ETHNOBOTANICAL STUDY OF MEDICINAL PLANT USAGE DURING COVID-19 PANDEMIC: A COMMUNITY-BASED SURVEY IN INDONESIA

NI MADE DWI MARA WIDYANI NAYAKA^{1*}, PUTU ERA SANDHI KUSUMA YUDA¹, DWI ARYMBHI SANJAYA², DESAK KETUT ERNAWATI³, ERNA CAHYANINGSIH¹, NI LUH KADE ARMAN ANITA DEWI¹ AND MARIA MALIDA VERNANDES SASADARA¹

¹Department of Natural Medicine, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Denpasar, 80233, Indonesia ²Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Denpasar, 80233, Indonesia

³Departement of Pharmacology and Therapy, Faculty of Medicine, Udayana University, Denpasar, 80232, Indonesia

Received 21 July 2022 / Revised 1 June 2023 / Accepted 4 June 2023

ABSTRACT

Before the availability of a vaccine, Indonesian population relied on traditional medicines to prevent COVID-19. Any species used by indigenous people could lead to further investigations in modern pharmacology, to preserve ancient knowledge, and to plan for plants' conservation. The study aimed to discover and record species, methods of preparation, route of administration, and motivation in using medicinal plants by the Indonesian population during the COVID-19 pandemic. Participants of survey were selected from the people who live in Java and Bali for responding to an online structured questionnaire. Relative Frequency of Citation (RFC) was employed in the quantitative analysis of the collected data. The pharmacological relevance of the five plants with the highest RFC was further reviewed. The results showed that respondents used 59 plants from 28 families. Five species with the highest RFC were *Curcuma longa* (0.707), *Zingiber officinale* (0.674), *Cymbopogon citratus* (0.269), *Kaempferia galanga* (0.174), and *Curcuma zanthorrhiza* (0.165). Most plants were prepared by boiling (77.97%) and administered orally as a single ingredient or mixed with other herbals. Respondents believed that the plants were beneficial as immune-booster (71.26%), maintain good health (24.85%) and stamina (12.28%), and prevent viral infection, including COVID-19 (5.39%). The most commonly used plants might be scientifically based to boost immunity. However, their usage against COVID-19 and the medicinal value of herbal mixtures should be further investigated.

Keywords: COVID-19, Ethnobotany, Indonesia, Medicinal plants

INTRODUCTION

Corona Virus Disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It was found in China in December 2019 and spread to other countries, including Indonesia. The first two confirmed COVID-19 cases in Indonesia were reported on March 2, 2020, and the numbers keep rising since then (Djalante *et al.* 2020). Based on history, previous SARS-CoV coronavirus also caused an outbreak in China in 2003.

The Indonesian Ministry of Health released health protocols to prevent and control ID-19 rch 2, then COVID-19 (HK.01.07/MENKES/382/2020), which included the suggestion to wear masks, washing hands frequently, social distancing, and

washing hands frequently, social distancing, and immunity enhancement through clean and healthy living behavior. During the SARS outbreak, natural medicine showed beneficial effects in preventing and treating patients, particularly in high-risk subjects (Boozari &

The genetic sequence analysis showed that SARS-CoV-2 was similar around 79% to SARS-

CoV. Thus, most of the studies on its

prevention and medication were adopted from

the previous outbreak (Ghaffari et al. 2020).

^{*}Corresponding author, email: nimade.nayaka@unmas.ac.id; nimade.nayaka@gmail.com

Hosseinzadeh 2020; Y. Li et al. 2020). The usage of medicinal plants as a prophylaxis measure against COVID-19 was also recommended by Ayurveda and Traditional Chinese Medicine (Boozari & Hosseinzadeh 2020; Khanal et al. 2020; Vellingiri et al. 2020). Further, many studies have proven the antiviral, antiinflammatory, and immunomodulatory plants of medicinal properties that are potentially helpful to combat viral diseases (Lin et al. 2014; Khanna et al. 2020).

Indonesia has abundant natural resources in plant species and the local people have used them as herbal remedies. Some of the ethnobotanical studies recorded the importance Indonesian biodiversity as traditional of medicines in different health conditions (Nahdi & Kurniawan 2019; Taek et al. 2019; Jadid et al. 2020). Those studies are significantly important to converse precious indigenous knowledge and publish them as academic literature. In the present study, we conducted an online survey to identify the use of medicinal plants by the Indonesian population during the COVID-19 pandemic. The comprehensive data from respondents on the species of medicinal plants, method of preparation and administration, as well as motivation to use, were documented. While antivirus and vaccines are vital, the research on natural medicine regarding COVID-19 may be used as a reference to develop new drug candidates and as homebased remedies in the future that are inexpensive, commonly, and easily implemented in society. The study aimed to discover and to record species, methods of preparation, route of motivation administration, and in using medicinal plants by the Indonesian population during the COVID-19 pandemic.

MATERIALS AND METHODS

Study Area

A survey was conducted in Java and Bali Island (Figure 1), which consist of 7 provinces, namely Special Capital Region of Jakarta (6°12'S, 106°49'E), Banten (6°30'S 106°15'E), West Java 107°30'E), (6°45'S Central Java (7°30'S 110°00'E), Special Region of Yogyakarta (7°47'S 110°22'E), East Java (7°16'S 112°45'E), and Bali (8°20'06"S 115°05'17"E). All the regions have diverse ethnicities such as Bantenese in Banten, Balinese in Bali, and Javanese in other regions. Respected to the ethnicity, each of the regions has its traditional language. However, natives speak Indonesian in their daily lives.

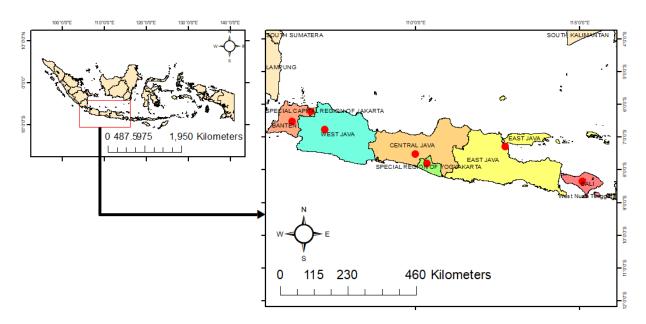


Figure 1 Study area of the ethnobotanical survey in 7 provinces in Indonesia

Data Collection

A cross-sectional study was undertaken using a self-administered and structured questionnaire. The questionnaire consisted of three parts that aimed to collect the respondents demographic characteristics, medicinal plants data, and respondents' motivation using the plants during the pandemic. The data collection was carried out by online survey from June to August 2020. The questionnaire was in Indonesian and examined by two experts in pharmacy and Bahasa Indonesia fields then piloted among 30 participants to ensure its validity before being used to collect data. A guide to estimate the minimum sample size of respondents required for this study based on the formula (Pourhoseingholi et al. 2013).

$$n = \frac{z^2 p(1-p)}{d^2}$$

Where:

- Z = The statistic corresponding to level of confidence.
- P = Expected prevalence of COVID-19.

d = Precision.

In this study, the respondents included indigenous people living in Java and Bali islands and consuming medicinal plants during the COVID-19 pandemic in Indonesia. The respondents' motivation to use the plants was also recorded. Any dubious data that could not be confirmed was excluded. The questionnaire and methodology for this study were approved by the Faculty of Medicine, Udayana University (Ethics approval number: 1195/UN14.2.2.VII.14/LT/2020).

Plant Identification

The scientific names of medicinal plants reported by respondents were determined using cross-references between their local names and database in Indonesian Herbal Pharmacopeia, Indonesian Herbal Formulary (PERMENKES NO.6/2016), and Indonesian Traditional (HK.01.07/MENKES/ Medicine Formulary 187/2017). Herbal specimens could not be collected due to the strict travel restrictions regulated by the Indonesian government during the COVID-19 pandemic in the study area. The scientific names of the reported plants were checked with The Plant List website (accessed on January 8, 2021, http://www.theplantlist.org).

Data Analysis

The collected data were evaluated by using Microsoft Office Excel (2016) spreadsheets. Further, quantitative data analysis to show the local importance of each plant species was demonstrated by using the relative frequency of citation (RFC) (Aziz *et al.* 2017). with the formula below:

$$RFC = FC/N (0 < RFC < 1)$$

Where:

FC = Number of informants mentioning a particular species.

N = Total number of respondents

RESULTS AND DISCUSSION

Indonesia is an inhabitant of about 80% of the world's medicinal plants which local people use to prevent and cure many ailments (Elfahmi et al. 2014). In the current study, an online survey was conducted to collect data regarding medicinal plant usage by Indonesian during the COVID-19 pandemic. The respondents were limited to those who were native and living in 8 provinces in the two most densely populated islands in Indonesia (Java and Bali islands) (Table 1). Moreover, based on the Indonesian government's official website (www.covid19.go.id), most of the confirmed COVID-19 cases were located in both islands and the prevalence reached 82.2%. Based on the prevalence of COVID-19 and the statistic corresponding to the level of confidence is 1,96 with a precision of 5%, the minimum number of respondents for this study was 224 respondents. However, in this study, 344 respondents participated and this number exceeded the minimum sample.

As shown in Table 1, 82.04% (274) of respondents were female. This result is in line with several studies (Villena-Tejada *et al.* 2021; Brahmi *et al.* 2022; Odebunmi *et al.* 2022). Which indicated the domination of females in using medicinal plants. This predominance is probably related to several factors such as women being more familiar with medicinal plants because they

are also being used as cooking ingredients. Correspondingly, in most populations, women are believed to bear the responsibility for the family health needs causing them to be more informed about using medicinal plants than their male counterparts (Torres-Avilez *et al.* 2016). In the current study, most of the respondents came from the Province of Bali. A Hindu-most populated area in Indonesia (Statistics Indonesia 2010). The Balinese are well known for their local wisdom called Usada, a traditional medicine inspired by the Hindu holy book Ayurveda (Muderawan *et al.* 2020). Age is another sociodemographic factor contributing to the use of medicinal plants. Several studies found that older age was the main user of traditional medicine (Rahayu *et al.* 2020). On the contrary, 67.37% (225) of respondents in this study were 20 to 40 years old. Indicating the younger age group was also interested in using medicinal plants during the pandemic of COVID-19. Similar survey studies conducted in Algeria and Morocco during the pandemic also showed similiar results (Belmouhoub *et al.* 2021; Brahmi *et al.* 2022; Chebaibi *et al.* 2022).

Table 1	Demographic	characteristics	of respondents
---------	-------------	-----------------	----------------

Characteristic	Number of Respondents (n = 334)	Percentage (%)
Gender		
Male	60	17.96
Female	274	82.04
Province of Origin		
Special Capital Region of Jakarta	13	3.89
Banten	2	0.60
West Java	35	10.48
Central Java	8	2.40
East Java	24	7.19
Special Region of Yogyakarta	6	1.80
Bali	246	73.65
Age (years)		
< 20	35	10.48
20 - 40	225	67.37
> 40	74	22.16
Religion		
Islam	66	19.76
Hindu	247	73.95
Protestant	12	3.59
Catholic	8	2.40
Buddha	1	0.30

Table 2 Medicinal plants used by respondents during the COVID-19	pandemic in Indonesia
--	-----------------------

Family	Scientific Names	Local Names (Indonesia)	Common Names (English)	Part used	Method of Preparation ^a	RFC ^b	Motivation of use ^c	Reported from ^d
Acanthaceae	<i>Andrographis</i> <i>paniculata</i> (Burm.f.) Nees	Sambiloto	Green chiretta	Leaves	Boil	0.030	A, B, D, E	1, 5, 7
Amaryllidaceae	Allium cepa L.	Bawang merah	Shallot	Bulb	Boil, burning, eaten directly	0.006	В	6,7
	Allium sativum L.	Bawang putih	Garlic	Bulb	Eaten directly	0.063	A-E	3-7
Anacardiaceae	<i>Spondias pinnata</i> (L.f) Kurz.	Cemcem	Common hog-plum	Leaves	Cold infusion	0.006	В	7
Annonaceae	Annona muricata L.	Sirsak	Soursop	Leaves	Boil	0.015	A-D	3,7
Apiaceae	Apium graveolens L.	Seledri	Celery	Leaves	Boil	0.003	В	3
-	<i>Čentella asiatica</i> (L.) Urb.	Pegagan	Asiatic pennywort	Leaves	Boil, eaten directly	0.021	A,B,D,E	7
	Coriandrum sativum L.	Ketumbar	Coriander	Fruit	Boil	0.012	A,B,D,E	3, 5, 7
	Foeniculum vulgare	Adas	Fennel	Fruit	Boil	0.003	В	4

Family	Scientific Names	Local Names (Indonesia)	Common Names (English)	Part used	Method of Preparation ^a	RFC ^b	Motivation of use ^c	Reported from ^d
	Mill.	()						
Arecaceae	Cocos nucifera L.	Kelapa	Coconut	Fruit (water & oil)	Eaten directly	0.009	В	7
Asteraceae	Blumea balsamifera (L.) DC.	Sembung	Buffalo-ear	Leaves	Boil	0.006	B,D	7
	<i>Gynura procumbens</i> (Lour.) Merr.	Sambung nyawa	Longevity spinach	Leaves	Boil	0.003	В	6
	<i>Pluchea indica</i> (L.) Less.	Beluntas	Indian camphorweed	Leaves	Boil	0.009	В	7
	Sonchus arvensis L.	Tempuyung	Perennial Sow-thistle	Leaves	Boil	0.003	В	7
Basellaceae	<i>Anredera cordifolia</i> (Ten.) Steenis	Binahong	Gulf madeiravine	Leaves	Boil	0.003	В	1
Caricaceae	Carica papaya L.	Рерауа	Papaya	Leaves	Boil	0.003	Е	3
Fabaceae	Caesalpinia sappan L.	Secang	Brazilwood	Wood	Boil	0.027	A-E	3-7
	<i>Clitoria ternatea</i> L.	Bunga telang	Asian pigeonwings	Flower	Boil	0.009	A,D	5,7
	Erythrina variegata L.	Dadap	Tiger's claw	Leaves	Boil	0.003	A,D	7
	Tamarindus indica L.	Asam jawa	Tamarind	Fruit	Boil	0.060	A-E	1, 3-7
Lamiaceae	Mentha piperita L.	Pipermin	Peppermint	Leaves	Hot infusion	0.009	A,B,D,E	2, 3, 7
	Peronema canescens Jack	Sungkai	False elder	Leaves	Boil	0.003	В	3
Lauraceae	Cinnamomum	Kayu manis	Batavia	Bark,	Boil, burning,	0.114	A-E	1-7
	<i>burmanni</i> (Nees & T.Nees) Blume		cinnamon	Leaves	cold and hot infusion			
Malvaceae	Hibiscus sabdariffa L.	Rosela	Roselle	Flower	Boil	0.003	В	7
Meliaceae	<i>Azadirachta indica</i> A.Juss	Mimba	Neem	Leaves	Eaten directly	0.003	В	7
Moraceae	Artocarpus altilis (Parkinson ex F.A.Zorn) Fosberg	Sukun	Breadfruit	Leaves	Boil	0.003	В	7
Moringaceae	<i>Moringa oleifera</i> Lam.	Kelor	Drumstick tree	Leaves	Boil, hot infusion	0.045	A-E	3-7
Myrtaceae	<i>Melaleuca cajuputi</i> Powell	Kayu putih	Cajuput	Oil	N/A	0.003	С	1,7
	<i>Syzygium aromaticum</i> (L.) Merr. & L.M.Perry	Cengkeh	Clove	Flower	Boil, hot infusion	0.048	A-E	2-7
	Syzygium polyanthum (Wight) Walp.	Salam	Indonesian bay leaf	Leaves	Boil	0.021	A-E	3, 5-7
Oleaceae	Olea europaea L.	Zaitun	Olive	Fruit (Oil)	Eaten directly	0.003	В	3
Pandanaceae	Pandanus amaryllifolius Roxb.	Pandan	Pandan	Leaves	Boil	0.003	A,D	2
Phyllanthaceae	Sauropus androgynous (L.) Merr.	Katuk	Sweet leaf	Leaves	Cold and hot infusion	0.021	A,B,D,E	7
	Phyllantus niruri L.	Meniran	Gale of the wind	Leaves	Boil, hot infusion	0.009	А,В	5,7
Piperaceae	Piper betle L.	Sirih	Betel	Leaves	Boil, eaten directly	0.072	A-E	1,3
	<i>Piper crocatum</i> Ruiz & Pav.	Sirih merah	Celebes pepper	Leaves	Boil	0.072	В	7
	Piper nigrum L.	Lada	Black pepper	Seed	Boil	0.003	В	3
	Piper retrofractum Vahl	Cabai jawa	Javanese long pepper	Fruit	Boil	0.003	Е	7
Poaceae	<i>Cymbopogon citratus</i> (DC.) Stapf.	Serai dapur	Lemongrass	Stem, Leaves	Boil, hot infusion	0.269	A-E	1-7
	Oryza sativa L.	Beras	Rice	Starch	Cold infusion	0.024	A,B,D,E	3-7
Ranunculaceae Rutaceae	Nigella sativa L. Citrus aurantiifolia (Christm.) Swingle	Jintan hitam Jeruk nipis	Black seed Egyptian lime	Seed Fruit	Boil Juiced, boil, hot and cold infusion	0.012 0.177	А,В,Е А-Е	3, 5, 7 1-7
	Citrus hystrix DC. Citrus limon (L.)	Jeruk purut Lemon	Kaffir lime Lemon	Leaves, Fruit Fruit	Boil Cold and hot	$\begin{array}{c} 0.006 \\ 0.108 \end{array}$	В, Е А-Е	6 1, 3-5, 7
	Osbeck <i>Citrus reticulata</i>	Jeruk	Mandarin	Fruit	infusion Eaten directly	0.021	A,B,E	4,7

Family	Scientific Names	Local Names (Indonesia)	Common Names (English)	Part used	Method of Preparation ^a	RFC ^b	Motivation of use ^c	Reported from ^d
	Blanco							
Rubiaceae	Morinda citrifolia L.	Mengkudu	Noni	Fruit	Juiced	0.015	B-D	7
Schisandraceae	<i>Illicium verum</i> Hook.f.	Bunga lawang	Star anise	Flower	Boil	0.009	А,В,Е	4, 5, 7
Theaceae	<i>Camellia sinensis</i> (L) Kuntze	Teh	Tea plant	Leaves	Boil, hot infusion	0.012	B-D	1, 3, 7
Zingiberaceae	<i>Alpinia galanga</i> (L) Willd.	Lengkuas	Greater galangal	Rhizome	Boil, hot infusion	0.054	A-E	1, 4, 5, 7
	Boesenbergia pandurata (Roxb.) Schltr.	Temu kunci	Chinese keys	Rhizome	Boil	0.006	B,E	7
	Curcuma longa L.	Kunyit	Turmeric	Rhizome	Boil, burning, hot infusion	0.707	A-E	1-7
	<i>Curcuma</i> zanthorrhiza Roxb.	Temulawak	Javanese turmeric	Rhizome	Boil, hot infusion	0.165	A-E	1-7
	<i>Curcuma zedoaria</i> (Christm.) Roscoe	Temu putih	Zedoary	Rhizome	Boil	0.006	A,D,E	5,7
	Amomum compactum Sol. ex Maton	Kapulaga	Javanese cardamom	Seed, flower	Boil, hot infusion	0.018	B,D,E	3, 5, 7
	Kaempferia galanga L.	Kencur	Cutcherry	Rhizome	Boil, burning, hot infusion	0.174	A-E	1-7
	Kaempferia rotunda L.	Kunyit putih	Peacock ginger	Rhizome	Juice, hot infusion	0.021	A ,B,D, E	5,7
	Zingiber officinale Roscoe	Jahe	Ginger	Rhizome	Boil, burning, hot infusion	0.674	A-E	1-7
	Zingiber officinale var.rubrum Theilade	Jahe merah	Red ginger	Rhizome	Boil, hot infusion	0.039	A ,B,D, E	3, 5-7
	Zingiber zerumbet (L.) Roscoe ex Sm.	Gamongan lempuyang gajah	Bitter ginger	Rhizome	Boil	0.003	Е	7

Notes: ^aAll plants were prepared with water and administered orally, except cajuput by inhalation.

 b RFC = Relative Frequency of Citation,

cA = to keep healthy, B = to boost the immune system, C = to avoid virus infection, including COVID-19,

D = to build stamina, E = other,

^d1 = Special Capital Region of Jakarta, 2 = Banten, 3 = West Java, 4 = Central Java, 5 = East Java, 6 = Special Region of Yogyakarta, 7 = Bali, N/A = not available,

Table 3 Plants mixtures used by respondents during the COVID-19 pandemic in Indonesia

Diana																Mi	xtu	re N	Jo.														
Plants	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
A. sativum	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C. asiatica	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C. nucifera	-	-	$^+$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P. indica	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T. indica	-	-	-	-	$^+$	-	-	-	-	-	-	-	-	-	+	-	-	-	-	+	-	-	-	-	-	-	-	-	+	-	-	-	-
C. burmanni	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-
S. aromaticum	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-
P. amaryllifolius	_	-	-	-	-	-	-	-	-	-	-	-	-	+	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P. betle	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-
C. citratus	_	-	_	_	_	_	-	_	_	+	-	-	-	-	-	_	-	_	_	-	_	-	_	_	+	+	+	+	+	_	+	+	-
O. sativa	_	_	_	_	_	_	-	_	+	-	-	-	-	-	-	-	-	_		-	_	-	_	-	_		-	-	-	-	_		-
C. aurantiifolia	_	-	_	_	_	+	-	_	_	-	-	+	+	-	-	_	-	_	+	-	+	-	+	_	_	+	_	-	_	_	_	+	-
C. lemon	+	-	-	_	-	_	+	-	_	-	+	-	_	-	-	-	-	-	-	_	-	-	-	+	-	-	+	-	_	-	_	-	-
C. sinensis	+	+	_	_	_	_	-	_	_	-	-	-	-	-	-	_	-	_	_	-	_	-	_	_	_	-	_	-	_	_	_	-	-
A. galangal	_	-	_	_	_	_	-	_	_	-	-	-	-	-	-	_	-	_	_	-	+	-	_	_	_	-	_	-	_	_	_	-	-
C. longa	_	-	+	+	+	+	+	+	_	-	-	-	_	-	-	-	+	+	+	+	+	+	+	+	+	-	_	-	+	+	+	+	+
C. zanthorrhiza	_	-	_	_	_	_	-	_	_	-	-	-	+	+	-	_	-		_	-	_	+	+	_	_	-	_	-	_	+	+	-	+
K. galangal	_	-	-	_	-	_	_	-	+	-	-	-	_	-	-	+	-	+	-	_	-	-	-	-	-	-	-	-	-	-	_	-	+
K. rotunda	_	_	_	_	_	_	-	_	_	-	-	-	_	-	_	_	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	-
Z. officinale	-	+	-	-	-	-	-	+	-	+	+	-	-	-	-	-	+	+	+	-	-	+	-	+	+	+	+	+	+	+	+	+	+
Total plants mixed	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4

Notes: + = plants available in mixtures. * All mixtures were prepared by boiling and administered orally

Plants														Mi	xtur	e N	o.*													
Plants	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
C. asiatica	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-
C. sativum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-
F. vulgare	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-
C. sappan	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	+	-	-	-	+	-	-	+	+	-
C. ternatea	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-
T. indica	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	+	-	-	-	-	-	-	+	-	-	-	-
M. Piperita	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-
P. canescens	_	-	-	-	-	_	-	_	_	-	_	-	_	-	-	_	_	-	_	-	_	_	_	-	-	_	_	-	_	-
C. burmanni	-	-	_	-	-	_	+	-	+	+	-	-	-	+	-	-	-	-	_	+	-	-	+	+	-	+	+	-	+	-
A. altilis	_	-	-	-	-	_	-	_	-	-	+	-	_	-	-	_	_	-	_	_	_	_	_	-	-	_	_	-	_	-
S. aromaticum	_	_	_	_	_	_	_	_	_	+	_	_	+	_	_	_	_	_	_	+	_	+	_	_	_	+	+	_	+	_
S. polyanthum	_	_	_	_	_	_	_	_	_	-	_	_	-	_	_	_	_	+	_	-	_		_	_	_		÷	_		_
O. europea	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_
P. amaryllifolius																														
S. androgynous	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P. niruri	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P. betle	-	-	-	-	-	-	т	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P. crocatum	-	-	-	-	-	-	-	-	-	-	-	т	-	-	-	-	-	-	т	-	-	-	-	-	-	-	-	-	-	т
	-	-	-	-	-	-	-	-	-	-	-	-	т	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
P. retrofractum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-+	-	-	-	-	-	-	
C. citratus	-	-	-	-	+	+	-	-	-	+	-	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+
C. aurantiifolia	-	+	+	-	+	-	-	-	-	-	-	-	-	-	+	-		-	-	-	-	-	-	+	+	-	-	-	+	-
C. lemon	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	+	-	-	-	-	-
I. verum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	+	-
A. Galanga	+	-	-	+	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-
B. pandurate	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
C. longa	+	+	+	+	+	+	+	+	+	-	-	+	+	+	+	+	-	-	+	+	+	+	+	+	+	+	+	+	+	+
C. zanthorrhiza	-	-	-	-	-	-	-	+	-	-	+	-	+	-	-	+	-	+	-	-	+	+	+	-	-	+	-	+	-	+
C. zedoaria	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A. compactum	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	+	-	-	-	-	+	-	-
K. galangal	+	+	+	+	-	+	-	+	+	-	-	-	-	-	-	-	-	-	+	+	+	+	-	-	-	-	+	+	+	+
K. rotunda	-	-	-		-	-	-	-	-	-	+	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	+	-	+
Z. officinale	+	+	+	+	+	+	$^+$	+	-	+	-	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Z. officinal var.																														
rubrum	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Z. zerumbet	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
Total plants mixed	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	6	6	6	6	6	6	7	7	7	8	9	10

Table 3 Plants mixture used by respondents during the COVID-19 pandemic in Indonesia (continued)

Notes: + = plants available in mixtures. * All mixtures were prepared by boiling and administered orally

	Table 4 Method of	preparation for medicinal	plants used during the COVID-19 p	oandemic in Indonesia
--	-------------------	---------------------------	-----------------------------------	-----------------------

Category	Frequency	%*	
Boil	46	77.97	
Eaten directly	6	10.17	
Cold Infusion	18	30.51	
Hot Infusion	8	13.56	
Burning	5	6.78	

Notes: *some of the plants were prepared by more than one method. Thus, the total percentage may not add up to 100%.

Table 5 The motivation for medicinal plants used by respondents during the COVID-19 pandemic in Indonesia

Category	Frequency	º⁄₀*	
to boost the immune system	238	71.26	
to keep healthy	83	24.85	
to build stamina	41	12.28	
other motives	41	12.28	
to prevent virus infection, including COVID-19	18	5.39	

Notes: *some respondents reported more than one reason for herbal use. Thus, the total percentage may not add up to 100%.

The present study revealed that respondents used 59 species of medicinal plants from 28 families (Table 2) both singly or in herbal mixtures (Table 3). Additionally, most of the plants were prepared by boiling and then consumed orally (Table 4). Indonesian traditional medicine in the form of polyherbal drinks has existed for generations so called loloh (in Bali) and jamu (in Java). Some of the reported plants in the present study that are also used in loloh formulation namely S. pinnata, B. balsamifera, E. variegata., C. burmanni, C. asiatica, A. indica, P. amaryllifolius, P. niruri, S. androgynous, P. betle, C. aurantiifolia, C. zanthorrhiza, K. rotunda, Z. officinale, and Z. zerumbet (Sujarwo et al. 2015). Similarly, other reported plants were commonly available in jamu formula such as C. verum, C. aurantifolia, Z. officinale var. Rubrum, T. indica, A. galanga, C. longa, C. zanthorrhiza, P. niruri. K. galanga, O. sativa, and P. amaryllifolius (Elfahmi et al. 2014; Hartanti et al. 2020). These plants were empirically used for various medicinal purposes (Elfahmi et al. 2014; Sujarwo et al. 2015). Further, the current study revealed that respondents consumed Jamu Kunyit Asam and Jamu Beras Kencur during the pandemic (Table 3, Mixture No. 5 and No. 9, respectively). The composition of herbal mixtures could be varied according to individual preferences and local recipes. For example, Mixture No.20, 29, 45, 52, and 59 in Table 3 showed the variation of Jamu Kunyit Asam. However, there was limited data related to the efficacy of the modified version of jamu formula. Further research should be conducted to support the use of those herbal mixtures in term of efficacy test.

Most respondents believed that the plants' consumption was beneficial during the pandemic they because could enhance immunity, maintain health and stamina, and prevent viral infection (Table 5). A study showed that the interest in and use of immunerelated herbals worldwide increased during the COVID-19 pandemic (Hamulka et al. 2020). Other ethnopharmacological studies confirmed the usage of medicinal plants such as A. cepa, A. sativum, C. asiatica, C. papaya, T. indica, C. burmanni, and C. longa to boost immunity by traditional healers and society in various health conditions (Siew et al. 2014; Anywar et al. 2020; Oladele et al. 2020; Lin et al. 2021). Meanwhile,

review studies confirmed the benefit of natural immune enhancer intakes such as A. panniculata, A. sativum, M. piperita, M. cajuputi essential oil, C. sinensis, N. sativa, and Z. officinale to prevent COVID-19 and improve overall patient health (Boozari & Hosseinzadeh 2020; Sen et al. 2020; Silveira et al. 2020).

Some of the medicinal plants reported in the current study have been also recommended by the Indonesian Ministry Health of (HK.02.02/IV.2243/2020) to maintain wellbeing and prevent illness during the pandemic. In the official announcement, six herbal mixtures consisting of Z. officinale var. rubrum, C. aurantiifolia, C. verum, C. longa, A. galanga, C. zanthorrhiza, asiatica. С. К. galanga, P. amaryllifolius, M. oleifera, and A. sativum. The mixtures were recommended to boost the immune response and also have similar preparation and administration methods as reported in this study. Likewise, C. longa, Z. officinalle, C. verum, and P. nigrum also have been recommended by the Indian Ministry of AYUSH (Ayurveda, Yoga, and Naturopathy, Unani, Siddha, and Homeopathy) to boost immunity as a prophylaxis measure against COVID-19 (Khanal et al. 2020).

The beneficial effect of medicinal plants as immune-enhancer against COVID-19 should be confirmed scientifically. In viral diseases, the infection could be fought by the host's immune response. When viruses infect the host cells, innate immunity blocks virus replication, promotes virus clearance, stimulates tissue repair, and activates a prolonged adaptive immunity (G. Li et al. 2020). Moreover, viral infection and inflammation of lung tissues are observed in COVID-19. Thus, the antiviral and inflammatory activities of medicinal plants are essential properties to combat COVID-19 (Khanal et al. 2020). On the other hand, it should be noticed that the immune system is complicated and highly regulated by numerous molecular and cellular events. Therefore, immunity enhancement may be either valuable or destructive to the organism, depending on the overall degree of modulation and the pathophysiological condition (Gertsch et al. 2011).

Based on the calculation of RFC, five plants had the highest scores: *C. longa*, *Z. officinale*, *C.*

citratus, K. galanga, and C. zanthorrhiza. Therefore, further literature review in the current study was highlighted for those plants. Turmeric (C. longa) contains curcumin, a polyphenol with various pharmacological actions. The compound showed immunomodulation activity through several mechanisms, especially by regulating inflammatory factors (Tasneem et al. 2019; Behl et al. 2021). Likewise, the polysaccharide extract from turmeric could enhance the immune system (Yue et al. 2010). A computational study regarding anti-SARS-CoV-2 showed that curcumin exhibited a high potency to block the virus's main protease (C19M^{pro}), which plays an important role in the viral replication process. Curcumin had lower binding energy to C19M^{pro} than other compounds from P. nigrum, Z. officinale, N. sativa, S. aromaticum, A. sativum and A. cepa (Ibrahim et al. 2020).

Ginger officinale) (Z.contains some compounds with anti-inflammatory and immunomodulatory activities such as 6-gingerol, 6-shogaol, zingerone, and 6-paradol (Choi et al. 2018). An alcohol extract was reported to induce phagocytosis by macrophages in mice while crude extract increased humoral and cellmediated immune responses (Gautam et al. 2020). Meanwhile, another molecular docking evaluation showed the ability of zingiberene, 6gingerol, zingerone, gingerenone-A, 6-shogaol, and 6-dehydrogingerdione to block C19Mpro. But their potencies were considerably low due to higher binding energies than N3 inhibitor as control (Garg et al. 2020).

An *in vivo* and *in vitro* study revealed the immunomodulatory effect of water extract and essential oil from lemongrass (*C. citratus*). The water extract with linalool oxide and epoxylinalool as major compounds could prevent the production of IL-1 β but induce IL-6 production by macrophages. Meanwhile, its essential oils which contained neral and geranial could inhibit cytokine production *in vitro* (Sforcin *et al.* 2009). Moreover, geraniol, another compound in its essential oil, inhibited the S1 subunit in spike proteins of SARS-CoV-2 through a docking simulation (Wani *et al.* 2020).

The rhizome part of cutcherry (*K. galanga*) is rich in bioactive compounds such as ethyl-pmethoxycinnamate and diarylheptanoids with anti-inflammatory and immunomodulation activity (Jagadish *et al.* 2016; Yao *et al.* 2018). Its

polysaccharides isolate enhanced the immunoregulation capability of CD4+ T cells (Yang et al. 2018). Furthermore, a computational study exhibited the activity of its bioactive compounds (kaempferol, kaempferol glycosides, and acylated kaempferol glucoside derivatives) to block the 3a channel protein of SARS-CoV. Inhibition of this channel would inactivate virus production and allow the host to build up its immunity system (Schwarz et al. 2014). Another docking investigation indicated that kaempferol, due to its hydroxyl, ketone, and ether groups, was a stronger C19M^{pro} inhibitor than other tested natural compounds (Khaerunnisa et al. 2020).

The crude polysaccharide extract of Javanese turmeric (C. zanthorrhiza) could enhance the immune system by activating of NF-kappaB 2007). (Kim et al. Xanthorrhizol and C. xanthorrhiza extract significantly inhibited the production of inflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-6 and - 1β , and C-reactive protein (Kim *et al.* 2014). Moreover, curcumin, demethoxycurcumin, and bisdemethoxycurcumin С. in xanthorrhiza (similar compounds also contained in C. longa) showed their potential as C19M^{pro} inhibitors (Khaerunnisa et al. 2020; Sumaryada & Pramudita 2020). However, another study revealed that their inhibition actions were lower than nelfinavir, a protease inhibitor used as a drug standard (Khaerunnisa et al. 2020). Meanwhile, another docking investigation on the similarity of active sites exposed that bisdemethoxycurcumin had a greater ability to inhibit the binding pocket of C19Mpro than N3 inhibitor, as the control ligand (Sumaryada & Pramudita 2020).

Other plants with lower RFC values (Table 2) such as A. galanga and A. paniculata, Citrus sp., C. sinensis, S. androgynous, F. vulgare, O. europea, and graveolens also confirmed A. to have immunomodulatory properties and potential against COVID-19 (Elfahmi et al. 2014; Khaerunnisa et al. 2020; Utomo et al. 2020). Regarding COVID-19, most of the antiviral studies of medicinal plants and their compounds were based on computational methods and resulted in a preview of their potential against COVID-19. Though some of the reported medicinal plants showed low molecular potency in blocking target sites, it is necessary to

highlight that the immunomodulatory actions support their beneficial role during the COVID-19 pandemic. Further pre-clinical and clinical investigations are needed to warrant their efficacy as health-promoting agents against COVID-19. These ethnobotany research results may be necessary to anticipate another transboundary animal or plant diseases pandemic by studying their bioactive compound for pharmacopeia studies in more detail.

CONCLUSION

During the COVID-19 pandemic, there were 59 medicinal plants belonging to 28 families used by Indonesian. The plants were prepared mainly by boiling and administered orally. Based on the RFC value, the most important plants were C. longa, Z. officinale, C. citratus, K. galanga, and C. zanthorrhiza. Also, respondents believed that those plants could boost immunity, maintain health and stamina, and prevent COVID-19. In general, the medicinal plants reported in the current studies were confirmed by scientific literature to be beneficial as immune-booster during the COVID-19 pandemic. Meanwhile, their ability to block SARS-CoV-2 infection was mainly studied only through molecular docking evaluations. More research should be conducted to ensure their potency against SARS-CoV-2 and their efficacy when used as a single ingredient or in mixtures with other herbs. Also, actions should be taken preserve the community's traditional to knowledge of using medicinal plants.

ACKNOWLEDGMENTS

The authors are grateful to the authorities of the Faculty of Pharmacy, Universitas Mahasaraswati Denpasar and Indonesia Government, through the Directorate General of Politics and Public Administration, Ministry of Home Affairs (NO/460.02/350/DV) for approving this study

REFERENCES

Anywar G, Kakudidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H. 2020. Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda. Eur J Integr Med. 35:101011.

- Aziz MA, Khan AH, Adnan M, Izatullah I. 2017. Traditional uses of medicinal plants reported by the indigenous communities and local herbal practitioners of Bajaur Agency, Federally Administrated Tribal Areas, Pakistan. J Ethnopharmacol. 198: 268-281.
- Behl T, Kumar K, Brisc C, Rus M, Nistor-Cseppento DC, Bustea C, Aron RAC, Pantis C, Zengin G, Sehgal A, et al. 2021. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother. 133: 110959.
- Belmouhoub M, Aberkane B, Bey MB. 2021. Ethnopharmacological survey on medicinal plants used by Algerian population to prevent SARS-CoV-2 infection. Ethnobot Res Appl. 22: 1-13.
- Boozari M, Hosseinzadeh H. 2020. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phyther Res. 35(2): 864-876.
- Brahmi F, Iblhoulen Y, Issaadi H, Elsebai MF, Madani K, Boulekbache-Makhlouf L. 2022. Ethnobotanical survey of medicinal plants of bejaia localities from algeria to prevent and treat coronavirus (COVID-19) infection shortened title: phytomedicine to manage COVID-19 pandemic. Adv Tradit Med.: 1-13.
- Chebaibi M, Bousta D, Bourhia M, Baammi S, Salamatullah AM, Nafidi HA, Hoummani H, Achour S. 2022. Ethnobotanical study of medicinal plants used against COVID-19. Evidence-based Complement Altern Med. 2022: 2085297.
- Choi JG, Kim SY, Jeong M, Oh MS. 2018. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacol Ther. 182: 56-69.
- Djalante R, Lassa J, Setiamarga D, Sudjatma A, Indrawan M, Haryanto B, Mahfud C, Sinapoy MS, Djalante S, Rafliana I, et al. 2020. Review and analysis of current responses to COVID-19 in Indonesia: Period of January to March 2020. Prog Disaster Sci. 6: 100091.
- Elfahmi, Woerdenbag HJ, Kayser O. 2014. Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. J Herb Med. 4(2): 51-73.
- Garg S, Anand A, Lamba Y, Roy A. 2020. Molecular docking analysis of selected phytochemicals against SARS-CoV-2 Mpro receptor. Vegetos. 33(4): 766-781.
- Gautam S, Gautam A, Chhetri S, Bhattarai U. 2020. Immunity against COVID-19: Potential role of Ayush Kwath. J Ayurveda Integr Med.

13(1):100350.

- Gertsch J, Viveros-Paredes JM, Taylor P. 2011. Plant immunostimulants - Scientific paradigm or myth? J Ethnopharmacol. 136(3): 385-391.
- Ghaffari S, Roshanravan N, Tutunchi H, Ostadrahimi A, Pouraghaei M, Kafil B. 2020. Oleoylethanolamide, A bioactive lipid amide, as a promising treatment strategy for Coronavirus/COVID-19. Arch Med Res. 51(5): 464-467.
- Hamulka J, Jeruszka-Bielak M, Górnicka M, Drywień ME, Zielinska-Pukos MA. 2020. Dietary supplements during COVID-19 outbreak. Results of Google Trends Analysis supported by PLifeCOVID-19 online studies. Nutrients. 13(1): 54.
- Hartanti D, Dhiani A, Lintang Charisma S, Wahyuningrum R. 2020. The Potential Roles of Jamu for COVID-19: A Learn from the Traditional Chinese Medicine. Pharm Sci Res. 7: 12-22.
- Ibrahim MAA, Abdelrahman AHM, Hussien TA, Badr EAA, Mohamed TA, El-Seedi HR, Pare PW, Efferth T, Hegazy MEF. 2020. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Comput Biol Med. 126: 104046.
- Jadid N, Kurniawan E, Himayani CES, Andriyani, Prasetyowati I, Purwani KI, Muslihatin W, Hidayati D, Tjahjaningrum ITD. 2020. An ethnobotanical study of medicinal plants used by the Tengger tribe in Ngadisari village, Indonesia. Ahmad KS, editor. PLoS One. 15(7): e0235886.
- Jagadish PC, Latha KP, Mudgal J, Nampurath GK. 2016. Extraction, characterization and evaluation of Kaempferia galanga L. (Zingiberaceae) rhizome extracts against acute and chronic inflammation in rats. J Ethnopharmacol. 194: 434-439.
- Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. 2020 Mar. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprint.
- Khanal P, Duyu T, Patil BM, Dey YN, Pasha I, Wanjari M, Gurav SS, Maity A. 2020. Network pharmacology of AYUSH recommended immuneboosting medicinal plants against COVID-19. J Ayurveda Integr Med. 13(1): 100374.
- Khanna K, Kohli SK, Kaur R, Bhardwaj A, Bhardwaj V, Ohri P, Sharma A, Ahmad A, Bhardwaj R, Ahmad P. 2020. Herbal immune-boosters: Substantial warriors of pandemic Covid-19 battle. Phytomedicine. 85: 153361.
- Kim AJ, Kim YO, Shim JS, Hwang JK. 2007. Immunostimulating activity of crude polysaccharide extract isolated from Curcuma xanthorrhiza Roxb. Biosci Biotechnol Biochem. 71(6): 1428-1438.
- Kim MB, Kim C, Song Y, Hwang JK. 2014.

Antihyperglycemic and anti-inflammatory effects of standardized Curcuma xanthorrhiza Roxb. extract and its active compound xanthorrhizol in high-fat diet-induced obese mice. Evidence-based Complement Altern Med. 2014: 205915.

- Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, et al. 2020. Coronavirus infections and immune responses. J Med Virol. 92(4): 424-432.
- Li Y, Liu X, Guo L, Li J, Zhong D, Zhang Y, Clarke M, Jin R. 2020. Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: Protocol for a systematic review and meta-Analysis. Syst Rev. 9(1): 1-6.
- Lin LT, Hsu WC, Lin CC. 2014. Antiviral natural products and herbal medicines. J Tradit Complement Med. 4(1): 24-35.
- Lin Y, Wang S ping, Zhang J yu, Zhuo Z yuan, Li Xin rou, Zhai C jia, Li Xiao xue, Qi F hua, Ding X, Chen C yun, et al. 2021. Ethnobotanical survey of medicinal plants in Gaomi, China. J Ethnopharmacol. 265: 113228.
- Muderawan IM, Budiawan IM, Giri MKW, Atmaja INB. 2020. Usada: The Ethnomedicine of Balinese Society. Int J Ayurvedic Herb Med. 10(6): 3893-3905.
- Nahdi MS, Kurniawan AP. 2019. The diversity and ethnobotanical study of medicinal plants in the southern slope of Mount Merapi, Yogyakarta, Indonesia. Biodiversitas. 20(8): 2279-2287.
- Odebunmi CA, Adetunji TL, Adetunji AE, Olatunde A, Oluwole OE, Adewale IA, Ejiwumi AO, Iheme CE, Aremu TO. 2022. Ethnobotanical survey of medicinal plants used in the treatment of COVID-19 and related respiratory infections in Ogbomosho South and North Local Government areas, Oyo State, Nigeria. Plants. 11(19): 2667.
- Oladele JO, Ajayi EI, Oyeleke OM, Oladele OT, Olowookere BD, Adeniyi BM, Oyewole OI, Oladiji AT. 2020. A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants. Heliyon. 6(9): e04897.
- Pourhoseingholi MA, Vahedi M, Rahimzadeh M. 2013. Sample size calculation in medical studies. Gastroenterol Hepatol from bed to bench. 6(1): 14-17.
- Rahayu YYS, Araki T, Rosleine D. 2020. Factors affecting the use of herbal medicines in the universal health coverage system in Indonesia. J Ethnopharmacol. 260: 112974.
- Schwarz S, Sauter D, Wang K, Zhang R, Sun B, Karioti A, Bilia AR, Efferth T, Schwarz W. 2014. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med. 80(2-3): 177-182.

- Sen D, Debnath P, Debnath B, Bhaumik S, Debnath S. 2020. Identification of potential inhibitors of SARS-CoV-2 main protease and spike receptor from 10 important spices through structure-based virtual screening and molecular dynamic study. J Biomol Struct Dyn. 40(2): 941-962.
- Sforcin JM, Amaral JT, Fernandes A, Sousa JPB, Bastos JK. 2009. Lemongrass effects on IL-1β and IL-6 production by macrophages. Nat Prod Res. 23(12): 1151-1159.
- Siew YY, Zareisedehizadeh S, Seetoh WG, Neo SY, Tan CH, Koh HL. 2014. Ethnobotanical survey of usage of fresh medicinal plants in Singapore. J Ethnopharmacol. 155(3): 1450-1466.
- Silveira D, Prieto-Garcia JM, Boylan F, Estrada O, Fonseca-Bazzo YM, Jamal CM, Magalhães PO, Pereira EO, Tomczyk M, Heinrich M. 2020. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front Pharmacol. 11: 581840.
- Statistics Indonesia T. 2010. Badan Pusat Statistik Provinsi Bali. [cited 2023 May 29]. https://bali.bps.go.id/ statictable/2023/05/19/189/penduduk-provinsibali-menurut-agama-yang-dianut-hasil-sensuspenduduk-1971-2000-dan-2010.html.
- Sujarwo W, Keim AP, Savo V, Guarrera PM, Caneva G. 2015. Ethnobotanical study of Loloh: Traditional herbal drinks from Bali (Indonesia). J Ethnopharmacol. 169: 34-48.
- Sumaryada T, Pramudita CA. 2020. Molecular docking evaluation of some Indonesian's popular herbals for a possible COVID-19 treatment. Biointerface Res. Appl. Chem. 11(3): 9827-9835.
- Taek MM, Banilodu L, Neonbasu G, Watu YV, E.W. BP, Agil M. 2019. Ethnomedicine of Tetun ethnic people in West Timor Indonesia: philosophy and practice in the treatment of malaria. Integr Med Res. 8(3): 139-144.
- Tasneem S, Liu B, Li B, Choudhary MI, Wang W. 2019. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol Res. 139: 126-140.

- Torres-Avilez W, Medeiros PM De, Albuquerque UP. 2016. Effect of gender on the knowledge of medicinal plants: Systematic review and metaanalysis. Evidence-based Complement Altern Med. 2016:6592363.
- Utomo RY, Ikawati M, Meiyanto E. 2020. Revealing the potency of Citrus and Galangal constituents to halt SARS-CoV-2 infection. Preprint.
- Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal A, Venkatesan D, Ganesan H, et al. 2020. COVID-19: A promising cure for the global panic. Sci Total Environ. 725:138277.
- Villena-Tejada M, Vera-Ferchau I, Cardona-Rivero A, Zamalloa-Cornejo R, Quispe-Florez M, Frisancho-Triveño Z, Abarca-Meléndez RC, Alvarez-Sucari SG, Mejia CR, Yañez JA. 2021. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: A cross-sectional survey. PLoS One. 16(9):e0257165.
- Wani AR, Yadav K, Khursheed A, Rather MA. 2020. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb Pathog. 152:104620.
- Yang X, Ji H, Feng Y, Yu J, Liu A. 2018. Structural characterization and antitumor activity of polysaccharides from Kaempferia galanga L. Oxid Med Cell Longev. 2018:9579262.
- Yao F, Huang Y, Wang Y, He X. 2018. Anti-inflammatory diarylheptanoids and phenolics from the rhizomes of kencur (Kaempferia galanga L.). Ind Crops Prod. 125:454–461.
- Yue GGL, Chan BCL, Hon PM, Kennelly EJ, Yeung SK, Cassileth BR, Fung KP, Leung PC, Lau CBS. 2010. Immunostimulatory activities of polysaccharide extract isolated from Curcuma longa. Int J Biol Macromol. 47(3):342–347.