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Abstract 
The biophysical characteristics of vegetative canopies, such as biomass, height, and canopy diameter, are of 
paramount importance for the study of the development and productive behavior of crops. Faced with a 
scarcity of studies aimed at estimating these parameters, the objective of this study was to evaluate the 
performance of artificial neural networks (ANNs) applied to Proximal Remote Sensing (PRS) to estimate 
biophysical characteristics of soybean culture. The data used to train and validate the ANNs came from an 
experiment composed of 65 plots with 30 x 30 m mesh, its development was carried out in the 2016/2017 
crop in the Brazilian agricultural area. The evaluations were carried out at 30, 45, 60, and 75 days after 
sowing (DAS), monitoring the spatial and temporal variability of the biophysical characteristics of the 
soybean crop. Vegetation indexes were collected using canopy sensors. The accuracy and precision were 
determined by the coefficient of determination (R2) and the error of the forecasts by MAPE (Mean Absolute 
Percentage Error). PRS and ANNs showed high potential for application in agriculture, since they obtained 
good performance in the estimation of height (R2 = 0.89) and canopy diameter (R2 = 0.96), being fresh 
biomass (R2 =0.98) and dry biomass (R2 = 0.97) were the best-estimated variables. 
 
Keywords: Artificial Neural Networks. Active Optical Sensor. Glycine max L. Machine Learning. Vegetation 
Index. 
 
1. Introduction 

The search for more sustainable and cost-saving agriculture has contributed to the advancement of 
technologies in the area and the improvement of new methodologies. Nowadays, information technology 
has become very important in several systems, making it possible to manage the harvest, optimize the 
application of the products, and manage the planting. In this context, bioinformatics techniques such as 
Artificial Neural Networks (ANNs) prove to be relevant tools in several areas of agriculture with great 
application in the analysis of agricultural variables. 
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Artificial neural networks (ANNs) are computational models characterized by artificial neurons 
connected by a large number of interconnections called artificial synapses (Silva et al. 2016). They are used 
in the most diverse areas with potential for application in forecasting systems, whose objective is to estimate 
future values of a process taking into account several previous measures observed. Among the available 
applications are climate forecasts, time series forecasts, financial market forecasts, among others (Silva et 
al. 2016).  

One of the most relevant characteristics of ANNs is their ability to learn from examples. ANNs have 
shown greater performance due to factors such as efficiency in learning and generalization, making them 
capable of solving complex problems; enable modeling with numerical and categorical variables; parallel 
distributed structure (layers) and robust; they are tolerant of outliers or outliers, they can model different 
variables and non-linear relationships (Haykin 2001). 

Using crop simulation models, ANNs can be used with great success in various situations for crop 
estimates and forecasts (Andrade Júnior et al. 2006). Crop growth models exhibit potential use for crop 
planning and management, helping to understand physiological, environmental, and genetic interactions, as 
well as decisions on cultural practices, such as irrigation and fertilizer distribution (Boote et al. 1996).  

Another concept that has contributed to significant advances in the agricultural environment is 
remote sensing (RS). Remote sensing is a science-based on the interaction of electromagnetic radiation with 
the Earth's surface and allows obtaining data from a target without direct contact between the sensor and 
the target. As the main advantage, mainly concerning the plant study, the SR allows the extraction of data 
from the vegetation without the need for destructive samples. The levels of data collection in this science 
can be orbital, aerial, and terrestrial, the terrestrial being the one that allows the study of the target more 
punctually, contributing to a better understanding of the behavior of this target in the face of 
electromagnetic radiation. 

There is still a lack of work in the literature with the use of artificial intelligence and PRS (Proximal 
Remote Sensing), highlighting the relevance of this research for understanding the temporal and spatial 
analysis related to the biophysical characteristics of the plant, such as plant biomass, height, canopy width, 
and productivity. The estimation of biophysical characteristics is of utmost importance since it can contribute 
to the reduction of labor, monitoring of the vigor of cultivation, and destination of the final product on the 
market. 

For the prediction of crop production, the formulation of a mathematical model is limited and 
difficult, due to the non-linearity of the data of the parameters related to it and to the complexity (Braga et 
al. 2012). Thus, several authors recommend the use of RNAs when systems are complex (Vieira et al. 2009; 
Jana and Mohanty 2012). Given the exhibited, the objective of this work was to evaluate the performance 
of the artificial neural network applied to remote sensing at the terrestrial level with canopy sensors to 
estimate biophysical characteristics of soybean, an important crop in the world commodities market. 
 
2. Material and Methods 

Description of the experimental area  

The experiment was carried out in an agricultural area of the municipality of Jaboticabal located at 
coordinates 21º15'19,6’’S and 48º15’38,5’’W, state of São Paulo, Brazil (Figure 1). The area has as 
characteristic soil the RED LATOSOL (Santos et al. 2018). According to the Köppen climatic classification, the 
region has a climate characterized as AW, dry winter tropical with an average temperature of 22.2ºC (Alvares 
et al. 2013).  
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Figure 1. The experimental area is located in Jaboticabal, state of São Paulo, Brazil. 

 
Data acquisition 

The data used to train and validate the ANNs came from a soybean experiment conducted in the 
2016/2017 harvest, consisting of 65 sample points with 30 x 30 m mesh. The evaluations were performed at 
30, 45, 60, and 75 days after sowing (DAS), stages V3, V5, V6, and R4 respectively, in which fresh and dry 
biomass, canopy width, chlorophyll index, and plant height were evaluated. 

Each sample point was consisted of two lines 5 meters long with 0.45 m of spacing between lines, 
making 4.5 m² of usable area per point. All sampling points were georeferenced with the GNSS receiver - 
Global Navigation Satellite System - Trimble R6, with the GNSS system, receiving RTK positioning signal - 
Real-Time Kinematic - and high precision antenna (Trimble 2013; Embratop 2017). In addition to the 
variables mentioned above, vegetation index data (NDVI - Normalized Difference Vegetation Index; NDRE - 
Normalized Difference Red Edge; and IRVI - Inverse Ratio Vegetation Index) were collected using canopy 
sensors. The readings of the vegetation indexes were performed on the canopy of the plant according to 
Grohs et al. (2011). 
 
Vegetation index 

The sensors used to obtain the vegetation indexes were GreenSeeker and OprTX. The GreenSeeker 
model 500, Trimble, emitted radiation at the near-infrared wavelengths - NIR (770 nm) and red (660 nm), 
with a bandwidth of about 25 nm (Povh et al. 2008; Amaral et al. 2015). The reflected light is captured by 
the sensor to calculate the NDVI vegetation index (Motomiya et al. 2014) and the IRVI. The readings with the 
sensor were performed at a working height of 0.6 to 0.7 m. 

The OptRX active sensor ACS430 model, Ag Leader, allows the obtainment of NDRE and NDVI 
vegetation indices. However, in this work, the NDVI collected by the GreenSeeker sensor was considered. 
Table 1 shows the calculation for the evaluated vegetation indices. 

 
Table 1. Vegetation indexes. 

Vegetation index Index calculation Source 

NDVI NDVI =
FNIR-FRed

FNIR+FRed
 Rouse et al, (1973) 

NDRE NDRE =
NIR-RE

NIR+RE
 Buschmann and Nagel (1993) 

IRVI IRVI=
R650

R770
 Kapp Júnior et al, (2016) 

NDVI Normalized Differential Vegetation Index, NIR emission fractions in near-infrared, Red emission fractions of red, NDRE 
Normalized Difference Red Edge, RE red-edge rate indices, IRVI Inverse Ratio Vegetation Index, NIR 774 nm, Red 656 nm, RE 720 
nm. 
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Quality indicators 

The evaluated parameters were plant height and width, fresh biomass, and chlorophyll index. For the 
height of the plant and the canopy width, a measuring tape graduated in centimeters was used. To obtain 
fresh biomass (‘in natura”), an area of 0.25 m2 (0.5 x 0.5 m) was used (Figure 2). The plants inside this frame 
were cut close to the ground and then weighed on a semi-analytical scale to measure the fresh weight. The 
samples were placed in an oven with a circulation at 65ºC for 72 h (Gobbi et al. 2009; Grohs et al. 2009) to 
obtain the dry mass.  

 

 
Figure 2. Collection of fresh biomasses using the frame with dimensions 0.5 x 0.5 m. 

 
The Chlorophyll Index was acquired by the Marcone® model CCM-200 plus chlorophyll meter, with 

an accuracy of ± 1 CCI unit (Chlorophyll Content Index). Readings were performed by randomly collecting 
three leaves per plot and three readings per leaf.  
 
Artificial neural networks: models design 

The multilayer ANNs, artificial neuron systems, have a basic structure of an input layer, two hidden 
layers, and an output layer, as illustrated in Figure 3. 

 
 

 
Figure 3. Multilayer feedforward artificial neural network architecture with topologies: (A) 5 → 8 → 8 → 1; 

and (B) 1 → 8 → 8 → 1. 
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In the input layer, the information used to make the prediction of the output layer was variable. In 
the hidden layers, eight neurons were used and for the output layer only one neuron. Multilayer networks 
were trained using the supervised learning algorithm for the backpropagation of errors (Backpropagation). 
The backpropagation neural network is trained with the inputs adjusted to the output variables in two 
phases (Zhang 2015). The networks were interconnected by connecting forces represented by values that 
are called synaptic weights, which are responsible for storing acquired knowledge. The values used in the 
input layers were normalized according to Equation 1. 

y
i
= 

xi-xmax

xmax+xmin

 (1) 

where, in (1): 
Yi = input vector value (example: mean chlorophyll) 
xmin = minimum value   
xmax = maximum value 
The output value of each neuron in bed k is expressed as yk = g (ak). 
where: 
g = ak activation function 
ak = synaptic function, which is a linear combination of normalized input values and synaptic weights 

as shown in Equation 2. 
 

ak=∑ y
j
wkj

j

 
(2) 

where in (2): 
wkj = synaptic weights linking the yj input values with each k neuron. 
The transfer or activation function in the neurons of each hidden layer was the hyperbolic function, 

shown in Equation 3. 
 

g(a
k
)=

eak--e-ak

eak+e-ak
 

(3) 

where in (3): 
e = Neperian algorithm  

 
Training and validation models 

For the training and validation of the models, the database was divided into 80% of the data for 
training and 20% for validation (Silva et al. 2016). Because the information was collected at different 
phenological stages, this percentage of the database partition was applied to each stage of data collection. 

The training and validation procedures for neural models were implemented in the Neural Networks 
package of the Statistica data analysis software (Statistica 7.0, Statsoft Inc, Tulsa, OK). In this work, eight 
neurons, and four layers were used as architecture, comprising: an initial layer, two intermediates, and an 
output layer, which can be seen in Figure 3.  

Linear was used in the input and output layer and the following variables were used: fresh and dry 
biomass (kg ha-1), canopy width (cm), plant height (cm), and chlorophyll index (CCI). For architecture 5 → 8 
→ 8 → 1 (Figure 3A), all morphological variables plus the vegetation index of interest were used in the input 
layer, that is, an index plus all variables, however, when the architecture was 1 → 8 → 8 → 1 (Figure 3B) only 
one vegetation index was used. 

In the development of ANN in the intermediate or hidden layer, the function of activation was the 
sigmoid Hyperbolic Tangent and the network was trained 1000 times because the free parameters are 
obtained at random Soares et al. 2014. 
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Performance test  

In the development of ANN in the intermediate or hidden layer, the function of activation was the 
sigmoid Hyperbolic Tangent and the network was trained 1000 times because the free parameters are 
obtained at random (Soares et al. 2014). 
 

MAPE=

∑ ( |
Yesti-Yobsi

Yobsi
| *100)n

i=1

n
 

(4) 

where in (4): 
n = data numbers 
Yesti = value of the variable estimated by the network 
Yobsi = observed variable value 

R2=
SQR

SQT
 

(5) 

Where in (5): 
SQR = sum of the regression squares  
SQT = sum of total squares 

 
3. Results 

Artificial neural networks (ANNs) 

The results of this study are divided into two main sections: (i) artificial neural networks and (ii) 
performance of the network architecture with the estimated and observed data. Table 2 shows the results 
of the accuracy and precision of the neural model validation step to estimate the variables. 
 
Table 2. Accuracy (MAPE) and precision (R2) of the validation of neural models to estimate the variables 
fresh and dry biomass, canopy width, plant height, and chlorophyll index for soybean culture. 

 Fresh biomass 
 

Dry biomass  
Canopy width 

Height of 
plant 

 
Chlorophyll 

index 

 R2 MAPE (%) R2 MAPE 
(%) 

R2 MAPE 
(%) 

R2 MAPE 
(%) 

R2 
MAPE 

(%) 

TV_NDRE 0.97 14 0.97 13 0.94 10 0.79 10 0.30 17.16 
NDRE 0.88 23 0.86 21 0.94 14 0.89 11 0.29 17.40 

TV_NDVI 0.98 12 0.97 10 0.96 8 0.79 11 0.12 22.37 
NDVI 0.84 21 0.70 27 0.84 15 0.73 13 0.04 20.75 

TV_IRVI 0.97 13 0.95 13 0.95 9 0.59 13 0.10 23.54 
IRVI 0.82 32 0.78 30 0.83 15 0.71 14 0.03 22.33 

TV: all variables; NDRE: Normalized Difference Red Edge Index; NDVI: Normalized Difference Vegetation Index; IRVI: Reverse 
Vegetation Index. 

 
ANNs performance 

The efficiency of the networks was analyzed in performance graphs, which can be seen in Figure 4, 
between the relationship between the NDRE data and the dry biomass. 
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Figure 4. Scatterplots indicating 1:1 relationship with NDRE and dry biomass from the best-trained neural 

network. A – all variables plus NDRE; B – NDRE. 
 

In Figure 5, comparative analyzes were performed between the predicted data and the real ones, 
verifying that the behavior of the prediction curve behaves similarly with the real data collected in the field, 
mainly, in Figure 5A it presented this behavior. As was said and observed in Figure 4A and Table 2, the highest 
R² was when they had the largest amounts of input layers. 

 
Figure 5. Comparative analyzes between: A – predicted dry biomass with all variables (TV) versus B – actual 

dry biomass with NDRE. 
 

In Figures 6A and 7A, it was verified that the architecture 5 → 8 → 8 → 1 demonstrated better 
predictive capacity for the variable canopy width due to the accuracy and precision results of the validation 
of neural models to estimate the variables by means of R² and MAPE. Since in Figure 7A, the predicted data 
for this same architecture proved to be very close to the real data.  

 
Figure 6. Scatterplots indicating 1:1 relationship with NDRE and canopy width from the best-trained neural 

network. A – all variables plus NDRE; B – NDRE. 

A. B. 

A. B. 

A. B. 
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Figure 7. Comparative analysis between: A – predicted canopy widths with all variables (TV) versus B – 

actual canopy width with NDRE. 
 

In Figures 8 and 9, the results obtained for the plant height variable differed from the others because 
the architecture that showed the best performance was 1 → 8 → 8 → 1 with a determination coefficient of 
0.89 (Figure 8B), however, the MAPE between the two architectures evaluated for this variable differed only 
by 0.39. For this reason, which in Figure 9A pointed out a greater similarity between the predicted data and 
the actual data due to the accuracy and precision of the validation.  

 
Figure 8. Scatterplots indicating 1:1 relationship with NDRE and height from the best-trained neural 

network. A – all variables plus NDRE; B – NDRE. 
 

A. 

 

B. 

 

Figure 9. Comparative analysis between: A – predicted plant height with all variables (TV) versus B – actual 
plant height with NDRE. 

 
4. Discussion 

Artificial neural networks (ANNs) 

 It was demonstrated that most of the data obtained the determination coefficients (R²) greater than 
0.70 (Table 2), which according to Garcia (1989) values greater than 0.70 point to good adjustments. The 
forecast errors were calculated using the MAPE error measure (Mean Absolute Percentage Error) and it was 
possible to observe that the smallest errors were for architecture 5 → 8 → 8 → 1 (Figure 3A), demonstrating 
greater accuracy when compared to architecture 1 → 8 → 8 → 1 (Figure 3B). 

A. B. 

A. B. 
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As seen in Table 2, when all morphological variables were used, the results of both precision and 
accuracy demonstrated the best performance for the architecture 5 → 8 → 8 → 1. For the field collection of 
these variables in large areas it requires a lot of hands - when the operation is carried out manually, being 
very laborious, therefore, most of the work carried out with remote sensing in large areas is done with the 
use of ARP (Remotely Piloted Aircraft) or satellite with passive sensors, however, is made with the use of 
tractors facilitates and optimizes operation at the level of land collection. However, data collected at the 
terrestrial level as performed in this work have less interference from atmospheric conditions because the 
sensor is closer to the target object and because it produces its own source of electromagnetic radiation, 
with reductions in errors during collection. Novo (2008) cites those that atmospheric factors affect in the 
collection of data reflectances, such as water vapor, clouds, carbon dioxide, ozone, and oxygen.  

 Passive sensors need natural radiation to obtain the data. However, the active sensors produce their 
own radiation, for example, a photographic camera for producing its flash is considered an active sensor, 
however, the camera that needs sunlight is a passive sensor (Navalgund 2002). 

 Remote sensing has shown great potential in the area of Precision Agriculture as it is a non-
destructive method, obtaining data in real-time, helps the farmer in monitoring the growth stages of the 
crop through the use of sensors, which, which generate vegetation indexes that assist in monitoring the vigor 
of the plant. These advantages were also observed by Jensen (1996), Casanova et al. (1998), Alt et al. (2000), 
Diker and Bausch (2003), Hansen and Schjoerring (2003) and others. 

As seen in Table 2, most of the models have high predictive capacity because they had an R² greater 
than 0.90, and this was also observed by Soares et al. 2015, to estimate corn production using artificial neural 
networks, in which they highlighted the strong correlation (R² of 1.00) for the grain production variable.  

Through the determination coefficient, the explanatory power of the estimates generated by the 
models (Y) and the values measured in the field (X) are verified, that is, it evaluates the quality of the 
adjustment between the variables when this coefficient is equal to zero, it means that the explained variation 
of Y is zero with the adjusted line parallel to the X-axis. However, if the R² is equal to one, the line will explain 
the entire variation of Y. The higher the values of this coefficient better the quality (Toledo and Ovalle 1995). 

 Since the highest values of R² were for biomass showing how much the vegetation indexes have a 
high relationship with this variable, demonstrating that biomass was the best variable predicted through 
remote sensing. Corroborating the obtained result, Grohs et al. (2009) found that when there was an 
increase in biomass, the NDVI value also increased until the saturation of this index.  

For the variables canopy width and plant height, they also showed high coefficients indicating high 
relations with the vegetation indexes, mainly for architecture 5 → 8 → 8 → 1. However, for the variable plant 
height, the coefficients were higher only for an input variable, that is, for architecture 1 → 8 → 8 → 1. As for 
the chlorophyll index variable, it did not present high values of the coefficients of determination, 
demonstrating low prediction through neural networks using only this variable.  

And these different results obtained can be explained due to the factors that interfere in the spectral 
responses of the canopies of the plants, as observed by Formaggio and Sanches (2017), which can be mainly 
due to the structure of the canopy (plant architecture and planting density), due to the geometry aspects of 
scene and lighting, and soils (substrates). The same authors mention that in the initial growth stages of the 
crop there is the spectral domain of the soil, however, during vegetative development/flowering there is the 
spectral domain of the green cover, and finally, in maturation and senescence, the spectral domain occurs 
soil and dry vegetation. 

The NDVI differed from the IRVI and the NDRE, probably due to the saturation problem that this index 
had, due to its greater sensitivity, which was also verified by Cao et al. (2015) and Lu et al. (2017). 

 
ANNs performance 

It was verified when all the morphological variables are used, for architecture 5 → 8 → 8 → 1 (Figure 
4A), the estimates were closer to the 1: 1 line due to the higher coefficient of determination (R²) (0.97) and 
MAPE was lower (7.41) when compared to just one entry, for architecture 1 → 8 → 8 → 1 (Figure 4B), in 
which case the entry was NDRE, and that too it was presented in Table 2 in which the highest R² were when 
all variables were used as input. In addition, for architecture 1 → 8 → 8 → 1 it demonstrated how close the 
estimate was to the estimated data (Figure 4A). 
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An accuracy (MAPE) greater than 10% has been achieved (Table 2), this means, for example, if the 
model is estimating a plant height of 100 cm, this value in the field (observed value) can be 110 or 90 cm. To 
increase the accuracy of the models (low down MAPE), perhaps adding other variables to the model that 
can explain other components of the studied phenomena. Other variables predicted by remote sensings, 
such as soybean productivity, can be better predicted when using other components in the models, such as 
elevation and flow accumulation (Kross et al. 2020).  Therefore, this approach can increase the accuracy of 
the predictions of the variables we studied. It was also observed that, when we use only the vegetation 
index, less accuracy was found when compared with models that use vegetation indexes and covariates as 
input, this result is logically explained by the fact that when we have other variables that explain the 
predicted phenomena the model has more information related to the predicted variable, which can increase 
the accuracy of the forecast. In our study, the covariables used were manually measured variables, which 
means that it is unreasonable to use models that require manual variables, it is preferable to use models 
that use only remote sensing data (NDRE). These models showed reasonable accuracy and can be used to 
generate estimated variability maps within the field of canopy width, dry biomass, canopy width, and plant 
height. 

Barros (2005) found that a trained network with a small number of connections is unable to make 
the most of its potential, however, when there is an excess of connections it can adapt to noise and affect 
its training. Thus, it was verified in the present work for the architecture 5 → 8 → 8 → 1 demonstrated that 
the greater the number of layers entered, the values of R² are higher when compared with only one input 
layer, for architecture 1 → 8 → 8 → 1. 

From 60 DAS, it was observed in sample 25 that the model underestimated the estimates, which may 
be related to the increase in the development of biomass affecting the reading of the vegetation index, 
demonstrating that up to 45 DAS the model had better behavior when compared to the estimated real data 
(Figure 5). 

Soares et al. (2014), proposed a methodology for estimating the water retention curve in the soil by 
means of artificial neural networks, saw that with the increase in the number of neurons in the hidden layer, 
there was no decrease in the average relative error, however, this reduction happened in input layer with 
the increasing number of variables. This was also shown in this work, and it can be seen in Figure 8A that the 
behavior of the curves was similar, demonstrating the high predictive power of the dry biomass variable, 
and besides, how much this variable correlates with the vegetation indexes, especially with the NDRE. 

As verified by Soares et al. (2015) for the estimation of corn grain productivity, observed that the 
results obtained through the statistical analysis of artificial neural networks are feasible and can be used as 
a modeling tool to estimate productivity, making it a relevant tool for the agricultural sector. Mutanga and 
Skidmore (2004) saw in their research that neural networks obtained better results than when it was used, 
traditional statistics, linear regression for the prediction of savannah grass quality. 

It was found when morphological information was used in the input layer, the predictions were the 
best in both accuracy and precision. However, when using information without physical contact with the 
plant, only the vegetation index (NDRE), more parsimonious models were obtained to estimate the variables 
plant height, canopy width, and soybean biomass.  

As noted, the active sensors can be used in the prediction of variables with the possibility of using 
the estimates generated by the model for recommendations and investigations based on the spatial and 
temporal variability of the morphological parameters and can also be used to monitor the vigor of the culture 
within the field, allowing greater knowledge of the crop. 

Estimates made from trained and validated neural models can support the direction of investigations, 
whether manual or robotic, and can also contribute to the application of phytosanitary products or fertilizers 
using aircraft or machines for localized applications, contributing to the management in a specific site. 

New studies with ANNs should be done, mainly, aimed at the identification of new patterns such as, 
different agricultural cultures, other vegetation indexes in addition to sensors that have different functioning 
mechanisms and radiometric, spatial, and spectral resolution as sensors embedded in aircraft remotely 
piloted. 
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5. Conclusions 

The ANNs demonstrated good performance to predict the morphological characteristics of the crop, 
such as biomass, plant height, and canopy width. Dry biomass stood out as the best variable predicted 
through the SRP and the networks. With the adoption of remote sensing and ANNs in agriculture, they 
proved to be an excellent tool for predicting variables. The artificial neural networks were able to identify 
the patterns between the information from the proximal remote sensors and the morphological variables, 
this method being indicated to predict the height, width, fresh and dry mass of the soybean crop. 
 
Authors' Contributions: CARNEIRO, F.M.: conception and design, acquisition of data, analysis and interpretation of data, drafting the article, and 
critical review of important intellectual content; OLIVEIRA, M.F.: conception and design, acquisition of data, analysis and interpretation of data, 
drafting the article, and critical review of important intellectual content; ALMEIDA, S.L.H.: conception and design, acquisition of data, analysis 
and interpretation of data, drafting the article, and critical review of important intellectual content; BRITO FILHO, A.L.: conception and design, 
acquisition of data, analysis and interpretation of data, drafting the article, and critical review of important intellectual content; FURLANI, C.E.A.: 
conception and design, acquisition of data, analysis and interpretation of data, drafting the article, and critical review of important intellectual 
content; ROLIM, G.S.: conception and design, acquisition of data, analysis and interpretation of data, drafting the article, and critical review of 
important intellectual content; FERRAUDO, A.S.: conception and design, acquisition of data, analysis and interpretation of data, drafting the 
article, and critical review of important intellectual content; SILVA, R.P.: conception and design, acquisition of data, analysis and interpretation 
of data, drafting the article, and critical review of important intellectual content. All authors have read and approved the final version of the 
manuscript. 
 
Conflicts of Interest: The authors declare no conflicts of interest. 
 
Ethics Approval: Not applicable. 
 
Acknowledgments: The authors would like to thank the funding for the realization of this study provided by the Brazilian agency CNPq (Conselho 
Nacional de Desenvolvimento Científico e Tecnológico - Brasil), Finance Code 142367/2015­0. 
 

References 

ALT, C., KAGE, H. and STÜTZEL, H. Modelling nitrogen content and distribution in cauliflower (Brassica oleracea L. botrytis). Annals of Botany. 
2000, 86(5), 963-973. https://doi.org/10.1006/anbo.2000.1252  

ALVARES, C.A., et al. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. 2013, 22(6), 711-728. 
https://doi.org/10.1127/0941-2948/2013/0507 

AMARAL, L.R., et al. Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precision 
Agriculture. 2015, 16(1), 15-28. https://doi.org/10.1007/s11119-014-9377-2 

ANDRADE JÚNIOR, A.S., FIGUEREDO JÚNIOR., L.G.M., CARDOSO, M.J. and RIBEIRO, V.Q. Parametrização de modelos agrometeorológicos para 
estimativa de produtividade da cultura do milho na região de Parnaíba, Piauí. Revista Ciência Agronômica. 2006, 37(2), 130–134.  

BARROS, A.C.A. Otimização de redes neurais para previsão de séries temporais. Recife: Escola Politécnica de Pernambuco – Universidade de 
Pernambuco, Trabalho de Conclusão de Curso, 2005. 

BOOTE, K.J., JONES, J.W. and PICKERING, N.B. Potential uses and limitations of crop models. Agronomy Journal. 1996, 88(5), 704-716. 
https://doi.org/10.2134/agronj1996.0002196200-8800050005x 

BRAGA, A.P., CARVALHO, A.P.L.F. and LUDERMIR, T.B. Redes Neurais Artificiais: teoria e aplicações. 2nd ed. Rio de Janeiro: LTC, 2012. 

CAO, Q., et al. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in 
Agriculture. 2015, 112, 54-67. https://doi.org/10.1016/j.compag.2014.08.012 

CASANOVA, D., EPEMA, G.F. and GOUDRIAAN, J. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crops Research. 
1998, 55(1-2), 83-92. https://doi.org/10.1016/S0378-4290(97)00064-6 

DIKER, K. and BAUSCH, W.C. Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize. Biosystems 
Engineering. 2003, 85(4), 437-447. https://doi.org/10.1016/S1537-5110(03)00097-7 

EMBRATOP. Receptor GPS Trimble R6 (L1/L2). 2017. Available from: http://www.embratop.com.br/produto/receptor-gps-trimble-r6-l1-l2/ 

FORMAGGIO, A.R. and SANCHES, I.D. Sensoriamento Remoto em agricultura. São Paulo: Oficina de Textos, 2017. 

GARCIA, C.H. Tabelas para classificação do coeficiente de variação. Piracicaba: Instituto de Pesquisas e Estudos Florestais, Escola Superior de 
Agricultura “Luiz de Queiroz”, 1989. 

GOBBI, K.F., et al. Características morfológicas, estruturais e produtividade do capim-braquiária e do amendoim forrageiro submetidos ao 
sombreamento. Revista Brasileira de Zootecnia. 2009. 38(9), 1645-1654. https://doi.o-rg/10.1590/S1516-35982009000900002 

GROHS, D.S., BREDEMEIER, C., MUNDSTOCK, C.M. and POLETTO, N. Modelo para estimativa do potencial produtivo em trigo e cevada por 
meio do sensor GreenSeeker. Engenharia Agrícola. 2009. 29(1), 101-112. https://doi.org/10.1590/S0100-69162009000100011 



Bioscience Journal  |  2022  |  vol. 38, e38024  |  https://doi.org/10.14393/BJ-v38n0a2022-55925 

 

 
12 

Biophysical characteristics of soybean estimated by remote sensing associated with artificial intelligence 

GROHS, D.S., BREDEMEIER, C., POLETTO, N. and MUNDSTOCK, C.M. Validação de modelo para predição do potencial produtivo de trigo com 
sensor óptico ativo. Pesquisa Agropecuária Brasileira. 2011. 46(4), 446-449. https://doi.org/10.1590/S0100-204X2011000400015 

HANSEN, P.M. and SCHJOERRING, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized 
difference vegetation indices and partial least squares regression. Remote sensing of environment. 2003. 86(4), 542-553. 
https://doi.org/10.1016/S0034-4257(03)00131-7 

HAYKIN, S. Redes neurais: princípios e prática. Porto Alegre: Bookman, 2001. 

JANA, R.B. and MOHANTY, B.P. A comparative study of multiple approaches to soil hydraulic parameter scaling applied at the hillslope scale. 
Water Resources Research. 2012, 48(2), 2520. https://doi.org/10.1029/2010WR010185 

JENSEN, J.R. Introductory digital image processing: a remote sensing perspective. Upper Saddle River: Prentice Hall, 1996. 

KROSS, A., et al. Using Artificial Neural Networks and Remotely Sensed Data to Evaluate the Relative Importance of Variables for Prediction of 
Within-Field Corn and Soybean Yields. Remote Sensing. 2020, 12(14), 2230. https://doi.org/10.3390/rs12142230 

LU, J., et al. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy 
sensor. Scientific reports. 2017, 7(1), 1-10. https://doi.org/10.1038/s41598-017-14597-1 

MOTOMIYA, A.V.A., et al. Índice de vegetação no algodoeiro sob diferentes doses de nitrogênio e regulador de crescimento. Semina: Ciências 
Agrárias. 2014, 35(1), 169-177. https://doi.org/10.5433/1679-0359.2014v35n1p169 

MUTANGA, O. and SKIDMORE, A.K. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, 
South Africa. Remote sensing of environment. 2004, 90(1), 104-115. https://doi.org/10.1016/j.rse.2003.12.004 

NAVALGUND, R.R. Remote sensing. Resonance. 2002, 7(1), 37-46. 

NOVO, E.M.L.M. Sensoriamento Remoto: princípios e aplicações. São Paulo: Blucher, 2008. 

POVH, F.P., et al. Comportamento do NDVI obtido por sensor ótico ativo em cereais. Pesquisa Agropecuária Brasileira. 2008, 43(80), 1075-
1083. https://doi.org/10.1590/S0100-204X2008000800018 

SANTOS, H.G., et al. Sistema Brasileiro de Classificação de Solos. 5th ed. Brasília: Embrapa, 2018. 

SILVA, I.N., Spatti, D.H. and Flauzino, R.A. Redes Neurais Artificiais: para engenharias e ciências aplicadas. São Paulo: Artliber, 2016. 

SOARES, F.C., Robaina, A.D., Peiter, M.X. and Russi, J.L. Predição da produtividade da cultura do milho utilizando rede neural artificial. Ciência 
Rural. 2015, 45(11), 1987-1993. https://doi.org/10.1590/0103-8478cr20141524 

SOARES, F.C., et al. Redes neurais artificiais na estimativa da retenção de água do solo. Ciência Rural. 2014, 44(2), 293-300. 
https://doi.org/10.1590/S0103-84782014000200016 

TOLEDO, G.L. and Ovalle, I.I. Correlação e regressão: Estatística Básica. 2nd ed. São Paulo: Atlas, 1995. 

TRIMBLE, T. the W. the W.W. Especificações técnicas. Available from: http://www.geodata.eng.br/manuais/gps/trimble/R6.pdf 

VIEIRA, T.G.C., LACERDA, W.S. and BOTELHO, T.G. Mapeamento de áreas cafeeiras utilizando redes neurais artificiais: Estudo de caso na região 
de Três Pontas, Minas Gerais. In: Anais XIV Simpósio Brasileiro de Sensoriamento Remoto,14, Natal, Brasil, 2009. Presented at the XIV Simpósio 
Brasileiro de Sensoriamento Remoto, INPE, 7947–7954. 

ZHANG, Q. Precision Agriculture Technology for Crop Farming. Boca Raton: CRC Press, 2015.  

 

Received: 6 July 2020 | Accepted: 21 October 2021 | Published: 31 March 2022 

 

 

  

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 


