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ABSTRACT: The goal of this work was to compare the effect of the accuracy and residual variance in 
genome wide selection using marker selection as well as using the effect of the indirect selection, using 
simulated and real data. In simulated data was used one sample with 200 individuals with 1,000 molecular 
markers in F2 population. The real data was obtained in maize with F2 population with 441 individuals and 
genotyping with 261 SSR markers. There was 11 traits evaluated (ear length, ear width, row number, kernels 
per row, 100-kernel weight, ear weight, grain yield, length of branch, number of branch, plant height and ear 
height). All data was analyzed using rrBLUP method and 10-fold cross-validation. In simulated and maize data 
the results were similar: the residual variance with few markers is lower than with the 1000 markers and the 
accuracy with few markers is bigger than with 1000 markers. For maize data multi trait selection, the accuracy 
increased when the correlation between traits is greater than 0.50 and residual variance decreased when the 
correlation is greater than 0.70. In this sense, these results showed that marker selection could be used as a first 
step in genome wide selection, improving the prediction and compute demand.  
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INTRODUCTION 

 
The principle of genomic selection is 

simultaneously estimate the effect of all markers in 
a training population comprised of phenotyped and 
genotyped individuals (MEUWISSEN et al., 2001). 
Thus, genomic estimated breeding values (GEBVs) 
could be calculated as the sum of estimated marker 
effects for genotyped individuals in a predicted 
population. Fitting simultaneously all markers 
ensures that marker-effect estimates are unbiased, 
small effects are captured (BROMAN; SPEED, 
2002). Moreover, this can potentially capture all the 
quantitative trait loci (QTL) that contribute to the 
variation of a trait. The QTL effects, inferred from 
either haplotypes or individual single nucleotide 
polymorphism markers, are first estimated in a large 
reference population with phenotypic information. 
In subsequent generations, only the marker 
information is required to calculate the GEBVs 
(HEFFNER et al., 2009).  

This approach is based upon the estimation 
of breeding values (EBV) available for genotyped 
individuals comprising a trained population using 
linear or non-linear models applied to phenotypes 
(DE LOS CAMPOS et al., 2013). After the estimate 
to EBV is determinate the accuracy of the derived 
prediction equations in an independent validation 
population and your application of the prediction 

equations to generate genomic estimated breeding 
values (GEBV) in selection candidates within an 
implementation population. These estimated values 
(GEBVs) are outputted from a model estimating the 
relationship between genome-wide markers and 
phenotypes of the individuals undergoing selection.  

Genome Selection has been most 
successfully implemented in animal breeding 
(DAETWYLER et al., 2013; GARRICK, 2011; 
HAYES et al., 2009) and plant breeding 
(BERNARDO, 2010; JENA et al., 2008; SPINDEL 
et al., 2015). Genome-wide prediction is also being 
recognized as an important tool to predict 
phenotypes (LEE et al., 2008) and the genetic risk 
for diseases (WRAY et al., 2007) in other fields 
than animal or plant breeding. The key principle for 
all these applications is the simultaneous estimation 
of all genome-wide marker effects based on a 
reference population with known phenotypes. 

Since the number of markers is typically 
much larger than the number of phenotyped animals 
in the reference population, most of the proposed 
models in genome selection attempt to reduce the 
effective dimensionality of the marker data, 
although the prediction models usually use only a 
single phenotypic trait (VAZQUEZ et al., 2010). 
However, new varieties of crops and animals are 
evaluated for their performance on multiple traits 
(DAETWYLER et al., 2010). Crop breeders record 
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phenotypic data for multiple traits in different 
categories such as yield components (e.g., grain 
weight or biomass), grain quality (e.g., taste, shape, 
color, nutrient content), and resistance to biotic or 
abiotic stress (JIA; JANNINK, 2012). 

The goal of this work was to compare the 
effect of the accuracy and residual variance in 
genome wide selection using marker selection for 
each trait as well as using the effect of the indirect 
selection. 

 

MATERIAL AND METHODS 

 

Data simulation  
Data were generated using the simulation 

module implemented in the GENES software 
(CRUZ, 2013). One sample with 200 individuals 
were generated with 10 linkage groups (LG) each. A 
genome of 10 LG was simulated, similar to a diploid 
species 2n=10, with 100 cM size, considering the 
existence of 100 molecular markers for linkage 
group, equally spaced; thus, a total of 1,000 
molecular markers were evaluated. Contrasting 
homozygous parents were simulated to produce F1 
generation; thus, parent 1 (AA) was coded with 1 
for all markers, and parent 2 (aa) was coded with 0 
for all markers. 

For the population size (200 individuals) 
was generated an F2 population, and for that, each 
F1 individual produced 5000 gametes. There was 
random fecundation, generating F2 individuals. This 
process was repeated until all individuals were 
formed. This population was coded as 0, 1, and 2, 
for homozygous recessive individuals (aa), 
heterozygous individuals (Aa), and dominant 
homozygous individuals (AA) to the considered 
locus, respectively. 

The phenotypic value for 4 different traits 
was simulated considering 1000 markers previously 
simulated, 200 of them controlled the 
characteristics, and the 20 first molecular markers in 
each LG were taken into account. Once there are 10 
LG, there is a total of 200 loci. 

It was also used the binomial distribution of 
effects for each characteristic in each LG. It was 
adopted the additive gene action of all loci, i.e., the 
dominance effect was considered null. To establish 
the phenotypic value it was added up a constant 
equal to 100, thus preventing that any of the 

individuals for each of these variables presented 
negative values. 

The simulated data was analyzed using the 
rrBLUP method. This method was chosen owing to 
its accuracy and speed to perform the analysis. Data 
analyses were performed using R software (TEAM, 
2012) with the package rrBLUP (ENDELMAN, 
2011). A server DELL 12º generation, Intel Xeon 
E5-26 processor 3,30 GHz, RAM with 64 GB and 
Hard drive with 1024 GB was used to run the 
analyses.   

After generating the data, mapping process 
was carried out, starting by the segregation of 
individual loci analysis. Chi-square tests were used 
( ), at 5% probability, to confirm the result of 
segregation in each marker for all the generated 
populations. In addition, it was verified if all 
Linkage Groups had been restored, with size, 
distance and markers order, for concluding whether 
the simulated populations were F2 with the desired 
simulation properties. 

A 10-fold cross-validation analysis was 
used as the validation methods. In the 10-fold cross-
validation, the original sample was randomly 
partitioned into 10 equal sized subsamples. From 
the 10 subsamples, a single subsample was retained 
as the validation data for testing the model, and the 
remaining nine were used as training data. The 
cross-validation process was repeated 10 times, with 
each of the 10 subsamples used exactly once as the 
validation data. The 10 results from the folds was 
averaged to produce a single estimation. The 
advantage of this method over repeated random sub-
sampling is that all observations are used for both 
training and validation, and each observation is used 
for validation exactly once. 

Initial analysis had 1000 molecular markers. 
The rrBLUP was used to obtain the effect of each 
molecular marker. The marker with the lowest value 
was removed from the matrix, so that the new 
molecular marker matrix has now 999 markers, 
which will be used as the input for the subsequent 
analysis with rrBLUP. This process continues, 
removing 1 marker every round (so 999 times in this 
work, or number de markers -1 times) until the 
molecular marker matrix has no more markers to be 
excluded. Also, in each round the cross-validation 
methods were used to estimate the accuracy in 
validation subsample and the residual variance 
(Figure 1). 
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Figure 1. Representation of the process for selecting the number of markers. 
 

After the marker selection, a matrix with the 
minimum number of markers possible was created. 
Such matrix only included the number of markers 
providing the maximum value of accuracy (given by 
the square of Pearson Correlation between EGBV 
and phenotypic value – R2validation). This process 
was carried out for each phenotypic trait. 

Having a matrix with the minimum number 
of markers for each trait, an analysis using rrBLUP 
was performed for another additional traits, so that 
is possible to compare which effect of the selection 
in one trait also occur in another trait. 

 

Real data 

The real data was obtained from maize F2 
population with 441 individuals and genotyping 
with 261 SSR (simple sequence repeat) markers. 
There were 11 traits evaluated (ear length, ear 
width, row number, kernels per row, 100-kernel 
weight, ear weight, grain yield, length of branch, 
number of branch, plant height and ear height).  

The F2 population was coded with 0, 1, and 
2 for homozygous recessive individuals (aa), 
heterozygous individuals (Aa), dominant 
homozygous individuals (AA) to the considered 
locus, respectively. The same procedures of 
evaluation used for the simulated data were used for 
the real data. A 10 folds cross-validation was used 
with rrBLUP to produce the selection of markers 
and effect of indirect selection compared with uni 
trait selection. 

 

RESULTS AND DISCUSSION 

 

Simulated data 

Genetic maps were constructed for the 
population in order to evaluate the quality of 
simulated data. Beginning with the analysis 
segregation of individual loci, chi-square tests ( ) 
were applied to verify the segregation ratio of all 
generated populations after the simulation process. 
There was no segregation distortion, that is, all 
markers typically segregate as a codominant F2 (1: 
2: 1). Moreover, it was found that all linkage groups 
were restored according to the parameters used in 
simulation including the total size (100cM), in the 
main distance between markers, and the order of the 
markers that constitute the linkage group. Thus, it is 
concluded that the simulated population have 
characteristics of an F2 population, and therefore it 
would be appropriate for this study. This also shows 
the importance of performing such analyses to 
ensure F2 population usage, so that the genetic 
parameters set by Falconer and Mackay (1996) 
including genetic variance, phenotypic variance, and 
environmental variance, can be properly inferred for 
this type of population with rrBLUP. 

The phenotypic correlation between all the 
simulated traits is presented in Table 1. All 
correlations were significant using the t-test with 
1% of probability. The correlation coefficient values 
ranged from 0.50 to 0.844. 

Table 1. Correlation between all four traits simulated in F2 population. 
  1 2 3 4 

1 1 0.844** 0.804** 0.795** 
2 0.844** 1 0.500** 0.553** 
3 0.804** 0.500** 1 0.549** 
4 0.795** 0.553** 0.549** 1 
**: Significant with 1% of probability by t test 

 
The results were similar for all the four 

simulated traits (Table 2). The accuracy (R2) of the 
process increased with the marker selection. At the 
same time, the residual variance with few markers 
was lower than with the original marker matrix 

(1000 markers). The accuracy of the process (R² 
validation) is measured by the square of the 
correlation between the phenotype values and the 
predict values after 10-fold cross-validation. 
Eliminating marker is possible to increase de 
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accuracy. In this sense, it might be desirable to 
reduce the number of SNP to ease computation 
process when predicting individual SNP effects and 

summing effects to calculate genomic predictions 
(JARQUÍN et al., 2014). 

 
Table 2. Effect in Accuracy (R2) and residual variance (RV) with the 1000 markers and with the number of 

minimum markers (NM) for four simulated traits in F2 population. 
 Trait 1000 markers NM R2 or RV 

A
cc

ur
ac

y 
(R

2 ) 

1 0.019 49 0.216 
2 0.023 45 0.236 
3 0.046 22 0.286 
4 0.027 34 0.285 

R
es

id
ua

l 
V

ar
ia

nc
e 

(R
V

) 

1 9.889 34 6.942 
2 9.960 35 6.689 
3 9.681 30 6.653 
4 9.706 34 6.018 

 
For all scenarios, the value of accuracy 

increased when markers are added into the model 
until the maximum value (value where is the NM). 
After that point, the accuracy of prediction 
drastically decreased as additional markers are feed 
into the model (Figure 2 A). The residual variance, 
on the other hand, showed an inverse pattern, that is, 

its values decreased as markers are added into the 
model reaching its lowest value at about the same 
point (i.e. the same number of markers) the accuracy 
of prediction reached its highest value. Therefore, 
this point indicates the minimum number of markers 
needed to obtain the lowest residual variance as well 
as the highest accuracy of prediction (Figure 2 B).

 

 
Figure 2. Effect of the number of markers in accuracy (A) and Residual Variance (B) for the trait 3.   

 
In this sense, these results showed that 

marker selection could be used as a first step in 
genome wide selection. Another advantage with 
such approach is that with a low number of markers, 
analyses can be more rapidly performed, thus 
facilitating the use of methods demanding great 
computational capacity (e.g. Bayesian methods). 
Che and Xu (2010) obtained similar results on a 
simulated study using an optimal number of QTL 
determined by the cross-validation test. The authors, 
analyzing the predictor error, suggested that a 
reduction on QTLs does not lead to a significant 
loss in the precision of genome selection. 

The response of each trait in relation to the 
minimum number of markers (NM) selected for one 
specific trait is presented on Table 3. Considering 
accuracy and trait 1, the minimum number of 
markers selected was 49 (Table 2). This new matrix 
(i.e. the 49 markers only) selected based on trait 1, 

was then used for analyzing the other traits. For 
example, for trait 2, accuracy was 0.148. This value 
is much higher (about six times more) than the 
accuracy value obtained with the original matrix 
based on 1000 (Table 2). Regarding accuracy, all 
possible comparisons showed similar results. In 
another words, the accuracy on the traits of interest 
is higher with the NM of markers than using all 
markers as it is usually done for genome selection 
prediction considering individual traits. Considering 
the residual variance (Table 3), the same pattern was 
observed. For example, the minimum number of 
markers selected for the trait 1 was 34 (Table 2). 
Using this matrix and considering trait 2, the 
residual variance was reduced from 9.889 (1000 
markers) to 7.783 (34 markers). For animals in 
multitrait selection with only phenotypes on a 
correlated trait, the increase in accuracy was up to 
0.04 and 0.18, (CALUS; VEERKAMP, 2011). 
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Table 3. Response in accuracy (R2) and residual variance (RV) considering number of minimum matrix (NM) 
for each simulated trait. 

  Response (R2 or RV) 
 NM 1 2 3 4 

A
cc

ur
ac

y 
(R

2 ) 
1 - 0.148 0.12 0.115 
2 0.154 - 0.055 0.051 
3 0.137 0.027 - 0.067 
4 0.136 0.057 0.066 - 

R
es

id
ua

l 
V

ar
ia

nc
e 

(R
V

) 

1 - 7.783 8.270 7.954 
2 7.725 - 9.117 9.136 
3 8.052 9.869 - 9.382 
4 7.441 9.339 9.645 - 

 
Currently, the genotyping costs per 

individual are considerably less expensive for low-
density SNP (LD-SNP) panels than high-density 
(HD-SNP) panels. Thus, there is a significant 
interest on the development of methods that 
implement GS using LD-SNP panels. The most 
common strategy used to develop LD-SNP panels is 
to employ variable selection methods to identify a 
small set of markers that are predictive of trait 
phenotype or breeding value. A potential problem 
with variable selection for the development of a LD-
SNP panel, however, is that selected HD-SNPs 
might be different for each quantitative trait and 
population, thereby increasing the number of SNPs 
that must be genotyped when GS is implemented for 
the multiple-trait breeding programs. In addition, the 
effectiveness of this approach may depend on the 
number of QTL affecting the trait; larger numbers of 
SNPs will be needed for traits with larger numbers 
of QTL (HABIER et al., 2009). However, the 
present work has shown that when traits are 

correlated, SNPs selected for one trait can also be 
used for another. In fact, Jia and Jannink (2012) 
showed that the prediction accuracy for a low-
heritability trait could be significantly increased by 
multivariate genomic selection when a correlated 
high-heritability trait was available. Furthermore, 
multiple-trait genomic selection had higher 
prediction accuracy than single-trait genomic when 
phenotypes are not available for all individuals and 
traits. 

 
Real data 

The phenotypic correlation between all 
traits is presented in table 4. Most of all correlations 
were significant using a t test, except between 100-
kernel weight (KW) and kernels per row (KR), 
length of branch (LB) and number of branch (NB), 
plant height (PH) and number of branch (NB), ear 
height (EH) and number of branch (NB). 
Correlation values ranged from -0.126 to 0.981.  

 
Table 4. Correlation between the traits ear length (EL), ear width (ED), row number (RN), kernels per row 

(KR), 100-kernel weight (KW), ear weight (EW), grain yield (GY), length of branch (LB), number of 
branch (NB), plant height (PH) and ear height (EH) in F2 maize population. 

 EL ED RN KR KW EW GY LB NB PH EH 

EL 1 0.311** 0.168** 0.813** 0.180** 0.668** 0.667** 0.554** 0.126** 0.659** 0.447** 
ED 0.311** 1 0.678** 0.336** 0.454** 0.599** 0.577** 0.328** 0.244** 0.647** 0.545** 

RN 0.168** 0.678** 1 0.236** 
-
0.126** 0.352** 0.369** 0.173** 0.248** 0.385** 0.255** 

KR 0.813** 0.336** 0.236** 1 
-
0.077ns 0.650** 0.680** 0.416** 0.100* 0.615** 0.483** 

KW 0.180** 0.454** 
-
0.126** 

-0.077 

ns 1 0.411** 0.364** 0.200** 0.115* 0.344** 0.297** 
EW 0.668** 0.599** 0.352** 0.650** 0.411** 1 0.981** 0.287** 0.144** 0.691** 0.618** 
GY 0.667** 0.577** 0.369** 0.680** 0.364** 0.981** 1 0.266** 0.149** 0.668** 0.578** 
LB 0.554** 0.328** 0.173** 0.416** 0.200** 0.287** 0.266** 1 0.084ns 0.484** 0.238** 
NB 0.126** 0.244** 0.248** 0.100* 0.115* 0.144** 0.149** 0.084ns 1 0.061ns 0.046ns 
PH 0.659** 0.647** 0.385** 0.615** 0.344** 0.691** 0.668** 0.484** 0.061ns 1 0.807** 
EH 0.447** 0.545** 0.255** 0.483** 0.297** 0.618** 0.578** 0.238** 0.046ns 0.807** 1 

ns,** e * :Non significant, significant with 1 and 5% of probability by t test, respectively 
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Regarding the accuracy (R2), all traits 
showed a similar pattern, that is, the accuracy of the 
process increased with the marker selection 
(reduction of markers) and the residual variance 
decreased (Table 5). Nevertheless, it is important to 
confirm that marker selection is a better strategy for 
genome selection when using real data. In this 
sense, Spindel et al. (2015) tested a different number 
of markers on three traits in rice: grain yield, 
flowering time, and plant height. They concluded 
that for all traits, there was no significant difference 
in the best-performing genomic selection method for 
a given trait or validation season when 7,142 SNPs 
(approximately 1 SNP for every 0.2 cM) were used 
versus when 13,101 SNPs (1 SNP for every 0.1 cM) 
or the full 73,147 SNPs were used. 

In this study, all traits showed a standard 
curve, that is, the value of accuracy increased when 
markers are added into the model until its maximum 
value was reached (61 markers). Beyond this point, 
the accuracy of prediction constantly decreased 
reaching the minimum value (Figure 3 A). The 
residual variance, on the other hand, displayed an 
inverse behavior for the same range of markers, that 

is, it initially decreased as markers are added into 
the model until its minimum value is reached (74 
markers); after this point the residual variance 
constantly increased as more markers are included. 
Additionally, this point indicates the minimum 
number of markers to obtain the lowest residual 
variance (Figure 3 B). Six K SNP fixed arrays have 
been recently developed for using within specific 
rice breeding/research programs. Fixed arrays have 
established advantages in rice, including robust 
allele calling, cost-effectiveness per data point, and 
speed of genotyping turn-around (THOMSON, 
2014). Similar results were obtained by Che and Xu 
(2010) obtained with Arabidopsis using an optimal 
number of QTL determined by the cross-validation 
tests that do not lead to any significant loss in the 
precision of genome selection when compared to the 
use of all QTLs, thus analyzing the predictor error. 
Using Barley, these authors found a similar pattern, 
that is, after a specific point (minimum number of 
QTLs) the square of prediction error increased, thus 
showing the need to select markers in genome 
selection.

 

 
Figure 3. Effect of the number of markers in accuracy (R2) (A) and Residual Variance (B) for the trait grain 

yield (GY). 
 
The response in accuracy as well as residual 

variance for different traits after marker selection 
for one specific trait is shown in table 6. For the 
accuracy, the minimum number of markers for the 
trait EL was 63 (Table 5). This matrix was then used 
to estimate the accuracy for 10 additional traits. For 
example, for the trait ED the accuracy was 0.108 
and this value is less (-) than that obtained with the 
original 1000 markers matrix (0.122, Table 5). This 
situation is not desirable, although it could be 
explained by the correlation between these two traits 
(0.31, Table 4). Thus, poor correlation between 
traits might result on a poor selection of marker, and 
therefore indirect selection is not advised as good 
strategy in genomic selection. Jia and Jannink 
(2012) showed that the prediction of accuracy for a 
low-heritability trait could be significantly increased 
by multivariate genomic selection when a highly 
correlated heritability trait is available. Furthermore, 
multiple-trait genomic selection showed higher 

prediction accuracy than compared to single-trait 
genomic selection when phenotypes are not 
available for all individuals and traits.  

Still, considering the matrix selected for the 
trait EL, and now the response in KR, the accuracy 
was 0.179 (Table 6), which is once again greater (+) 
than the value using the 1000 markers matrix in the 
KR analysis (0.068) Table 5. This situation is 
desirable, and it shows the possibility of using the 
matrix selected for EL to predict KR. This effect 
could be explained by the correlation between these 
traits (0.813, Table 4). In this sense, high values of 
correlation between traits can result in good marker 
selection for these traits, and thus the indirect 
selection can be a good strategy in genomic 
selection. Fixed arrays of 6–12K could thus proving 
to be the most affordable and efficient way of 
genotyping for GS, especially for smaller breeding 
programs with less genotyping informatics expertise 
(SPINDEl et al., 2015). 
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Comparing all responses in Table 6, for the 
accuracy, and using the information of correlation 
between all traits (Table 4), it can be state that with 
correlations higher than 0.50 the accuracy is always 
improved and the multi-trait selection is useful. The 
only exceptions were between marker selection for 
EL and the response in EW where the value of 
accuracy decreased even though the correlation 

between traits was 0.66; and between marker 
selection for PH and response in ED where the 
correlation was 0.64. 

For the residual variance, the minimum 
number of markers selected for EL was 79 (Table 
5). This matrix with 79 molecular markers was then 
used to estimate the residual variance of additional 
10 traits.  

 
Table 5. Effect in Accuracy (R2) and residual variance (RV) with the 1000 markers and with the number of 

minimum markers (NM) in traits ear length (EL); ear width (ED ); row number (RN), kernels per row 
(KR), 100-kernel weight (KW), ear weight (EW), grain yield (GY), length of branch (LB), number of 
branch (NB), plant height (PH) and ear height(EH) in F2 maize population. 

 Accuracy (R²)  Residual Variance (RV) 
Traits 1000 markers NM R2  1000 markers NM RV 
EL 0.084 63 0.276  1.960 79 1.482 
ED 0.122 60 0.339  0.04 76 0.031 
RN 0.107 48 0.318  1.575 86 1.205 
KR 0.068 69 0.286  8.089 80 5.999 
KW 0.081 60 0.299  11.351 72 8.570 
EW 0.118 65 0.302  1.011 88 0.828 
GY 0.119 61 0.309  0.771 74 0.623 
LB 0.08 40 0.28  6.323 75 4.952 
NB 0.052 77 0.275  8.360 79 6.140 
PH 0.09 61 0.297  196.446 76 151.770 
EH 0.088 63 0.293  94.428 76 72.230 

 
For the trait ED, the residual variance was 

0.046 and that was greater (+) than the value based 
on the 1000 markers matrix (0.04, Table 5). This 
situation is not desirable, but once again it could be 
explained by the correlation between these traits 
(0.31, Table 4). Therefore, low values of correlation 
between traits can also negatively impact the 
residual variance (i.e. increase it) during the 
selection of marker for these traits, and thus multi-
trait selection should be avoid in genomic selection. 

Still, considering the matrix selected for EL, 
and now the response in KR, the residual variance 
was 7.264 (Table 6) and that is smaller (-) than the 
value using the 1000 markers matrix (8.089, Table 
5). Therefore, the matrix selected for EL could be 
used to predict KR. This effect could be explained 
by the correlation between these traits (0.813, Table 
4), so that if high values of correlation between 
traits are found, a good response is expected during 
marker selection for these traits, and consequently a 
multi-trait selection can be a good strategy in 
genomic selection. 

Comparing all responses for the residual 
variance (Table 6) and using the information of 
correlation between all traits (Table 4), it is clear 
that for correlations higher than 0.70 the residual 

variance always decreases and the multi-trait 
selection is useful method. The best strategy, 
however, will likely have multiple genotyping 
platforms available and the flexibility of switching 
between them as needed. Genotyping turn-around 
time is ultimately key for GS because genotypes 
must be available in time for selections and the next 
generation crossing. It should be noted that 
depending on the platform, genotyping individuals 
with more markers than is necessary could be 
detrimental to breeding progress if it overloads the 
bioinformatics and computational capacities of a 
breeding program (SPINDEL et al., 2015). 
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Table 6. Response in accuracy (R2) and residual variance (RV) considering number of minimum matrix (NM) 
for each trait: ear length (EL); ear width (ED ); row number (RN), kernels per row (KR), 100-kernel 
weight (KW), ear weight (EW), grain yield (GY), length of branch (LB), number of branch (NB), 
plant height (PH) and ear height(EH) in F2 maize population. 

  Response (R2 or RV) 

 NM EL ED RN KR KW EW GY LB NB PH EH 

A
cc

ur
ac

y 
(R

2 ) 

EL - 0.108- 0.106- 
0.179
+ 0.033- 0.112- 

0.121
+ 

0.083
+ 0.026- 0.125+ 0.074- 

ED 0.06- - 
0.148
+ 0.048- 0.057- 

0.156
+ 

0.142
+ 0.04- 0.037- 0.095+ 0.114+ 

RN 0.059- 
0.172
+ - 0.042- 0.095+ 0.111- 0.108- 0.033- 0.046- 0.083- 0.069- 

KR 
0.189
+ 0.056- 0.051- - 0.074- 

0.132
+ 

0.149
+ 

0.085
+ 0.026- 0.138+ 0.085- 

K

W 0.048- 0.091- 0.094- 0.057- - 0.109- 0.1- 0.036- 0.012- 0.055- 0.068- 

EW 0.12+ 
0.182
+ 0.065- 

0.148
+ 0.096+ - 

0.297
+ 0.036- 0.029- 0.146+ 0.086- 

GY 
0.116
+ 

0.182
+ 0.102- 

0.137
+ 0.092+ 0.29+ - 0.029- 0.044- 0.148+ 0.106+ 

LB 0.057- 0.066- 0.051- 0.04- 0.026- 0.063- 0.057- - 0.024- 0.078- 0.045- 
NB 0.051- 0.062- 0.093- 0.041- 0.079- 0.061- 0.059- 0.062- - 0.043- 0.049- 

PH 
0.085
+ 0.086- 0.043- 

0.088
+ 0.046- 

0.128
+ 

0.123
+ 0.041- 0.02- - 0.194+ 

EH 0.065- 0.1- 0.028- 
0.069
+ 0.03- 

0.128
+ 

0.119
= 0.024- 0.047- 0.181+ - 

R
es

id
ua

l V
ar

ia
nc

e 
(R

V
) 

EL - 
0.046
+ 

1.738
+ 7.264- 

13.029
+ 

1.082
+ 

0.811
+ 

6.676
+ 

9.227
+ 

201.045
+ 

104.621
+ 

ED 
2.135
+ - 

1.641
+ 

8.860
+ 

12.740
+ 

1.044
+ 

0.805
+ 

7.058
+ 

9.164
+ 

213.349
+ 

100.506
+ 

 RN 
2.217
+ 

0.042
+ - 

8.852
+ 

12.566
+ 

1.143
+ 

0.865
+ 

7.411
+ 

9.043
+ 

220.228
+ 

106.968
+ 

KR 1.766- 
0.049
+ 

1.823
+ - 

12.054
+ 

1.054
+ 

0.784
+ 

6.626
+ 

8.940
+ 195.511- 

100.150
+ 

K

W 
2.196
+ 

0.046
+ 

1.743
+ 

8.754
+ - 

1.112
+ 

0.852
+ 

7.100
+ 

9.294
+ 

220.514
+ 

106.682
+ 

EW 
1.990
+ 

0.042
+ 

1.834
+ 7.628- 

11.929
+ - 0.635- 

7.124
+ 

9.019
+ 

191.210
+ 98.378+ 

GY 
2.021
+ 

0.041
+ 

1.740
+ 7.835- 

12.115
+ 0.853- - 

7.306
+ 

9.111
+ 192.189- 97.229+ 

LB 
2.167
+ 

0.048
+ 

1.845
+ 

8.958
+ 

13.324
+ 

1.164
+ 

0.883
+ - 

9.120
+ 

227.591
+ 

110.993
+ 

NB 
2.167
+ 

0.047
+ 

1.727
+ 

8.899
+ 

12.487
+ 

1.164
+ 

0.882
+ 

6.880
+ - 

223.342
+ 

106.813
+ 

PH 
2.070
+ 

0.046
+ 

1.929
+ 

8.196
+ 

12.753
+ 

1.039
+ 

0.793
+ 

7.149
+ 

9.273
+ - 84.903- 

EH 
2.159
+ 

0.045
+ 

1.921
+ 

8.481
+ 

13.264
+ 

1.070
+ 

0.821
+ 

7.382
+ 

8.994
+ 

184.492
+ - 

 
CONCLUSIONS 

 

In simulated and maize data the results were 
similar: the residual variance with few markers is 

lower than with the 1000 markers and the accuracy 
with few markers is bigger than with 1000 markers. 

For maize data multi trait selection, the 
accuracy increased when the correlation between 
traits is greater than 0.50 and residual variance 
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decreased when the correlation is greater than 0.70. 
In this sense, these results showed that marker 
selection could be used as a first step in genome 
wide selection, improving the prediction and 
compute demand.  
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RESUMO: O objetivo deste trabalho foi comparar o efeito da precisão e da variância residual na 

seleção genômica ampla utilizando a seleção de marcadores, bem como utilizando o efeito da seleção indireta, 
utilizando dados simulados e reais. Foram usados simulados de uma amostra com 200 indivíduos com 1.000 
marcadores moleculares na população F2. Os dados reais foram obtidos em milho com população F2 com 441 
indivíduos e genotipagem com 261 marcadores SSR. Foram avaliados 11 caracteres (comprimento da espiga, 
largura da espiga, número da linha, grãos por linha, peso de 100 grãos, peso da espiga, produtividade de grãos, 
comprimento da espiga, número de espigas, altura da planta e altura da espiga). Todos os dados foram 
analisados usando o método rrBLUP, sendo realizada 10 vezes a validação cruzada. Em dados simulados e de 
milho, os resultados foram semelhantes: a variância residual com poucos marcadores é menor do que com os 
marcadores 1000 e a precisão com poucos marcadores é maior do que com os marcadores 1000. Para a seleção 
multi-característica dos dados do milho, a precisão aumentou quando a correlação entre as características é 
maior que 0,50 e a variância residual diminuiu quando a correlação é maior que 0,70. Nesse sentido, esses 
resultados mostraram que a seleção de marcadores poderia ser usada como um primeiro passo na seleção 
genômica ampla, melhorando a previsão e a demanda computacional. 

 
PALAVRAS-CHAVE: Seleção de genoma. Milho. Simulação. Análise de dados. Melhoramento de 

plantas. 
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