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ABSTRACT: The spatial variability structure of soil attributes in a certain area might influence the 

semivariogram fitting model and, consequently, the attribute behavior mapping in this area leading to different decisions 
regarding crop management. This study aimed to identify, characterize and quantify the spatial variability of chemical 
attributes and the clay content in the superficial layer of a Gleysoils mapping unit (MU) at reconnaissance scale in the 
coastal plain of Rio Grande do Sul, through descriptive statistics and geostatistics and compare the results taking into 
consideration the existence of three Gleysoils mapping units at semi-detailed scale through the scaled semivariogram 
technique. A 403 ha area located in the Rio Grande do Sul Coastal Plain, in the city of Jaguarão was sub-divided into three 
mapping units (GL-mo, GL-mo.lv and GL-lv), a sampling grid with 403 points, 100 m far one from another was 
established. In a 5 m radius around each sampling point, 10 sub-samples of disturbed soil were collected from the 0-0.20 m 
layer, making up a soil compound sample, and the following attributes were determined for each sample: pH in water, 
organic carbon, phosphorus, potassium, sodium, calcium, magnesium, aluminum, potential acidity and clay content. The 
cation Exchange capacity (pH=7.0) and base saturation were also calculated. The identification, characterization and 
quantification of the spatial variability of attributes from the soil Ap horizons were carried out through descriptive 
statistics and geostatistics, considering the mapping unit at the reconnaissance scale and the three units at the semi-detailed 
scale. In the geostatistics analysis, the scaled semivariogram technique was employed aiming to compare the spatial 
variability structure for each soil attribute in the total area and in the three MUs at the semi-detailed scale. Regarding the 
descriptive statistics, the Ap horizon attributes behavior in GL-lv was similar to that in the total area of the soil layer under 
analysis; however, when considering the spatial coordinates, the spatial variability structure of the GL-mo.lv attributes was 
the one that best described the attributes variability in the total area. The scaled semivariogram technique revealed that the 
spatial behavior of the attributes pH and exchangeable sodium was similar, regardless of the evaluation scale adopted or 
the factor used for the scaled semivariogram. 
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INTRODUCTION 

 
Learning about the spatial variability of soil 

attributes, at the field or water basin level, is 
essential for a better farming management practice 
as well as to evaluate the farming impact on the 
environment (CAMBARDELLA et al., 1994). In 
Brazil, however, most of its territory has only 
information generated in low intensity exploratory 
or reconnaissance surveys, made up by highly 
heterogeneous mapping units (associations), which 
are not enough for this kind of evaluations 
(STRECK et al., 2008). 

Criticism to the qualitative character of the 
conventional pedologic surveys, based on a mental 
model (soil-landscape relation), allied to the advent 
of new technologies (remote sensing, GPS, SIG, 
digital elevation model, etc.) led to the development 
of new quantitative methods to carry out the soil 
pedologic survey taking into consideration its spatial 
distribution. McBratney et al. (2003) pointed out 
that in response to these criticisms, quantitative 
methods have been used to describe, classify and 
study the soil spatial distribution pattern more 
objectively. The authors also emphasize that these 
methods are categorized within a soil science 
emerging area known as Pedometry, and the ones 
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most commonly used to analyze the soil spatial 
distribution are geostatistics, classical statistics and 
the combination of both. 

Geostatistics has been used successfully to 
evaluate, identify and map the spatial variability of 
soil attributes (LARK, 2012; TRANGMAR et al., 
1985) and its tools have been employed in Precision 
Farming aiming at soil sampling, attributes estimate 
and mapping, fertilizers variable application rate, 
among others (OLIVER, 2010). Some authors have 
suggested to consider the soil mapping units in its 
interpretation as advantageous (COUTO et al., 
1997; ROGOWSKI; WOLF, 1994).  

Wu et al. (2008) used geostatistics to 
estimate the concentration of four heavy metals 
(copper, zinc, lead and cadmium) in three soil 
mapping units. Those authors concluded that the 
kind of soil was one of the factors that most affected 
these metals concentration and, therefore, the metal 
spatial variability would be better characterized if 
the soil mapping units were taken into 
consideration.  

Liu et al. (2006), comparing ordinary 
kriging combined with soil map design, concluded 
that the soil map conventional design can be used to 
improve its attributes spatial interpolation. Duffera 
et al. (2007), studying the relation between vertical 
and horizontal spatial variability of physical 
attributes within three mapping units in a 12 ha area 
(scale 1:2400), found that the spatial variability 
structure of some physical attributes (texture, water 
available to the plants and soil resistance to 
penetration) were captured by the units but others 
(soil density, total porosity and water conductivity 
in saturated soils) were not.  

Nielsen et al. (1996) carried out a detailed 
soil survey (scale around 1:15.000) from a 100 ha 
area within a single mapping unit at the 
reconnaissance scale, identifying seven mapping 
units, named ‘pedotops’ (mapping unit including a 
taxonomic unit at its lowest level) by the authors. 
After that, they measured the water infiltration rate 
in the soil at 293 sites (separated by 60 m intervals) 
and estimated it by using regression equations based 
on the soil superficial layer texture. The authors 
concluded that in the situation in which the units 
(‘pedotops’) were not considered, there was no 
correlation between the measured values and those 
estimated for the infiltration rate; however, when 
they were considered, the data correlation became 
quite high (r2 = 0.936). 

The hypothesis of this study is that the 
mapping units associated to the scale of soil survey 
might influence the semivariogram fitting model 
and, consequently, the spatial variability structure, 

leading to different decisions regarding crop 
management. In this sense, the objective of this 
study was to identify, characterize and quantify the 
spatial variability of chemical attributes and clay 
content in the superficial layer of a Gleysoil 
mapping unit at the low intensity reconnaissance 
scale, used with flooded rice in the Coastal Plain of 
Rio Grande do Sul, through descriptive statistics and 
geostatistics and to compare the results taking into 
consideration the existence of three Gleysoil 
mapping units at the semi-detailed scale through the 
scaled semivariogram technique. 

 
MATERIAL AND METHODS 

 
The study was carried out in a 403 ha area, 

inside the “Formiga” mapping unit in the 
Reconnaissance Survey in the State of Rio Grande 
do Sul (BRASIL, 1973; STRECK et al., 2008) 
(Figure 1). The area is located in Granja Bretanhas 
farm, in the Coastal Plain of Rio Grande do Sul, 
municipality of Jaguarão - Brazil. The area central 
point geographical coordinate is 32°32’45”S and 
53°05’45”W and the relief is plain, with altitude 
ranging from 5 to 7 m above the sea level. 
According to the Köppen climate classification, it 
has a Cfa climate, with a maritime subtropical 
environment, sub-humid summer and humid or 
super-humid climate throughout the other seasons 
(MOTA, 1983). 

Initially, a previous recognition of the soil 
was carried out in the area, involving photo-
interpretation (aerial photos scale 1:20000), 
transections and field observation via borehole, 
according to Embrapa regulations (1995). After 
checking, the total area was subdivided into three 
more homogeneous areas which were characterized, 
according to Lemos; Santos (1996) and Embrapa 
(1997) in the Brazilian Soil Classification System 
as: Gleissolo Melânico Ta eutrófico chernossólico, 
Gleissolo Melânico Ta eutrófico luvissólico, and 
Gleissolo Háplico Ta eutrófico luvissólico (Figure 
2), corresponding to Mollic Gleysol (GL-mo), Luvic 
Mollic Gleysol (GL-mo.lv), and Luvic Gleysol (GL-
lv), respectively, according to the World Reference 
Base classification (WRB, 2014). 

Throughout the 1999 to 2005 crops, the crop 
system adopted in the study area was flooded rice 
followed by soybeans. In the years 1998 and 1999, 
the area was systematized and since then the non-
tillage system has been employed. In the 
experimental area, the sampling grid had 403 points 
established, spaced 100 m, with the aid of a GPS 
(Figure 2). 
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Figure 1. Location of the study area and the semi-detailed survey in relation to the soil reconnaissance survey 

in the State of Rio Grande do Sul (STRECK et al., 2008), municipality of Jaguarão, Rio Grande do 
Sul. 

 

 
Figure 2. Georeferenced points in the study area and its homogeneous areas. 
 

In a 5 m radius around each sampling point, 
10 sub-samples of disturbed soil from the 0-0.20 m 
layer were collected in order to produce a compound 
sample from each sampling point. Each soil sample 
had the following attributes determined: clay 
content, pH in water, organic carbon, exchangeable 
phosphorus, potassium, sodium, aluminum, calcium 
and magnesium and potential acidity. The cation 

exchange capacity (pH=7.0) and the base saturation 
were also calculated. All methodologies are 
described by Tedesco et al. (1995). 

The identification, characterization and 
quantification of spatial variability of the soil 
superficial horizon (Ap) attributes were carried out 
through descriptive statistics and geostatistics, 
considering the total area (low density 
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reconnaissance mapping unit) and, also, considering 
its semi-detailed mapping units. For the exploratory 
analysis of data, the following statistics were 
calculated: arithmetic mean, maximum value, 
minimum value and coefficient of variation. The 
Wilding; Drees (1983) criterion was adopted to 
classify the soil attribute variability based on the 
coefficient of variation: low – CV ≤ 15 %, moderate 
– 15 < CV ≤ 35 % and high variability - CV > 35 %. 
The Kolmogorov-Smirnov (MASSEY, 1951) 
adherence test was applied at 5% significance level, 
in order to verify the normality of the data set, 
aiming to help the selection of the semivariance 
estimator for the geostatistical analysis. 

Two semivariance estimators were used in 
the geostatistics analysis: the classical estimator 
(MATHERON, 1962), when the variable under 
study presented normal distribution, and the Cressie; 
Hawkins (1980) robust estimator, when it did not. 
The experimental and theoretical semivariogram 
adjustments with the respective parameters (nugget 
effect “Co”, sill “C+Co” and range “a”) were 
carried out based on the ordinary least square 
method implemented in the software R. The spatial 
dependence degree (SDD) of each attribute 
[SDD=(Co/C+Co)*100] was classified according to 
Cambardella et al. (1994) as: strong SDD ≤ 25 %; 
moderate – 25 % < SDD ≤ 75 %; and weak – SDD 
> 75 %. The scaled semivariogram technique 

proposed by Vieira et al. (1997), in which each 
experimental semivariance value was divided by the 
most suitable scale factor (sampling variance or the 
adjusted theoretical model sill), was applied aiming 
to compare the spatial variability structure of each 
soil attribute in the total area and its mapping units. 

All the statistical procedures were carried 
out aided by the software R, and the descriptive 
statistics was used with the Rcmdr packet (FOX, 
2005), the adherence tests employed the fBasics 
packet (WUERTZ, 2012) and the experimental and 
theoretical semivariograms were built with the geoR 
packet (RIBEIRO JÚNIOR; DIGGLE, 2001). In 
order to compare the results of this study 
considering the existence of different areas, it was 
used the scaled semivariogram technique proposed 
by Vieira et al. (1997). 

 
RESULTS AND DISCUSSION 

 
The results of applying descriptive statistics 

to the soil Ap horizon attributes in the total area 
(low density reconnaissance scale) and in the soil 
mapping units classified as Mollic Gleysol  (GL-
mo), Luvic Gleysol (GL-lv) and Luvic Mollic 
Gleysol (GL-mo.lv) are presented in Table 1. 
 
 

 
 
Table 1. Results of applying descriptive statistics to the soil attributes under evaluation in the total area and in 

the soil mapping units classified as Mollic Gleysol (GL-mo), Luvic Gleysol (GL-lv), and Luvic 
Mollic Gleysol (GL-mo.lv). 

Soil attributes 
Total area 

Est. pH C Ca Mg Na S H+Al CTC V Clay P K 
Average 6.1 1.4 9.1 2.9 0.5 12.6 2.2 14.9 84.1 28 7.0 62 

Min.  5.3 0.7 3.4 1.8 0.3 5.7 0.9 8.7 64.7 17 1.9 33 
Max.  7.5 2.2 16.8 4.8 1.6 21.8 4.9 22.9 96.0 46 23.6 102 
CV 6.7 18.7 33.4 20.6 37.6 27.7 32.1 22.4 7.3 15.8 49.0 23.4 
KS 0.00* 0.20 0.00* 0.00* 0.00* 0.06 0.00* 0.07 0.31 0.00* 0.00* 0.12 

GL-mo 
Average 6.3 1.5 11.7 3.1 0.5 15.4 2.2 17.6 87.3 30 6.9 70 

Min.  5.3 0.7 7.2 2.0 0.3 10.0 0.9 13.1 69.2 19 1.9 37 
Max.  7.5 2.1 16.8 4.8 1.1 21.8 4.9 22.9 96.0 46 19.3 102 
CV 7.2 19.5 18.5 18.9 25.6 16.6 38.3 12.8 6.1 12.4 50.1 17.1 
KS 0.07 0.72 0.75 0.25 0.00* 0.88 0.00* 0.63 0.20 0.01* 0.01* 0.58 

GL-lv 
Average 6.1 1.3 7.9 2.9 0.5 11.5 2.3 13.8 82.9 27 6.9 58 

Min.  5.4 0.8 5.2 1.8 0.3 7.7 1.2 10.2 68.6 20 1.9 33 
Max.  7.0 1.8 13.0 4.7 1.6 18.4 4.4 19.8 93.0 46 23.6 90 
CV 6.1 17.3 21.4 21.7 49.0 20.8 30.5 16.2 6.9 15.1 54.2 24.0 
KS 0.03* 0.13 0.04* 0.02* 0.00* 0.17 0.00* 0.15 0.77 0.00* 0.00* 0.16 
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GL-mo.lv 
Average 5.9 1.3 5.7 2.5 0.5 8.8 2.2 11.0 79.5 25 7.3 52 

Min.  5.4 0.9 3.4 1.8 0.3 5.7 1.4 8.7 64.7 17 3.0 35 
Max.  6.5 1.6 9.2 3.7 1.3 13.4 3.1 15.1 88.7 46 17.6 86 
CV 3.9 13.2 20.6 13.8 33.6 16.2 18.1 11.8 6.0 14.5 37.8 19.4 
KS 0.00* 0.37 0.53 0.21 0.00* 0.72 0.06 0.35 0.93 0.00* 0.05 0.81 

Est.= descriptive statistics, pH= water pH, C= organic carbon content (%); Ca= calcium content (cmolc.dm-3), Mg = magnesium 
content (cmolc.dm-3), Na= sodium content (cmolc.dm-3), H+Al= potential acidity (cmolc.dm-3), S= base sum (cmolc.dm-3), CTC= 
cation Exchange capacity at pH 7.0 (cmolc.dm-3), V= base saturation (%), clay = content in %, P= phosphorus content (mg.dm-3), 
K= potassium content (mg.dm-3), Min.= minimum value; Max. = maximum value, CV = coefficient of variation (%), KS= 
Kolmogorov-Smirnov test probability value p, * significant at the 5% level of probability. 
 

According to the Soil Fertility and 
Chemistry Committee (CQFSRS/SC, 2004), the pH 
and V% average values in the total area and the GL-
mo and GL-lv (Table 1) soils mapping units were 
classified as high, while in GL-mo.lv they were 
considered medium; organic matter content (carbon 
content x 1.724) are in accordance with the medium 
classification for the GL-mo unit and low for the 
remaining ones (< 2.5 %); the Ca and Mg average 
content are classified as high in all cases; regarding 
CTC pH 7.0, it can only be considered high in the 
GL-mo (> 15.0 cmolc dm-3). 

Considering total area and the soil mapping 
units, the phosphorus average content (Table 1) 
regarding the clay class (class 3-21 to 40%) is in the 
agronomy interpretation band regarded as low; 
while the potassium average content referring to the 
CTC (pH 7.0) (from 5.1 to 15.0 cmolc dm-3), is in 
the high band in the total area and GL-mo and 
medium in GL-lv and GL-mo.lv. In general (Table 
1), it could also be observed that the majority of 
medium content of the attributes under analysis 
were found in GL-mo, following a tendency of 
reduction in the average content as a function of the 
systematization plan adopted in the area, since the 
larger volume of soil section was observed in GL-
mo.lv. Regarding the Na high average content 
observed in Table 1, it is believed to result from the 
use of saline water to irrigate the area, which comes 
from the Mirim Lake. 

By analyzing data dispersion around the 
average (Table 1), expressed by the coefficient of 
variation (CV), the pH and V values in the total area 
were verified to present low variability (CV ≤ 15 
%), while the C, Ca, Mg, S, H+Al, CTC, Clay and K 
data variability is classified as moderate (15 < CV ≤ 
35 %), according to the classification proposed by 
Wilding; Drees (1983). While the Na (CV = 37.6 %) 
and P (CV = 49.0 %) data dispersion is considered 
high (CV > 35 %). The same behavior can be 
observed regarding the data set evaluated in GL-lv 
(Table 1). On the other hand, the data sets evaluated 
in the soil mapping units GL-mo and GL-mo.lv 
presented distinct behavior in relation to the CV 

behavior, and the data low variability was 
predominant in GL-mo.lv (50% of the soil attributes 
evaluated) and the moderate data variability in GL-
mo (8 out of 12 data sets evaluated). 

 By analyzing the data in Table 1, it was 
seen that the P data sets presented the highest CV 
values when compared to the remaining sets, 
varying from 37.8 % (GL-mo.lv) to 54.2 % (GL-lv). 
Such results indicate that, for the dimensioning of 
samples with non spatial statistical methodology, 
when considering the total area as an experimental 
unit, sample sizes can be over or under estimated in 
some units, that is, units with high variability might 
have an underestimate of the sample size while 
more homogeneous units might be using a sampling 
effort above the necessary to represent the area. 
Descriptive statistics also indicates that the use of 
uniform management in the whole experimental 
area might lead to results which do not meet the 
agricultural needs of the soil under study, that is, the 
need to apply Precision Farming is verified and, 
consequently, the analysis of the soil mapping units 
influence in the soil attributes spatial variability. 

Based on Kolmogorov-Smirnov adherence 
test and considering a 5% p value for probability 
(Table 1), the pH, Ca, Mg, Na, H+Al, Clay and P 
data distribution in the total area and in the GL-lv 
was not verified to tend to normality, confirming the 
attribute behavior previously seen in relation to data 
variability around the average. In GL-mo, the Na, 
H+Al, Clay and P data distribution did not follow 
normal behavior, while in GL-mo.lv the pH, Na and 
Clay values did not tend to normality, indicating 
that these attributes presented distribution localized 
in the area (GREGO et al., 2006) and that the 
arithmetic average cannot be considered as the 
distribution center (NIELSEN; WENDROTH, 
2003). 

The spatial variability structure of all 
attributes in the total area and in the soil mapping 
units was evaluated through the construction of 
experimental isotropic semivariograms. The 
adjustment parameters “Co”, “C+Co” and “a” for 
the theoretical models were only obtained for the 
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attributes that presented semivariograms in which 
the intrinsic hypothesis (semivariogram with a 
defined sill in the sampling space evaluated) was 
confirmed (Table 2). For data that followed normal 
distribution (Table 1), the semivariances were 
calculated via Matheron (1962) estimator, while for 
data that did not, they were calculated through the 
Cressie; Hawkins (1980) robust estimator, according 
to Webster; Oliver (2007). Table 2 shows that the 
experimental semivariograms were adjusted, for 
most of the soil attributes, to the spherical model 
regardless of the evaluation scale under analysis 
(Table 2). The spatial dependence degree of the 
attributes under evaluation in the total area was 
classified as moderate (25 % < SDD ≤ 75 %), while 
in the soil mapping  units GL-mo, GL-lv and GL-
mo.lv most of their SDD was classified as strong; 
the degree of spatial dependency is the relationship, 
in percentage terms, of the nugget (Co) to sill (Co + 
C), i.e. the relationship between the unexplained 
variance or random, caused by measurement errors 
or the micro-variability of the property under study 
which cannot be detected in the sample scale used 
by the total variance of the sample for stationary 
data (TRANGMAR et al., 1985). The magnitude of 
the nugget variance is important in kriging because 
it sets a lower limit to the size of estimation variance 
and, therefore, to the precision of the interpolation 
(TRANGMAR et al., 1985). Thus, kriging and the 
mapping carried out when considering total area 
must present lower precision in relation to the 
individual areas mapping. This fact is very relevant 
for the management systems that involve precision 
farming technology. According to Cambardella et 
al. (1994), variables that present strong SDD (SDD 
≤ 25 %) are more influenced by soil composition 
characteristics such as original material, relief, 
climate, organisms and time. Thus, the semi-
detailed mapping units, which are more 
homogeneous compared to the reconnaissance 
mapping unit, with fewer inclusions of different 
types of soils, tend to have lower variability of their 
physical and chemical properties, thereby 
influencing the degree of spatial dependence of the 
soil properties.  

The comparison of spatial variability 
structures of the attributes pH, Mg, Na, H+Al, V, 
Clay, P and K in the total area and in the soil 
mapping units was carried out through the scaled 
semivariogram technique (Figure 3), and in the 
scaled semivariogram estimated via Matheron 
(1962), the data sample variability was adopted as 
scale factor and in the scaled semivariograms built 
by the Cressie; Hawkins (1980) estimator, the sill 

“C+Co” (Table 2) was adopted as scale factor. 
When Figure 3 is analyzed, the attributes pH 

and Na are observed to have shown higher 
coalescence of scaled semivariance values when 
compared to the other attributes, indicating the 
possibility of adjustment of an only semivariogram 
model regardless of the factor used for the scaling 
and the evaluation scaling under analysis, thus, 
characterizing more similarity in the spatial 
dependency structure. Montanari et al. (2012) 
pointed out that the adjustment of an only 
semivariogram model would provide an only 
sampling scheme for these attributes. The Mg, 
H+Al, V, Clay, P and K attributes spatial variability 
in GL-mo.lv were observed to be similar to the 
scaled semivariogram model structures in the total 
area, this result is not in accordance with the 
descriptive statistics result (Table 1), but indicates 
the distribution of high and low values in the total 
area similar to that in the soil mapping unit GL-
mo.lv, altering the magnitude of values and, 
therefore, influencing the descriptive analysis. 

The greatest difference in behavior between 
scaled semivariograms can be seen through the 
potential acidity (H+Al) as a function of the soil 
mapping units, followed by the semivariogram 
behavior for clay content (Figure 3) indicating that 
estimate errors when considering total area might be 
more accentuated for these attributes. This more 
marked difference for these attributes can derive 
from the cut and fill performed in the surface layer 
by the land leveling, which brought to the surface 
the lower parts of the A horizon or even the top of 
the B horizon in some parts of the area, with 
different physical and chemical properties compared 
to the natural surface more organic horizon. 
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Table 2. Experimental and theoretical semivariograms with respective adjustment parameters (nugget effect 
Co, sill C+Co and range a) and residual sum of squares (RSS) and the spatial dependence degree 
(SDD) of the attributes evaluated in the total area and in the soil mapping units. 

Total area 
Attribute Estimator Model Co C+Co a (m) RSS SDD Classification 

pH C-H Spherical 0.0402 0.1515 844 9x10-04 27 Moderate 
C M Spherical 0.0497 0.0752 1923 2x10-04 66 Moderate 

Mg C-H Spherical 0.1252 0.3425 578 0.0011 37 Moderare 
Na C-H Spherical 0.0082 0.0212 348 1x10-04 39 Moderate 

H+Al C-H Spherical 0.1394 0.4758 652 0.0327 29 Moderate 
V M Spherical 15.0133 38.0342 1221 5.7695 40 Moderate 

Clay C-H Spherical 8.4754 23.9584 3038 4.637 35 Moderate 
P C-H Spherical 4.3199 9.5365 416 0.857 45 Moderate 
K M Spherical 84.2681 218.7875 1093 197.8968 39 Moderate 

GL-mo 
pH M Spherical 0.0346 0.279 1267 7x10-04 12 Strong 
C M Spherical 0.0539 0.0815 462 2x10-04 66 Moderate 
Ca M Exponential 0.7859 5.6288 991 0.2629 14 Strong 
Mg M Gaussian 0.1216 0.3388 337 0.0037 36 Moderate 
Na C-H Spherical 0.00 0.0138 394 0.00 0 Strong 
S M Spherical 2.1180 6.8417 490 0.3951 31 Moderate 

H+Al C-H Spherical 0.0401 1.0267 1421 0.1049 4 Strong 
CTC M Spherical 1.6303 5.1745 394 1.0261 32 Moderate 

V M Spherical 3.6761 42.5317 1386 34.1432 9 Strong 
Clay C-H Exponential 0.00 11.9709 434 2.5009 0 Strong 

P C-H Spherical 0.00 10.4926 301 6.5441 0 Strong 
K M Exponential 12.6895 143.6447 290 641.9771 9 Strong 

GL-lv 
pH C-H Spherical 0.0346 0.1484 660 0.0011 23 Strong 
Ca C-H Spherical 1.3684 2.7472 513 0.4947 50 Moderate 
Mg C-H Exponential 0.0487 0.4088 696 0.0023 12 Strong 
Na C-H Spherical 0.0060 0.0431 437 1x10-04 14 Strong 
S M Exponential 1.0897 5.9395 395 0.9158 2 Strong 

H+Al C-H Spherical 0.1840 0.5099 981 0.0087 36 Moderate 
CTC M Exponential 0.00 5.3045 261 1.2187 0 Strong 

V M Spherical 15.0483 35.2714 920 55.1256 43 Moderate 
Clay C-H Spherical 3.7707 12.2613 677 3.7598 31 Moderate 

P C-H Spherical 2.6805 11.8215 519 17.6584 23 Strong 
K M Exponential 59.4077 195.5589 525 752.0699 31 Moderate 

GL-mo.lv 
pH C-H Spherical 0.0179 0.0555 699 8x10-04 32 Moderate 
C M Spherical 0.0076 0.0316 308 1x10-04 24 Strong 
Ca M Spherical 0.00 1.4138 208 0.2906 0 Strong 
Mg M Spherical   0.0232 0.1266 255 0.0027 18 Strong 
Na C-H Spherical 0.0045 0.0153 308 0.00 30 Moderate 
S M Spherical 0.00 2.0929 213 0.931 0 Strong 

H+Al M Spherical 0.00 0.1681 240 0.0021 0 Strong 
CTC M Spherical 0.00 1.7392 200 0.5432 0 Strong 

V M Spherical 0.00 23.1434 227 100.2178 0 Strong 
Clay C-H Spherical 3.2205 7.8884 512 13.2396 41 Moderate 

P C-H Spherical 0.00 6.3273 167 2.324 0 Strong 
K M Spherical 30.2698 111.7447 544 1225.684 27 Moderate 

pH= water pH, C= organic carbon content (%), Ca= calcium content (cmolc dm-3), Mg= magnesium content (cmolc dm-3), Na= sodium content (cmolc dm-

3), H+Al= potential acidity (cmolc dm-3), S= base sum (cmolc dm-3), CTC= cation Exchange capacity at pH 7.0 (cmolc dm-3), V= base saturation (%), 
Clay= Clay content(%), P= phosphorus content (mg dm-3), K= potasssium content (mg dm-3), C-H= Cressie and Hawkins robust estimator, M=Matheron 
classical estimator, SDD = [(Co/C+Co)*100]: strong - SDD ≤25 %; moderate – 25 % <SDD ≤75 %; and weak – SDD >75 %.  
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Figure 3. Scaled isotropic semivariograms of the soil attributes evaluated in the total area and the soil mapping units: Mollic Gleysol (GL-mo), Luvic 
Gleysol (GL-lv) and Luvic Mollic Gleysol (GL-mo.lv). (A)= Water pH, (B)= magnesium, (C)= Sodium, (D)= Potential acidity, (E)= Base saturation, 
(F)= Clay, (G)= Phosphorus, (H)= Potasssium. 
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CONCLUSIONS 
 

There is no correspondence in the attributes 
spatial distribution and structure between the semi-
detailed mapping units and the reconnaissance 
mapping unit in which they are included. 

The use of non-spatial statistics in the 
management decisions might lead to unsuitable 
recommendations to the crop if spatially different 
soil mapping units are present in the area. 

The scaled semivariogram technique allows 
the identification of similar or different spatial 
behaviors between the soil mapping units, 
contributing to the attributes sampling plan.  
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RESUMO: A estrutura de variabilidade espacial dos atributos do solo em determinada área pode influenciar o 
modelo de ajuste do semivariograma e, consequentemente, o mapeamento do comportamento do atributo nesta área 
induzindo a decisões diferenciadas de manejo agrícola. O objetivo deste trabalho foi identificar, caracterizar e quantificar a 
variabilidade espacial de atributos químicos e do teor de argila da camada superficial de uma unidade de mapeamento de 
Gleissolos em escala de reconhecimento na Planície Costeira do Rio Grande do Sul, por meio da estatística descritiva e da 
geoestatística e comparar os resultados levando em consideração a existência de três unidades de mapeamento de 
Gleissolos em escala de semi-detalhe por meio da técnica de escalonamento de semivariogramas. Uma área de 403 ha 
localizada na Planície Costeira do Rio Grande do Sul, no município de Jaguarão, foi subdividida em três unidades de 
mapeamento (GMve1, GMve2 e GXve), sendo estabelecida uma malha total de amostragem de 403 pontos, distanciados 
entre si de 100 m. Em um raio de 5 m em torno de cada ponto amostral, foram coletadas 10 sub-amostras deformadas de 
solo na camada de 0-0,20 m, constituindo uma amostra composta de solo, sendo determinados os seguintes atributos das 
amostras: pH em água, carbono orgânico, fósforo, potássio, sódio, cálcio, magnésio, alumínio, acidez potencial e o 
conteúdo de argila. Calculou-se também a capacidade de troca de cátions (pH=7,0) e a saturação por bases. A 
identificação, caracterização e quantificação da variabilidade espacial dos atributos dos horizontes Ap dos solos foram 
realizadas por meio da estatística descritiva e da geoestatística, considerando a unidade de mapeamento em escala de 
reconhecimento e as três unidades em escala de semi-detalhe. Na análise geoestatística foi usada a técnica de 
escalonamento dos semivariogramas, com a finalidade de comparar as estruturas de variabilidade espacial de cada atributo 
do solo na área total e nas três UMs em escala de semi-detalhe. Em relação à estatística descritiva, o comportamento dos 
atributos do horizonte Ap na GXve é semelhante ao da área total na camada de solo avaliada; entretanto, ao considerar as 
coordenadas espaciais, a estrutura de variabilidade espacial dos atributos na GMve2 é a que melhor descreve a 
variabilidade dos atributos na área total. A técnica de escalonamento dos semivariogramas mostra que o comportamento 
espacial dos atributos pH e sódio trocável é semelhante, independente da escala de avaliação adotada e do fator usado para 
o escalonamento dos semivarigramas. 

 
PALAVRAS-CHAVE: Geoestatística. Escalonamento de semivariogramas. Áreas de várzeas. Unidades de 

mapeamento de solo. Agricultura de precisão. 
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