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Developing Convolutional Neural Networks-Based
System for Predicting Pneumonia Using X-Radiography
Image

Peter T. Habib *1, Alsamman M. Alsamman2, Sameh E. Hassanein3, and
Aladdin Hamwieh1

Abstract
Pneumonia is a respiratory disease caused by Streptococcus Pneumoniae
infection. It is a life-threatening disease that causes a high mortality rate for
children under 5 years of age every year. Under such circumstances, we
have a vital need to develop an appropriate and consistent protocol for the
identification and diagnosis of pneumonia. The incorporation of
computational approaches into the diagnosis of disease is extremely
efficient, promising and reliable. Our goal is to integrate these methods
into pneumonia routine diagnosis to save countless lives around the world.
We used the machine learning algorithm of Convolutional Neural
Networks (CNNs) to identify visual symptoms of pneumonia in X-ray
radiographic images and make a diagnostic decision. The dataset used to
construct the computational model consists of 5844 X-ray images
belonging to the pneumonia affected and normal individuals. Our
computational model has been successful in identifying pneumonia
patients with a diagnosis accuracy of 84%. Our model may increase the
efficiency of the pneumonia diagnosis process and accelerate
pathogenicity studies of the disease.
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Introduction
Pneumonia is a bacterial disorder that causes severe symptoms such as

grunting, chest retraction, central cyanosis, obtundation, lethargy, convulsions and
inability to feed or drink [1,2]. Each year about 1,400 cases of pneumonia occur in
100,000 children with around 1 in 71 babies. According to a recent study,
pneumonia claimed the lives of over 800,000 children under the age of five last
year, or one child every 39 seconds [3] .

According to the American Lung Association, pneumonia can be diagnosed
in various ways, including a blood examination, pulse oximetry, sputum analysis
on a sample of mucus, arterial blood gas examination, pleural fluid culture, or
bronchoscopy [4]. Despite the many methods available to diagnose pneumonia,
chest radiography remains the main method used for diagnosis. Although x-rays
are commonly used, it is difficult to diagnose them based solely on these images.
Perusing these images is a bottleneck problem because the area or areas of
increased opacity are usually determined by pneumonia [5,6].
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In fact, accuracy of the diagnosis of pneumonia is very
limited due to certain causes of opacity which are difficult to
account for. In this regard, many advances have been
achieved by the application of machine learning (ML)
techniques in medical diagnosis. The development of an
artificial intelligence pneumonia diagnostic framework has
recently become a hot topic in medical bioinformatics. Such
frameworks may help radiologists interpret medical images
using additional perspectives developed by computer
systems [7] ⁠ .

Continuous improvement of such frameworks using
new ML algorithms and techniques could provide more
accuracy and ease of use of computer platforms. In this
regard, Python programming language provides a hundreds
of library. Sci-kit learn [8] ⁠ , Tensorflow [9] ⁠ , and Keras
[10] ⁠ are the most popular libraries ML programming.
These ML libraries have been shown to have an impact on
the integration of ML programming in biological data
analysis [11,12]. In addition, AlexNet is the name of a
convolutional neural network (CNN) algorithm designed for
large-scale visual recognition. AlexNet has been
successfully used for pathological brain detection [13–15].

In this research, we are trying to use highly
specialized ML subtype for image classification to resolve
many complications of routine pneumonia diagnosis. Using
x-images this tool may be used for diagnosis of pneumonia.
This tool will also be available as user-friendly applications
which can be used with the minimum programming skills. In
addition, we aim to develop a diagnostic software that could
be easily updated, modified and integrated into different
medical diagnostic systems.

Materials and Methods

Data collection
The dataset is composed of 5844 X-rays images

belonging to normal and pneumonia patients. The dataset
consists of images with high resolutions and satisfied
statistical variance (Figure 1). The dataset was retrieved
from kaggle database [16,17]. This data was collected from
retrospective samples of one to five year-old pediatric
patients.

Figure 1 : Sample X-ray image of normal (A) and lung
pneumonia (B).

Model construction and validation
The dataset of X-rays images have been used for ML

model training (5216 image) and validation (624 images).
The AlexNet architecture yielded 37% accuracy at the
beginning of the design. Our ML model design is inspired by
AlexNet structure, where the architecture consists of eight
constitutional layers (Figure 2 and Table 1).

Figure 2 : The architecture of the ML neural network used to
diagnose pneumonia from X-rays images .
Table 1: Description of the structure of the neural network
architecture.

Results and Discussion
Diagnosis of pneumonia is very difficult due to hidden

factors causing opacity such as pulmonary edema, bleeding,
atelectasis or lung cancer. When examining an area of
increased opacity in the chest radiography, it is critical to
determine where increased opacity occurs [18,19].
Computational analysis integration could accelerate
pneumonia and enhance the routine medical diagnosis
system.

A highly specialized sub-type of machine learning for
image classification called deep learning networks has been
used in current research to detect lung pneumonia from X-ray
images (Figure 2). We analyzed a dataset of 5844 images of
chest X-ray film to diagnose pneumonia using ML pipeline.
AlexNet's neural network architecture has produced an ML
model accuracy of 84%.
Conclusion

Deep learning is expected to lead to a revolutionary
progression in the efficacy of medical diagnosis using
radiological methods around the world. We ML models
and novel diagnostic approaches for various x-ray
abnormalities to detect pneumonia. Our pipeline may
trigger the impact of artificial intelligence, which will

Layers Feature Map Size Strides Dilation Rate Activation
Input Image 1 (150, 150, 3) 1 1 relu
1 Convolutional 3 (150, 150, 3) 1 1 relu

Max Pooling 32 (148, 148, 32) 1 1 relu
2 Convolutional 32 (74, 74, 32) 1 1 relu
3 Convolutional 180 (72, 72, 180) 1 1 relu
4 Convolutional 150 (70, 70, 150) 1 1 relu

5
Convolutional
Transpose 100 (68, 68, 100) 1 1 relu

6 Convolutional 150 (70, 70, 150) 1 1 relu
Max Pooling 120 (68, 68, 120) 1 1 relu

7 FC - 138720 - - softmax
Output FC - 1000 - - softmax
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defiantly lead to an enormous improvement in the visual
diagnosis of many diseases.
Availability
The Python source code we have used is freely available

at : https://github.com/peterhabib/PneumoniaAI . This code
can be executed interactively in a Python command line.
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