graphics techniques. Physically-based shaders sim-
ulates materials and light based on measured phys-
ical parameters [11]. Coupled with faster hard-
ware, the images render within a few milliseconds
[7].

The geometry of the idealized shape does not
necessarily have to be a real eye shape. It simply
needs to be able to function as an appropriate
model. This depends on the type of disease looked
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Fig. 5. The process run when each image is captured

for. The implementation shown in the next section
elaborates on this point.

B. Current Implementation

The above process has been partially for the
sake of simplicity and to verify our models. This
has been implemented on an iOS device, using the
Metal framework. It can be carried over to other
platforms as well. Below is a description of the
stages of our implementation.

1) The Shapes Chosen: The first stage was to
create phantoms. Cameras typically exhibit non-
ideal effects like noise [3]. Phantoms on the other
hand, have none of these. They were rendered on
the device. For the ”idealized shape”, a simple
colored sphere was used. As described in the
introduction, the keratoconus disease is the main
focus. This is a disease caused by conical dis-
tortions of the eye. As a result, conical shapes
were used for the phantoms. Two phantoms were
chosen to model non-ideal eye shapes: a cone
and a paraboloid. The cone modeled a worst-case-
scenario; whereas a paraboloid is qualitatively
rounder and less ”pointy”, and was used to model
a moderately diseased eye. All phantoms had a
primary color chosen for simplicity. In this case,
the color was red.

Fig. 6. The spherical phantom with its triangles highlighted

Fig. 7. The conical phantom used for a diseased eye

2) Creating the Phantoms: The phantoms
needed to be generated on the device before ren-
dering. Since Metal requires triangular primitives
to draw surfaces, the phantoms were discretized
and then divided into triangular facets. The dis-
cretization stage made use of parametric surfaces
to divide it up into vertices. This procedure was
similar for all phantoms.

After discretizing them, the phantoms were tri-
angulated. Vertices from the discretization stage
were given unique indices and grouped together
in triplets to form triangles. Three index numbers
(that each correspond to a vertex) made up a
triangle. Figure 6 shows the final triangulated
sphere. The paraboloid and cone were triangulated
in a similar manner.

3) Rendering the Images: After creating their
geometry, the phantoms were rendered. Rendering
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was performed at the native resolution to avoid
upscaling artifacts, and anti-aliasing was turned
off in order to eliminate fuzziness. These made
the phantoms sharp. The shading stage used the
Blinn-Phong method as shown earlier to color the
pixels. Since iOS devices were used, the sRGB
color space was adopted. As such, each pixel was
set to an RGBA configuration with 8 bits dedicated
to each subpixel component. For the rest of the
paper, all colors will be presented in terms of their
normalized RGBA intensities. The ambient light
had a color of (1, 1, 1, 1)T with its coefficient set
to 0.5. The diffuse color was (1, 1, 1, 1)T with its
coefficient set to 0.3cos(θ) where θ is the angle
between the light and normal vector. The overbar
denotes the fact that the cosine value was forced to
0 if it happens to be negative. Finally, the specular
color was also (1, 1, 1, 1)T with the coefficient set
to 100. Practically, these values will depend on the
environment, so there was no universally correct
lighting parameters to pick for these phantoms.
Thus, the only requirement was to pick sensible
and realistic values. In essence, this setup gives
the shapes a shiny red material with white lights
pointed at it.

To get pixel values for the rendered images, a
texture was created and configured as a render tar-
get for each frame. After each frame was rendered,
a function would lift the data from the center-
most pixel in the texture to use it for analysis.
The results of this are shown in the next section.

C. Results

Pixel values were read from the render textures
in the process mentioned above and used for
analysis. Even though four color values were lifted
for each pixel, the phantoms only had red color
components (see Figure 5). As shown previously,
this is because red is a primary color, so only one
value per pixel was considered. Hence, only the
red values were plotted.

As written earlier, the camera was moved in a
circular arc. Therefore, each successive data point
corresponds to a larger polar angle. In the sim-
ulation, the phantoms were rotated at a constant
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Fig. 8. The data for the idealized spherical model
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Fig. 9. The data for the mildly diseased paraboloid model

angular velocity; hence, the sample points were
regularly spaced.

In all curves, it is first apparent that there are
zeros trailing on each side. A zero value means that
a black pixel was sampled, so for this to happen, a
black pixel must have existed in the middle of the
screen. Figure 7 shows that the background was
pure black; which means that during the rotation,
the background was presented on the middle of the
screen. This is because the rotation axis was not
aligned with the center of the phantoms. Instead,
it was aligned with their apexes to make it more
like a real world situation.

In addition, each curve shows a differing inten-
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Fig. 10. The data for the heavily diseased cone model

sity distribution according to the viewing angle.
The Blinn-Phong model written above shows that
the reflected intensity depends on the material
parameters (ambient, diffuse, and reflection coef-
ficients), the light color values, the surface texture
colors, and the angle made by the light on the sur-
face normals. Since everything besides the normals
was constant, it is apparent that the variations are
caused by the geometry of each phantom.

The curves presented have a patterns in the
form of their concavities. The sphere has an in-
flection point in the region of the 90◦angle. This
is very strongly apparent from the graph. The
cone, which models a heavily diseased eye, has
no inflection point visible in the sampled region
of its curve; only in the step discontinuities like
all other shapes. Its concavity is strongly negative.
The paraboloid, however, has an inflection point
in its curve for the sampled region. This point is
not as strongly visible as the sphere, which leads to
the idea that it lies as an intermediate step between
the sphere and the cone. This corresponds to the
intended purposes of the curves. It is worth inves-
tigating this effect in future works, and applying
it to more realistic images of the eye.

These results are relevant to the problem of
detecting keratoconus as they present a relation
between the geometry of the cornea and the phan-
toms. The sphere, cone, and paraboloid were in-

tended to model three different degrees of disease.
Consequently, it was expected that the sphere and
cone exhibit unique characteristics in their inten-
sity curves, with the paraboloid showing some-
thing ”in-between” the two as the paraboloid was
intentionally used to model an intermediate form
of the disease.

In summary, the differences in intensity between
the different modeled geometry opens the way
to a novel method of discriminating between the
various keratoconus disease in the cornea.

V. CONCLUSION

In this paper, we investigated a novel method
to detect topographical eye diseases such as ker-
atoconus. It utilizes camera, accelerometers, gy-
roscope, and rendering hardware of the mobile
phone. The implementation was successful in find-
ing a correlation between the varying degrees of
diseased eyes. This approach is worth pursuing
in future works; using real images and further
investigating the correlation between the degrees
of disease and the curves fetched.
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