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Abstract 
Anastrepha fraterculus (Wiedemann) is one of the main pests of fruit farming, and entomopathogenic 
nematodes (EPNs) represent an important control tool of this species. Thus, the objective of this study was 
to evaluate the biological activity of different isolate against A. fraterculus larvae and adults. Bioassays were 
performed using a suspension of three isolates of Heterorhabditis amazonensis IBCB 24, Steinernema 
carpocapsae IBCB 02 and Steinernema feltiae IBCB 47 at six concentrations (control - without nematodes), 
50, 150, 300, 500, 1000 and 1500 infective juveniles (IJs)/mL of water per 3º instar larvae. It was verified the 
susceptibility of larvae of A. fraterculus to isolates of EPNs and a significant increase of the pupal mortality 
in the function of the concentration of IJs inoculated by larva (above 75%). After the dissection of pupae and 
adults of A. fraterculus from infected larvae, the concentration of 1500 IJs/mL of EPNs provided the highest 
rate of multiplication of IJs by insect, equating to maximum concentration tested 1500 IJs/mL. Adults of A. 
fraterculus from larvae infected with EPNs longevity of five days, being less than adults from uninfected 
larvae by IJs (135 days). H. amazonensis IBCB 24, S. carpocapsae IBCB 02, and S. feltiae IBCB 47 proved to be 
promising as agents of biological control of A. fraterculus. 
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1. Introduction 

The South American fruit fly Anastrepha fraterculus (Wiedemann 1830) (Diptera: Tephritidae) is 
among the main fruit-growing pests in South America, spread from the southern United States to northern 
Argentina. In the national territory, it occurs in 23 states, and establishes relations with more than 100 
species of plants, causing losses of around US$ 120 million/year (Zucchi 2017). The damage generated occurs 
directly, during egg-laying and larval development in the fruit, and indirectly, because they facilitate the 
entry of secondary pathogens through holes from egg-laying (Dias et al. 2013). In Brazil, current management 
strategies against A. fraterculus include a spray application of phosphorus and pyrethroids insecticides 
(Harter et al. 2015). However, worldwide studies have shown that using toxic baits can be a management 
option for infested areas (Navarro-Llopis et al. 2012; Borges et al. 2015). 

Considering the great threat that A. fraterculus imposes to fruit crops, and the intense contamination 
provided by the current control technique, it is fundamental to study alternative methods of control, within 
the context of Integrated Pest Management (Garcia et al. 2017). In this sense, the use of entomopathogenic 
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nematodes (EPNs) is considered a highly promising method (Dias et al. 2008; Soliman et al. 2014; James et 
al. 2018), due to the active search of the host in the soil, and the mutual association with Xenorhabdus 
(Thomas and Poinar) and Photorhabdus (Boemare, Louis and Kuhl) bacteria (Dowds and Peters 2002; Poinar 
and Grewal 2012; Labaude and Griffin 2018). Infective juveniles (IJs) of EPNs enter the host through natural 
openings or through the cuticle and release the bacteria into the hemocoel, where they reproduce and kill 
the host by septicemia within 24 to 48 hours, making the environment favorable for the development and 
reproduction of nematodes (Lewis et al. 2006; Poinar and Grewal 2012; Subramanian and Muthulakshmi 
2016). The genus Anastrepha has been shown to be susceptible to EPNs, as observed in Anastrepha obliqua 
(Macquart) (Diptera: Tephritidae), Anastrepha serpentina (Wiedemann) (Diptera: Tephritidae) and 
Anastrepha ludens (Loew) (Diptera: Tephritidae) exposed to Heterorhabditis bacteriophora  (Poinar) 
(Lezama-Gutiérrez et al. 2006; Toledo et al. 2006; Toledo et al. 2014), Anastrepha suspensa (Loew) (Diptera: 
Tephritidae)  to S. feltiae (Heve et al. 2016) and A. fraterculus to H. bacteriophora RS88, S. riobrave RS59, 
Heterorhabditis amazonensis IBCBn 24 and Oscheius sp. (Barbosa-Negrisoli et al. 2009; Foelkel et al. 2017). 
However, for the successful use of these agents in the management of fruit flies, it is essential to assess the 
pathogenicity of EPNs in the laboratory to select the best lethal concentrations that can be used in the field 
(James et al. 2018; Labaude and Griffin 2018; Chergui et al. 2019). Therefore, in this study, we aimed to 
evaluate the biological activity of entomopathogenic nematodes against A. fraterculus larvae and adults. 
 
2. Material and Methods 

Breeding and maintenance of A. fraterculus 

Specimens of A. fraterculus were obtained from the Insect Biology Laboratory of the Eliseu Maciel 
College of Agronomy (UFPEL) and the entomopathogenic nematode isolates from the collection of 
entomopathogenic organisms of the “Oldemar Cardim Abreu Collection” of the Biological Institute of São 
Paulo, State of São Paulo, Brazil. The culture of A. fraterculus was maintained in an air-conditioned 
environment (25±1ºC), with relative humidity (RH) 70 ± 10% and photophase of 12h. The insects were reared 
on artificial diet, following the methodology of Salles (1992) and adapted by Nunes et al. (2013). 
 
Maintenance and multiplication of species of EPNs 

The nematodes Heterorhabditis amazonensis (Andaló) IBCB 24, Steinernema carpocapsae IBCB 02 
and Steinernema feltiae IBCB 47 were multiplied in larvae of Galleria mellonella (Linnaeus) (Lepidoptera: 
Pyralidae) from fourth to the fifth instar, according to the methodology of Machado (1988). For the 
multiplication of the nematodes, five G. mellonella larvae were placed in Petri dishes (9 cm in diameter) lined 
with two sheets of filter paper, moistened with 1.5 mL nematode suspension at 500 IJs/cm2, (100 IJs/larvae). 
Petri dishes were capped and sealed with polyvinyl chloride (PVC) film and stored at 25±2°C and RH> 80%. 
After three days of mortality, dead larvae were transferred to White’s trap (White 1927) and kept at 25±1°C 
and RH at 70±10% until the emergence of IJs. Collected IJs were kept in distilled water (1 cm deep) in 
Erlenmeyer flasks maintained at 18±1°C, 70±10% RH, and used 48h after collection. 
 
Biological Activity Against A. fraterculus Larvae 

To verify the activity of entomopathogenic nematodes (EPNs) on third instar larvae of A. fraterculus, 
three EPNs isolates (H. amazonensis IBCB 24, S. carpocapsae IBCB 02 and S. feltiae IBCB 47) were used. 
Therefore, 3º instar larvae of A. fraterculus were placed in plastic containers (200 mL) containing 100 grams 
of sterilized fine sand, 10% moisture. After penetration of A. fraterculus larvae in the sand (20 to 30 s), isolate 
suspensions (treatments) of H. amazonensis IBCB 24, S. carpocapsae IBCB 02 and S. feltiae IBCB 47 were 
inoculated with a graduated glass pipette (5 mL). For each EPNs isolate, seven concentrations were used: 
zero (control - without nematodes), 50, 150, 300, 500, 1000, and 1500 IJs/mL of water per larvae. After 
inoculation, the containers were sealed with perforated lids (approx. 1 mm diameter) for aeration and 
maintained in a climatized room at 25 ± 1°C, 70 ± 10% relative humidity and photophase of 12h. Evaluations 
were performed daily until the emergence of adults. Pupae mortality was evaluated at three days after 
inoculation of the entomopathogenic nematodes. Based on the results, were to estimate the concentration 
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required to kill 50% and 90% of exposed pupae [Lethal concentration (LC), LC50 and LC90, respectivamente]. 
As well as pupae and adults de A. fraterculus were dissected using an entomological clamp to quantify the 
number of IJs to determine the nematode multiplication rate per insect with the aid of a stereoscopic 
microscope (40×). The bioassay was conducted in a completely randomized design, with three treatments 
and five replicates per concentration, with 10 third instar larvae of A. fraterculus per concentration (n=50). 
 
Biological Activity Against A. fraterculus Adults Subsection 

For this purpose, was used the same methodology as the previous bioassay. To evaluate the biological 
activity against A. fraterculus adults, LC50 e LC90 values were used estimated in the concentration-response 
curves. The adults that emerged after the treatment were transferred to cages, consisting of 500 mL plastic 
pots with the bottom lined with voile (5cm), and were fed on a solid diet based on soybean extract, wheat 
germ and sugar (3: 1: 1) (Nunes et al. 2013). Water was provided in polyurethane sponges inserted in 9-cm 
diameter Petri dishes. The bioassays were maintained in a climatized room at 25 ± 1°C, 70 ± 10% relative 
humidity, and photophase of 12h. Inviable pupae were removed from the treatments on the third day after 
the emergence of the last adult. The biological parameter evaluated was the longevity (days) of adults of A. 
fraterculus. The bioassay was conducted in a completely randomized design, with three treatments (EPNs 
isolate) and five replicates with 10 third instar larvae of A. fraterculus per concentration LC50 or LC90 (n=50). 
 
Statistical analysis 

Generalized linear models of the exponential family of distributions (Nelder and Wedderbum 1972) 
were used for the analyses of studied variables (pupae mortality (%), number of juveniles for pupae and 
adults and longevity of adults). When there were significant differences among treatments, multiple 
comparisons (Tukey’s test, P < 0.05) were performed using the glht function by means of a Multicomp 
package, with adjustment of p-values. All analyses were performed using the "R" statistical software version 
2.15.1 (R Development Core Team 2012). A binomial model with a complementary log-log link function 
(gompit model) was used to estimate the lethal concentrations (LC50 and LC90), using the Probit Procedure 
in the software SAS version 9.2 (SAS Institute, 2008). 
 
3. Results 

We observed a significant increase (P < 0.05) in the susceptibility of A. fraterculus larvae depending 
on the concentration of EPNs isolate evaluated, S. carpocapsae IBCB 02 (F= 27.15; d.f= 6; P > 0.001), H. 
amazonensis IBCB 24 (F= 33.455; d.f= 6; P > 0.001) and S. feltiae IBCB 47 (F= 38.715; d.f= 6; P > 0.001), 
providing high pupae mortality (approximately 80%) at the maximum concentration tested (1500 IJs/ml) 
(Figure 1). However, the isolated S. carpocapsae IBCB 02, the concentration of 300 IJs/ml was significantly 
similar (P = 0.05) the maximum concentration evaluated, 1500 IJs/ml (Figure 1). As well, it was verified for 
the isolated S. feltiae IBCB 47 at the concentration of 1000 IJs/ml, equating to be statistically (P = 0.05) to 
the concentration of 1500 IJs/ml (Figure 1). 
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Figure 1. Pupae mortality (percentage ± standard error) of A. fraterculus after application to 

concentrations of EPNs isolates in the third instar larvae. A – Steinernema carpocapsae IBCBn 02; B – 
Heterorhabditis amazonensis IBCBn 24; C – Steinernema feltiae IBCBn 47. *Bars (± SE) with the same letter 

(for each EPNs isolate) are not significantly different (GLM with quasi-binomial distribution followed by 
Tukey’s post hoc test; P < 0.05). 

 
It was observed a high rate of multiplication of EPNs in the hemocoel of insects through the process 

of dissection of pupae (F= 38,715; d.f= 6; P > 0,001) and adults (F= 14,609; d.f= 6; P > 0,001) of A. fraterculus 
(Table 1). It was found that the concentration of 500 IJs/ml, provided for all isolates, rates of multiplication 
of the EPNs significantly similar when compared to the maximum concentration tested (1500 IJs/ml) (Table 
1). 
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Table 1.  Multiplication rate (number average ± Standard error) of Infective Juvenile in pupae and adults of 
Anastrepha fraterculus in different concentrations. 

Concentration of IJs Pupae Adults 

Steinernema carpocapsae IBCBn 02 
Control 0.00 ± 0.00C 0.00 ± 0.00D 

50 1.93 ± 0.85B 1.21 ± 0.11C 
150 2.87 ± 0.86AB 1.22 ± 0.11C 
300 2.00 ± 0.80B 1.83 ± 0.31B 
500 2.71 ± 0.99AB 2.71 ± 0.99A 

1000 2.40 ± 0.80AB 2.40 ± 0.84A 
1500 3.64 ± 0.29A 2.55 ± 2.79A 

Heterorhabditis amazonensis IBCBn 24 

Control 0.00 ± 0.00C 0.00 ± 0.00D 
50 2.20 ± 0.48B 0.39 ± 0.13D 

150 2.44 ± 0.5B 1.28 ± 0.47C 
300 2.77 ± 0.90B 2.73 ± 0.44B 
500 5.34 ± 1.36A 3.29 ± 0.79AB 

1000 4.83 ± 0.34A 3.21 ± 3.90AB 
1500 5.98 ± 0.24A 4.52 ± 2.12A 

Steinernema feltiae IBCBn 47 

Control 0.00 ± 0.00D 0.00 ± 0.00D 
50 1.09 ± 0.66C 0.65 ± 0.15C 

150 2.13 ± 0.75BC 2.64 ± 0.93B 
300 3.35 ± 0.53B 2.50 ± 0.78B 
500 4.01 ± 0.73AB 4.45 ± 0.89A 

1000 4.65 ± 1.07AB 3.06 ± 0.22AB 
1500 5.90 ± 0.75A 3.87 ± 1.32A 

Averages number with the same letter (for each EPNs isolate) are not significantly different (GLM with quasi-binomial distribution 
followed by Tukey’s post hoc test; P < 0.05). 

 
Based on the concentration-response curves from the bioassays, the data were adjusted to the 

proposed model (chi-square values <10) (Table 1). In relation to the median lethal concentration (LC50 and 
LC90) and based on the overlap of the confidence intervals (CI), the EPNs S. carpocapsae IBCB 02, H. 
amazonensis IBCB 24 and S. feltiae IBCB 47 did not differ among themselves, with values of CL50 ranging from 
427.2 (326.2 - 524.8 IJs/ml) to S. carpocapsae IBCB 02 to 636.9 (515.0 - 738.5 IJs/ml) for H. amazonensis 
IBCBn 24 (Table 2). Similarly, it has been observed for the values of CL90, which varied from 1551.4 1768.8 
1388.9 (- IJs/ml) to S. feltiae IBCB 47 to 1828.0 2145.4 1604.4 (- IJs/ml) for H. amazonensis IBCB 24 (Table 2).  
 
Table 2. Estimate of the LC50 and LC90 (IJS/mL) as well as the confidence interval (CI 95%) of 
entomopathogenic nematodes to third instar larvae of Anastrepha fraterculus. 

Isolate Slope ± SE LC50 (CI 95%) a LC90 (CI 95%) b χ2c d.f. d 

Steinernema 
carpocapsae IBCBn 02 

3.56 ± 0.40 427.2 (326.2 - 524.8) 1703.0 (1480.4 - 2028.8) 3.57 6 

Heterorhabditis 
amazonensis IBCBn 24 

2.19 ± 0.19 636.9 (515.0 - 738.5) 1828.0 (1604.4 - 2145.4) 7.85 6 

Steinernema  
feltiae IBCBn 47 

2.82 ± 0.22 595.0 (519.2 - 676.8) 1551.4 (1388.9 - 1768.8) 2.81 6 

a,bLC50 and LC90 – lethal Concentration of entomopathogenic nematodes (IJS/mL) required to kill 50% or 90% of A. fraterculus 
pupae, respectively (CI: confidence interval at 95% error probability); cχ2 – Pearson’s chi-square value; dd.f. – degrees of freedom. 

 
In addition, adults of A. fraterculus, from third instar larvae infected with S. carpocapsae IBCBn 02, 

H. amazonensis IBCBn 24 and S. feltiae IBCBn 47 at concentrations CL50 and CL90, estimated from the 
concentration-response curves showed average longevity of approximately 5 days, for both the CL50 (F = 
31.64; df = 3; P < 0,001) and CL90 (F = 22.12; df = 3; P < 0,001), differing statistically from adults from larvae 
without the presence of IJs (control treatment) that showed average longevity of 135 days (Figure 2).  
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Figure 2. The longevity of adults of A. fraterculus after application of EPNs isolate in LC50 e LC90 values 
estimated from the concentration-response curves. “Bars (± SE)” followed by the same color and different 

letters differ significantly by the Tukey test (P > 0.05) for values of CL50 and CL90. 
 
4. Discussion 

The use of entomopathogenic nematodes has already been used in the management of different 
species of fruit flies (Dias et al. 2008; James et al. 2018). In the present study the susceptibility of A. 
fraterculus to EPNs was verified, corresponding to results of previous studies, which observed the efficiency 
of different isolates in the control of immature insect phases of the genus Anastrepha (Barbosa-Negrisoli et 
al. 2009; Foelkel et al. 2017). When compared of genus Heterorhabditis, the differences in the pathogenicity 
of the genus Steinernema can be explained by variations in the strategies of the host or from the entrance 
of the IJs in the insect due to penetrating the interior of the insects occur through the mouth, anus, 
blowholes and track cuticle (Lewis et al. 2006). 

Among the pupae mortality rates reported in this study, the highest average occurred for S. feltiae 
IBCB 47 (80.0%) at the concentration of 1500 IJs/ml. This result is due to the searching efficiency of the IJs 
of this isolate, which uses mechanisms of recognition of the host by chemical compounds, moving to this, or 
increasing in the substrate as a way to carry out the infection (Grewal et al. 2001). In contrast, the isolate 
that provided the lowest average pupal mortality was H. amazonensis IBCB 24, with 72.0% at the highest 
concentration (1500 IJs/ml). The low efficiency of higher concentration may be related to specific 
characteristics of the isolated, because for some the inoculation of high dosages can generate intraspecific 
competition in search of the host, thereby reducing the infectivity (Dias et al. 2008).  

The rates of multiplication of the isolates in the hemocoel of insects (pupae and adults) were affected 
by the concentrations of inoculated, the larger ones were obtained in the intermediate concentration (500 
IJs/larvae). These results indicate a reduction in the multiplication of IJs in high concentrations, which occurs 
because of the limited number of resources available in the insect host (Dias et al. 2008). The efficiency of 
the multiplication of isolated demonstrates the ability of the IJs to remain in the environment and carry out 
the control for a longer period, which emphasizes the importance of the adequacy of the concentrations of 
IJs used (Jackson 1999). In addition, the behavior of the isolates may have contributed to reducing virulence, 
as each species behaves differently, allowing a high or low infection in the host, which is linked to the size 
and structure of the insect, which can lead to failure the time of infection and consequently reducing the 
mortality rate (Brida et al. 2017). 

The lethal concentration (LC50 and LC90) was obtained in smaller quantities of IJs to the isolated S. 
carpocapsae IBCB 02 and S. feltiae IBCB 47, with 427.2 IJs/ml and 1551,4 IJs/ml, respectively. The efficiency 
of control these isolated from insects of the genus Anastrepha was also reported by Foelkel et al. (2016) 
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indicating 90.0% mortality in larvae of A. fraterculus (314.7 IJs/larva) and for Heve et al. (2016), with 85.0% 
of mortality by S. carpocapsae (200 IJs/larva) in Anastrepha suspensa (Loew) (Diptera: Tephritidae). 

Another factor evaluated in the present study was the emergence of adult insects infected with EPNs 
and consequent reduction in their longevity due to infection. When penetrating the insect's integument, IJs 
usually cause mortality between 24 and 48 hours, however, the emergence of infected adults indicates an 
insect resistance to infection during the pupal period (Rodrigues-Trentini 1996). This resistance is due to its 
immune system, which synthesizes genes encoding antimicrobial peptides that encapsulate and inactivate 
the pathogen (Castillo et al. 2011; Strand 2008). The synthesis of these genes in fruit flies was observed in 
adults of Ceratitis capitata (Wiedemann) after infection by S. carpocapsae, which produced specific genes, 
aiming at the inhibition of the microorganism (Tavares 2011). Inactivation of the pathogen during the pupal 
phase of the insect and reestablishment of its activity during the adult phase indicate the ability of these 
organisms to overcome the insect's immune system. These they secrete antibiotic molecules that inhibit the 
action of the encapsulation enzyme produced by the host, conferring resistance to the process of 
phagocytosis (Vallet-Geley et al. 2008). 

For the first time, it observed the effect of IJs of EPNs in newly emerged adults after treatments with 
different isolates in the immature phases. The EPNs drastically reduced the longevity of A. fraterculus adults, 
causing mortality before completing the pre-oviposition period, which would prevent them from causing 
fruit damage (Zart et al. 2010). Although the inoculated concentration is of great importance for the success 
of the infection rate (Dias et al. 2008), it was verified that, regardless of the concentration used (CL50 or CL90 

values), IJs were able to resist the insect's immune system mortality in a short period.  
The present study deals with the high pathogenicity of the EPNs isolates S. carpocapsae IBCB 02, H. 

amazonensis IBCB 24, and S. feltiae IBCBn 47 to A. fraterculus, which demonstrated efficiency in the different 
concentrations of IJs used. Another factor assessed was the efficiency of multiplication of the isolates in the 
hemocoel of insects, which underscores the ability of the IJs to survive in the environment, multiply and 
carry out the control of a greater number of hosts. This research also reports the ability of IJs to remain in 
adults of A. fraterculus after emergence, which is reported for the first time in the insect. The insect's ability 
to emerge even if infected may be related to the action of its immune system, which can slow down the 
infectious process. However, even emerging, the insects would be prevented from causing damage, since 
they died between the first and fourth day of life, long before they reached the pre-oviposition period.  

In Brazil, the search for EPNs -based products with the potential for pest control is growing annually 
(Brida et al. 2017). Thus, the availability of biological products based on nematodes can assist in the 
integrated management of A. fraterculus, mainly, after studies characterize the natural occurrence of these 
two genera in fruit orchards in Brazil (Barbosa-Negrissoli et al. 2009). However, it is important to continue 
the studies in the field, once which, the environmental parameters such as temperature, moisture, 
vegetation types, and soil properties can affect the survival and virulence of nematodes in the field. 
However, based on the results, we can conclude that the H. amazonensis IBCB 24, S. carpocapsae IBCB 02, 
and S. feltiae IBCB 47 isolates may be a future alternative for an integrated management program of A. 
fraterculus. 
 
5. Conclusions 

The isolates Steinernema carpocapsae IBCBn 02, Heterorhabditis amazonensis IBCBn 24 and 
Steinernema feltiae IBCBn 47 are pathogenic to larvae and pupae of A. fraterculus, in addition to causing fly 
mortality, they reduce the longevity of adults, preventing them from causing damage before they reach 
them. the pre-oviposition period, contributing to the management of this pest and with promising potential 
as agents for the biological control of A. fraterculus. 
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