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Abstract 
The usage of spatial tools might be helpful in the optimization of decision-making regarding soil 
management, with technologies that assist in the interpretation of information related to soil fertility. 
Therefore, the present study evaluated the spatial variability of chemical attributes of the soil under an 
agroforestry system compared to a native forest in the municipality of Tomé-açu, Eastern Amazon, Brazil. 
Soil samples were performed at 36 points arranged in a 55 x 55 m grid. The soils were prepared and 
submitted to analysis in order to determine pH in H2O, exchangeable calcium, magnesium, potassium and 
aluminium, available phosphorus, potential acidity, organic matter, bases saturation and aluminium 
saturation. For each soil attribute, the spherical, gaussian and exponential models were adjusted. After the 
semivariograms fitting, data interpolation for assessment of spatial variability of the variables was 
performed through ordinary kriging.  The spherical and gaussian models were the most efficient models in 
estimation of soil attributes spatial variability, in most cases. Most of variables presented a regular spatial 
variability in their respective kriging maps, with some exceptions. In general, the kriging maps can be used, 
and we can take them as logistical maps for management and intervention practices in order to improve 
the soil fertility in the study areas. The results principal components indicate the need for integrated 
management of soil chemical attributes, with localized application of acidity correctors, fertilizers and 
other types of incomes, using the spatial variability of these fertility variables. 
 
Keywords: Geostatistics. Income optimization. Kriging maps. Precision agriculture and silviculture. Soil 
chemical attributes.  
 
1. Introduction 
 

Agroforestry systems are a viable alternative for agricultural and forestry production to small and 
large farmers, since these systems present a diversification of production, in addition to contributing to the 
improvement of the characteristics of cultivated soils (Dhanya et al. 2013; Arévalo-Gardini et al. 2015; 
Laudares et al. 2017). Agroforestry crops have been widely used in Eastern Amazon, especially in the 
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Municipality of Tomé-açu, state of Pará, where agricultural producers have performed many planting 
experiments combining agricultural, forest and/or animal species (Bolfe and Batistella 2011).  

In this region, as well as in most of the Brazilian tropical region, agricultural and agroforestry 
systems are inserted in areas of soils with low natural fertility and high acidity. This means that many 
producers have to resort to ostensible use of fertilizers and liming. Thus, the knowledge regarding fertility 
conditions in which the cultivated soil is inserted is considerably important for planting planning. However, 
homogeneous assessment of soil quality can lead to sampling errors, because the attributes of this soil can 
be highly influenced by the space variability (Rahman et al. 2013; Schwab et al. 2015; Rosemary et al. 
2017).  

This is one of the main prerogatives of precision agriculture and precision silviculture, which consist 
of the rationalization of resources in order to optimize production, based on the concept of localized 
application of fertilizers and other kinds of inputs. Such practices can turn the correction of problems more 
precise and efficient, leading to an increased crop productivity. This makes it important to map the 
attributes that are intended to be managed in the planting area, among which the soil fertility attributes 
highlight (Fu et al. 2010; Suzuki et al. 2012; Vasu et al. 2017).  

The usage of tools based on spatial assumptions can be extremely helpful in the optimization of 
decision making with regard to soil management. This stands out the importance of developing 
technologies that help the interpretation of information regarding soil fertility based on the spatial 
dependence of such attributes (Zhang et al. 2010; Metwally et al. 2019).  

The geostatistics plays an important role as an efficient technique for soil fertility assessment, since 
the soil management and conservation in agroforestry systems and other kinds of soil coverages depends 
on the efficiency in the soil evaluation (Moshia et al. 2014). However, only a few studies have been 
developed with focus to spatial variability of soil atributes under agroforestry system aiming to auxiliate 
the management of soil protection and fertilization (Silva et al. 2016; Silva et al. 2018; Panday et al. 2019). 
Therefore, the present study assessed the spatial variability of soil chemical attributes in an area of 
agroforestry system (AFS) compared to an adjacent forest (FOR), as a reference area, in the Municipality of 
Tomé-açu, Eastern Amazon, Brazil. 
 
2. Material and Methods 
 
Study Area 
 

The study area belongs to Matsunaga Farm, located in the Microregion of Tomé-Açu, belonging to 
the Mesoregion of the Northeast of the State of Pará, Eastern Amazon, Brazil (2º 40’ 54’’S and 48º 16’ 11’’ 
W). The climate is humid mesothermal tropical, classified as Ami according to Koppen. The average annual 
temperature is 25 ºC. The average annual precipitation is 2250 mm, with a relative humidity of 80%.  

The predominant forms of natural vegetation in the area are the Dense Forest of the Low Plateaus 
and Dense Forest of the Plateaus, in addition to the preponderance of Secondary Forests, according to the 
classification proposed by IBGE (2012). The predominant soils in Tomé-açu are the Oxisols, with texture 
ranging from medium to clayey. The predominant reliafe is flat to smooth wavy (IDESP 2011). The soil from 
the study area is classified as Yellow Oxisol distrophic. The two study sites (forest and agroforestry system) 
are adjacent (Figure 1). 

For characterization purposes, 10 plots of 300 m² (30 x 10 m) were established, distributed in a 
completely randomized way in the Agroforestry (AFS) and Native Forest (FOR) systems, and the sampling 
of ten composite samples deformed at depth 0-0.2 m per system were made with the aid of a drill auger. 
Determinations of the granulometric fractions (sand, silt and clay) of the soil were carried out, with results 
ranging from soft to sandy sand to a depth of 0-0.2 m (Table 1). 
 
Management History and Areas Characterization 
 

The areas and their management history and characteristics are described below: 
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Agroforestry system (AFS): Plantation of 15.73 ha, composed by Cocoa (Theobroma cacao L.), with 
14 years of implantation and 4 x 4 m spacing; Amazonian mahogany (Swietenia macrophylla King), 25 years 
old and 8 x 8 m apart; and Coconut palm (Cocus nucifera L.) with 18 years of implantation and 10 x 10 m 
spacing. Previously, the area consisted of a black pepper plantation spaced in 1 x 1 m, which received an 
application of dolomitic limestone of approximately 2 t ha-1 and an application of NPK fertilizer mixture in 
the composition 10-28-20 of 2 t ha-1. All these fertilization practices were carried out in a pit. In the 
implementation of AFS, 1 t ha-1 of dolomitic lime (Total Neutralization Power: 90%) and 1 t ha-1 of 
phosphate fertilizer containing calcium, magnesium, and micronutrients (Yoorin) were applied. Both 
applications were performed only in the pit of the Cocoa plants. In addition, 1 t ha-1 of dolomitic lime, 0.6 t 
ha-1 of bone meal and 90 g of KCl per plant were applied in coverage, which is carried out annually. Before 
planting, the soil was prepared with a superficial cross harrow, using a disc harrow. In the area, a mowing 
is performed with a brush cutter attached to a tractor, every six months. The remaining vegetal material 
from the mowing is left on the agroforestry soil surface. 

Native Forest (FOR): secondary vegetation of 14.98 ha, predominantly from dense and mixed 
ombrophilous forest, with 30 years of natural regeneration. 
 

 
Figure 1. Location map with delimitation of agroforestry system (AFS) and native forest (FOR). 

 
Table 1. Granulometry and textural type of an Oxisol at depth 0-0.2 m under Agroforestry System and 
Native Forest, in Tomé-açu, Pará. 

 
Granulometric Fraction 

System 

Agroforestry System (AFS) Native Forest (FOR) 

g dm-3 

Coarse Sand 506.8 656.5 
Fine Sand 273.0 195.5 

Silt 948.0 483.0 
Clay 125.3 998.0 

Textural Type Loamy Sand Sand 

 
Plots Spacialization and Soil Sampling 
 

The soil sampling was carried out at 72 collection points (36 points in each area) in February 2015, 
systematically distributed in a regular 55 x 55 m grid, totaling, approximately, 30 ha sampled (Figure 2). 

At each point, 5 simple samples were collected with distances of 5 m from the origin point, which 
were mixed and homogenized to obtain a soil composed sample. For soil sampling, a drill auger (for 
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deformed samples) was used at a depth of 0.2 m. At each collection point, the coordinates were marked in 
the UTM (Universal Transverse Mercator) format, considering Fuso 22M and Datum WGS 84. The GPS 
device used belongs to the Garmin Interface eTrex model. 
 

 
Figure 2. Samples spatialization for grid formation in A - Agroforestry System and B - Native Forest. 

 
Assessment of Soil Chemical Attributes 
 

For chemical analysis, the samples were separated and put to dry in the air and later sieved with a 2 
mm mesh sieve, obtaining Air-dried Fine Sand (ADFS), in order to determine the following attributes: pH in 
H2O; exchangeable calcium (Ca), magnesium (Mg), potassium (K) and aluminum (Al); available phosphorus 
(P), potential acidity (H+Al); soil organic carbon for posterior calculation and determination of soil organic 
matter (S.O.M.). Bases saturation (V%) and aluminum saturation (m%) were also calculated based on the 
exchangeable cations and potential acidity. The soil analyses, calculations and determinations followed the 
methodology described by Embrapa (2009). 

 
Geostatistical Analysis 
 

An exploratory analysis of the variables was carried out using the following parameters: mean (m), 
variance (ℓ2), standard deviation (ℓ), coefficient of variation (CV%), skew-ness, kurtosis and normality test 
by Kormogorov-Smirnov significant at the 5% level. The variables that did not show normality by the test (p 
≤ 0.05) were submitted to transfor-mation to normalization through fitting of Box-Cox model, using the 
Minitab 15 software. 

Based on the positioning of each soil sample, adjustment was carried out for three semivariogram 
models for each soil variable: Spherical model (Eq. 1), Gaussian model (Eq. 2) and Exponential model (Eq. 
3), aiming to estimate the spatial variability of the chemical attributes of the soil.       
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In which, y(h): Estimated variable; C0: nugget effect; C1: contribution C0+C1: sill, h: distance between 

the points, α: range, and exp: exponential.  
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In order to verify which model obtained the best fitting, the following criteria were considered: 
lesser nugget effect and higher sill; higher spatial dependence degree (SDD) measured by the sill/nugget 
effect ratio, through the formula:  SDD, expressed in percentage (%). The SDD was considered weak with 
75% or more, moderate between 25% and 75%, and strong with less than 25% (Cambardella et al. 1994); 
the range could not be greater than the half of grid dimension (distance between the two most distant 
sampling points); smallest error, measured from the sum of residual squares (SQR); and higher 
determination coefficient (R²). To adjust the semivariogram models and choose the best model for each 
variable, the GS+ software.  

After calculating the semivariogram, the variables analyzed were interpolated to estimate the non-
sampled area. To perform the estimation, ordinary kriging was used, assuming a linear association 
between the samples, since a systematic sampling was adopted in both study areas. From this estimate, an 
interpolation map was created for each of the variables, using ArcGIS 10.1 software. Among selected 
semivariogram models, only those with suitable values of R² (not extremely low) and SQR (not extremely 
high), with moderate or strong spatial dependence and with range lower than grid half dimension, were 
submitted to data interpolation data by kriging. 

 
Ordination Assessment 
 The variables were also submitted to principal components analysis (PCA), through the formation of 
new components (axes) and usage of the two first components for creation of a graph with the variables’ 
vectorial disposition and sampling points dispersion from both study areas (AFS and FOR). PCA was 
performed with the aim of assessing the responsiveness of the variables in relation to the sampling points.  
 
3. Results 
 
Variables Exploratory Assessment 
 

Most of averages were higher than their respective variances, which normally characterizes a more 
homogeneous distribution of the data (Table 2). The greatest variability (CV > 100%) was found for P in 
AFS. The vast majority of the studied attributes had a coefficient of variation considered moderate (60%> 
CV ≥ 12%). Exception is given to pH in H2O which, in both areas, presented a low coefficient of variation 
(CV <12%). 

Regarding normality, pH in H2O, Mg, H+Al, S.O.M. and m% variables showed normality in AFS. On 
the other hand, Ca, Al, P, K and V% were presented a distribution without normality. In FOR, Ca, Mg, K and 
V% had a non-normal distribution, turning necessary their transformation by Box-Cox model before the 
semivariogram assessment. 
 
Semivariograms Fitting 
 

Table 3 shows the results for cross validation of semivariogram estimates. In general, the values, 
specially Mean Standard Error, were considered suitable and satisfactory. All variables showed adjustment 
of semivariogram models with sill well established and a nugget relatively low, despite presenting 
considerable variation in the quality of the adjustments of such models. The spherical model and the 
Gaussian model were the ones that generated the best adjustments to the data based on the statistical 
criteria established (Table 4). 

The spherical model showed the best fitting for 5 of the 9 soil fertility variables under agroforestry 
and 3 of the 9 soil variables under natural vegetation. Basically, pH in H2O, Ca, Al, H+Al and P were the 
variables best expressed by this model in AFS. In FOR, the variables Ca, K and V% showed better 
adjustments with the spherical model. The Gaussian model, in turn, showed a better fit in three soil 
properties in AFS (K, S.O.M. and V%) and FOR in 5 variables (pH in H2O, Mg, Al, K and m%). With regard to 
range (α), most of soil attributes presented suitable values, with exception to Al and S.O.M., which showed 
range higher than the half of grid size. Related to spatial dependence index (SDI), the models selected had 
satisfactory spatial dependence, in general. Most of soil chemical attributes showed strong spatial 
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dependence in AFS and FOR, with exception to some variables, which showed moderate spatial 
dependence.   

The R² in the AFS area ranged from 17.5 to 98.8% while the R² of the semivarogram models for FOR 
showed a variation from 23.3% to 76.2%. In AFS, the variables whose equations presented the highest R² 
were: Ca (98.8%), pH in H2O (97.5%) and P (92.4%), all with spherical model. In FOR, the attributes with the 
best coefficients of determination were: H+Al, expressed by the exponential model, with 76.2%; available 
P, better estimated by the exponential model, with 75.8%; and Ca, expressed by the spherical model, with 
logarithmic transformation, of 74.9%. S.O.M. semivariogram showed extremely low R² values and high SQR 
in both areas. Additionally, this variable presented excessive high values of range in FOR. m% also 
presented high values of SQR in both areas as well as Al in FOR.  

When comparing the quality criteria for the adjustment of each variable between the two areas 
under study, it is possible to note that, in general, the models adjusted for the AFS variables highlight in 
comparison to the same data for FOR. In general, AFS presented less nugget effect, greater range, higher 
level, greater spatial dependence, greater R² and less residual error. 
 
Table 2. Descriptive statistics of soil chemical attributes in an Agroforestry System (AFS) and a Native 
Forest (FOR).  

Attributes 
m ℓ ℓ2 CV% S K N 

Agroforestry System (AFS) 

pH in H2O 5.3886 0.1860 0.0346 3.45 -0.25 -0.68 p>0.15 
Ca 0.6599 0.2805 0.0787 42.51 0.93 2.03 p<0.05 
Mg 1.0501 0.4128 0.1704 39.31 0.24 0.12 p>0.15 
K 0.0054 0.0024 0.00001 44.64 0.41 0.04 p<0.05 
Al 0.4406 0.2026 0.0411 46.00 1.38 2.30 p<0.05 

H+Al 4.3711 0.5556 0.3087 12.71 0.63 0.47 p>0.15 
P 2.0110 2.0760 4.3110 100.00 1.53 1.12 p<0.05 

S.O.M. 19.322 4.4970 20.2277 23.28 1.07 0.84 p>0.05 
V% (%) 30.4700 13.260 175.8400 43.51 4.11 21.70 p<0.05 
m% (%) 20.190 9.9600 99.2500 49.34 0.36 -0.60 p>0.05 

 Native Forest (FOR) 

pH in H2O 5.2854 0.2652 0.0703 5.02 0.01 -0.68 p>0.05 
Ca 0.7494 0.4501 0.2026 60.05 1.71 2.57 p<0.05 
Mg 0.4169 0.1528 0.0234 36.65 1.41 3.29 p<0.05 
K 0.0059 0.0024 0.00001 41.35 1.63 2.44 p<0.05 
Al 0.5884 0.2017 0.0407 34.28 -0.36 -0.45 p>0.15 

H+Al 5.6280 1.0040 1.0070 17.83 0.04 -0.84 p>0.15 
P 0.3609 0.1081 0.0117 29.94 0.30 -0.75 p>0.15 

S.O.M. 23.897 3.5980 12.9460 15.06 0.34 -0.68 p>0.15 
V% (%) 17.240 6.9900 48.8900 40.57 0.85 -0.17 p<0.05 
m% (%) 35.750 14.7300 216.9200 41.20 -0.19 -0.41 p>0.15 

In which, m: mean; ℓ2: variance; ℓ: standard deviation; CV%: coefficient of variation; S: skewness; K: kurtosis; N: normality; Ca, Mg, K, Al and 
H+Al given in cmolc dm-3; P given in mg dm-3 and; S.O.M. given in g kg-1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Bioscience Journal  |  2023  |  vol. 39, e39015  |  https://doi.org/10.14393/BJ-v39n0a2023-62830 

 
 

 
7 

DOS SANTOS, C.R.C., et al. 

Table 3. Cross Validation data for the semivariogram models. 
Variables Model Standardized Mean Standardized Mean Square Root Mean Standard Error 

Agroforestry System (AFS) 

pH em H2O Spherical -0.034990 0.786700 0.28280 
Ca Spherical -0.055900 1.136460 0.259470 
Mg Exponential 0.007600 0.961400 0.392010 
Al Spherical 0.007700 0.444700 0.497800 

H+Al Spherical 0.016480 0.997480 0.637370 
P Spherical 0.081690 4.473100 0.494930 
K Gaussian 0.000005 0.010130 0.203807 

S.O.M. Gaussian -0.016360 0.895860 3.852450 
V% Gaussian -1.561400 59.295670 0.114960 
m% Exponential 0.026000 0.927800 11.073500 

Natural Forest (FOR) 

pH em H2O Gaussian 0.004970 0.918280 0.284400 
Ca Spherical -0.043900 1.400198 0.279300 
Mg Gaussian 0.001790 0.885160 0.187570 
Al Gaussian 0.005210 1.010440 0.202540 

H+Al Exponential -0.015170 0.757790 1.250600 
P Exponential -0.026600 0.788440 0.120920 
K Spherical -0.000001 0.000020 13.900000 

S.O.M. Gaussian -0.006790 1.261140 2.881660 
V% Spherical -0.143840 28.081900 0.221420 
m% Gaussian 0.004980 0.799020 19.083260 

 
 
Table 4. Fitting quality parameters of the selected models for each soil chemical attributes in an 
Agroforestry System (AFS) and a Native Forest (FOR). 

C0: nugget, C0 + C1: sill, SDI: spatial dependence index, α: range, SDD: spatial dependence degree (W: weak, M: moderate, S: strong), R²: 
coefficient of determination, SQR: residuals sum of square. 

 
Kriging 
 

Mostly, the kriging maps showed a suitable and satisfactory representation of the spatial variability, 
with exception for some maps. These tendencies may represent an error of variability estimation. The 
patterns of spatial distribution of attributes in AFS, it was noticed greater uneven spatial variability (Figure 

Attributes Selected Model C0 C0+C1 SDI (%) α (m) SDD R² (%) SQR 

Agroforestry System (AFS) 

pH in H2O Spherical 0.023 0.047 47.87 49.86 M 97.5 0.029 
Ca Spherical 0.012 0.047 24.75 43.87 S 98.8 0.009 
Mg Exponential 0.000 0.134 0.08 37.30 S 43.3 0.011 
Al Spherical 0.023 0.193 11.95 45.01 S 74.3 0.127 

H+Al Spherical 0.059 0.322 18.10 74.93 S 84.3 0.696 
P Spherical 0.043 0.168 24.71 19.94 S 92.4 0.181 
K Gaussian 0.000 0.039 0.26 56.10 S 78.6 0.000 

S.O.M. Gaussian 8.540 17.090 49.97 113.90 M 17.5 165.000 
V % Gaussian 0.002 0.010 18.18 44.38 S 42.0 0.004 
m % Exponential 15.000 91.000 16.48 27.58 S 79.0 17035.0 

Native Forest (FOR) 

pH in H2O Gaussian 0.056 0.125 44.44 225.00 M 44.2 0.005 
Ca Spherical 0.022 0.045 44.89 0.10 M 74.9 0.009 
Mg Gaussian 0.022 0.046 48.90 428.00 S 37.5 0.002 
Al Gaussian 0.034 0.069 49.92 493.00 M 63.3 0.000 

H+Al Exponential 0.383 1.712 22.37 181.70 S 76.2 0.362 
P Exponential 0.001 0.013 10.58 83.50 S 75.8 0.000 
K Spherical 710.000 14590.0 4.87 0.30 S 44.1 0.000 

S.O.M. Gaussian 5.100 41.200 12.38 293.10 S 65.4 285.000 
V % Spherical 0.014 0.028 49.82 0.10 M 57.0 0.002 
m % Gaussian 104.200 208.500 49.88 0.10 M 44.4 106021.0 
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3 and 4). Unfortunately, the best models selected for S.O.M. and m%, for AFS and S.O.M. and m% for FOR 
showed exceptionally low values of R² and/or extremely high levels of SQR, as well as elevated values of 
range. Therefore, the semivariogram models selected for these variables were not able to be submitted to 
data interpolation by kriging. 

The predominant values of pH in H2O from AFS is ranging from 5.24 to 5.36 and from 5.36 to 5.48 
(Fig. 3-A). Only a small part of the AFS area had pH values within 5.60 and 5.72, which fall within the pH 
range of 5.5 to 6.5. In FOR, most of the area has pH values between 4.95 and 5.14 (Fig. 4-A). 

Both Ca and Mg had a spatial distribution with considerable variations in AFS (Figure 3-B; Figure 3-
B). The results of the potential acidity (H+Al), in turn, corroborate those results found for Al with regard to 
the spatial distribution in both study areas. FOR had its area predominantly occupied by H+Al values 
ranging from 5.68 to 6.3 cmolc dm-3 (Figure 4-E), whereas in AFS, this attribute showed predominance 
between 3.79 and 4.6 cmolc dm-3 (Figure 3-E). For V%, FOR showed a predominance of values between 
11.2 and 15.6% (Figure 4-I), while AFS presented values occupying most of the area between 28.9 and 
32.3% (Figure 4-I), with small patches of particular major and minor intervals. 
 
Ordination Assessment 
 
 For the two first components, eigenvalues were higher than 1 and therefore were satisfactory 
(Table 5). Regarding percentage of variance, components 1 and 2 presented 67,87 % of accumulated 
variance, which is can be considered suitable to explain the relationship between the soil fertility attributes 
from both areas with their respective sampling points.   

The P, Mg, V% and pH were more responsive to sampling points belonging to AFS, while m%, Al, 
H+Al, S.O.M., K and Ca were more related to points from FOR (Figure 5). Mg, V% and pH presented more 
relationship among them and a negative relationship with m% and Al and, finally, H+Al, K, Ca and S.O.M. 
were highly related among each other and had a negative relationship with P.  

 
Table 5. Eigenvalues and variance values for principal components formed soil chemical attributes in an 
Agroforestry System (AFS) and a Native Forest (FOR). 

Components Eigenvalue Percentage of Variance (%) Accumulated Variance (%) 

1 4,9679 49,679 49,679 
2 1,8185 18,185 67,864 
3 0,9217 9,217 77,080 
4 0,8587 8,587 85,667 
5 0,7957 7,957 93,623 
6 0,2984 2,984 96,608 
7 0,2155 2,155 98,762 
8 0,0908 0,908 99,670 
9 0,0252 0,252 99,922 

10 0,0078 0,078 100,000 
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Figure 3. Kriging maps of soil chemical attributes in an Agroforestry System, notably: A – pH in H2O; B – Ca; 

C – Mg; D – Al; E - H+Al; F – P; G – K; H – V%. 
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Figure 4. Kriging maps of soil chemical attributes in a Native Forest, notably: A – pH in H2O; B – Ca; C – Mg; 

D - H+Al; E – P; F – K; G – V%. 
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Figure 5. Principal componentes analysis, with vectorial disposition of soil chemical attributes from AFS 

and FOR. 
 
4. Discussion 
 
Variables Exploratory Assessment 
 
 The lowest mean values show the pattern of behavior of such soil attributes, which characterizes a 
preponderance of the spatial dependence regarding the influence of other environmental factors 
(Yamamoto and Landim 2013). This variation of data for most variables is considered important for the 
adjustment of spatial variation models. 

Santos et al. (2017) developed a research evaluating the spatial variability of soil fertility in a cocoa 
cultivation area in Ilhéus-BA, results similar to the present study, with a large majority of the attributes 
moderate variation coefficient (2.40 <CV% <32, 10). These authors concluded that such behavior of 
attributes is required part for the adjustment of semirvariograms and for data interpolation by kriging 
corroborating the results found for the present study. 

 
Semivariogram Fitting 
 

The spherical model showed more precise adjustments for most of the soil fertility variables in both 
areas. According to Grego and Vieira (2005), the spherical model is the most used model in soil science 
studies because it is more effective in estimating the spatial variability of soil properties, especially fertility. 
The authors concluded that this model is the most recommended for most of soil variables to estimate 
their spatial variability. 

This more effectiveness of spherical model is probably because such model is better fitted for 
variables that present a larger spatial continuity (Isaaks and Srivastava 1989), what is characteristic of most 
soil variables. This behavior was also observed in other studies, as that one developed by Glendell et al. 
(2014). These authors obtained that the spherical model and secondly the exponential model were the 
most chosen to estimate the spatial variability of the studied edaphic variables. In the work developed by 
Metwally et al. (2019), they found that the spherical model was the one that best fit the data of almost all 
of the analyzed soil variables. These researches confirm the efficiency of spherical model in prediction of 
spatial variability of soil attributes.  

The Gaussian model also described well the spatial behavior of many chemical attributes of the soil 
in the present study. According to Botega et al. (2013), the Gaussian model is also efficient in predicting 
extremely continuous phenomena, what justifies the efficiency of this semivariogram model in estimating 
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soil attributes. A similar result occurred with a study by Artur et al. (2014), when evaluating the spatial 
behavior of some chemical attributes of a soil under different topographic conditions, also found that the 
Gaussian model, next to the spherical model, was the one that best fit its attributes. The authors observed 
that pH and H+Al at both depths were better estimated by the Gaussian model. These results confirm the 
effectiveness of Gaussian model for the explanation of soil spatial variability. 

As expected, the vast majority of variables showed spatial dependence ranging from moderate to 
strong. This is a fundamental condition for the prediction of the variable. In the agroforestry area, almost 
all variables showed an elevated sill with a relatively low nugget effect, and these variables are considered 
highly regionalized, due to their respectively selected models. The presence of some moderate spatial 
dependence, with relatively high values of nugget, can be associated to external factor such as the 
management practices adopted, as also observed by Vasu et al. (2017), when evaluating the spatial 
variability of soil attributes for nutrients management. 

For soil attributes, the presence of moderate spatial dependence is considered enough to ensure a 
reliable estimation of spatial variability through the semivariogram adjustment. Ichami et al. (2020), when 
adjusting the semivariogram to study the variability of organic carbon in the soil under grain cultivation, 
obtained a moderate spatial dependence for this edaphological attribute, by adjusting the exponential 
model. The authors considered the adjustment of the respective model adequate to estimate the 
variability of organic carbon in the soil. 

 
Kriging 
 

The lower homogeneity in the isolines in AFS maps, when comparing to FOR, are probably 
associated with the intensive management practices carried out in this first area, as also verified by Silva et 
al. (2016). These authors evaluated the spatial variability of soil fertility under an agroforestry system in 
Seropédica (RJ) and also found a lack of uniformity in the pattern of distribution of variables in space. They 
found a certain similarity in the spatial distribution pattern between some variables, allowing an integrated 
management of the fertility of this soil, based on such information. 

The higher values of Ca and Mg in AFS compared to the native forest can be explained by the 
application of dolomitic limestone in AFS, which, in addition to neutralizing the acidic ions in the soil, 
provides considerable amounts of these two basic cations. This liming reduces the problems of leaching of 
these nutrients, which is still present in FOR, as also observed by Jemo et al. (2014) assessing soil fertility in 
north-central and southeastern Nigeria. 

As well as Ca and Mg, the soil potential acidity (H+Al) in AFS area is irregular, although it is superior 
(mostly) to the FOR. This must also be explained by the liming practice carried out without taking into 
account variations in space. In the study developed by Santos et al. (2014), the spatial distribution of some 
soil chemical attributes was assessed through semivariogram fitting and kriging, among them the acidity 
and contents of exchangeable Al. These authors observed an irregular distribution in the area for 
exchangeable aluminium due to an inefficiency in correcting soil acidity. These authors recommended the 
application of limestone according to the spatial predictions established. 

For available phosphorus (P), it was observed a certain segregation in the AFS area with part of the 
area being occupied by a concentration range between 0.355 and 1.52 mg dm-3 and another part being 
occupied by a predominant concentration range between 1.52 and 2.69 mg dm-3 (Figure 2-F). As with 
liming, phosphate fertilization in the agroforestry area was probably inefficient in supplying equally the 
area that clearly presents considerable variations of this nutrient over the soil. 

This shows that even in AFS, problems with P supply are still evident, mainly due to Fe and Al 
oxides, which are often associated with this nutrient, forming insoluble compounds and making P 
unavailable for plants. This is common in tropical soils, which are rich in oxides, which makes it necessary 
to submit them to an appropriate fertilizing and liming activity (Brady and Neil 2013), even the 
agroforestry system playing the role of supplier of plant biomass for the soil (Thomazini et al. 2015). 
Bitencourt et al. (2016), in their study, also obtained traces of P distributed in the area in a segregated 
form, although the values of this nutrient were much higher in the cultivated area. 
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S.O.M. models in both areas were not able to be submitted to kriging, due to their low R² and 
extremely elevated SQR values, as well as unsuitable range in the model from FOR, denoting a possible 
segregation in this variable. When comparing the Organic Carbon stock of an alley agroforestry system 
(Alley cropping) in different spacing with a native forest, Cardinael et al. (2015) obtained different results 
to those found for the present study, regarding the distribution of organic matter in space. By adjusting the 
semivariogram and interpolating data by kriging, the authors were able to observe the great potential that 
agroforestry systems have for the accumulation of organic matter in the soil, contributing, among other 
aspects, to the increase in nutrient cycling. 

However, it is not always possible to observe a variation in the content of organic matter depending 
on management practices. Panday et al. (2019) evaluated the spatial variability of organic matter and 
other attributes of a soil under an agroforestry system, in comparison with agricultural cultivation area and 
pasture area. These authors did not observe a considerable difference in the organic matter content in the 
area of AFS in comparison with the other management systems, corroborating to the results of the present 
study.  

This highlights that, even though agroforestry plantations, in general, contribute to the increase of 
biomass on the soil, studies involving the spatial variability of soil attributes are important tools to 
subsidize cultivation and adaptive management practices, if necessary. These maps might be useful 
specially as base tools to a localized income application, allowing a more efficient nutrients management 
(Metwally et al. 2019). 

 
Ordination Assessment 
 
 We observed a high relationship between pH and bases and a negative relationship between these 
variables to Al and m%, corroborating the results found for linear correlation as well as the behaviour 
observed for these variables in the kriging maps (Figure 3; Figure 4). Aquino et al. (2016) found similar 
results when assessing the spatial variability and relationship through PCA of soil fertility from agroforestry 
systems in Western Amazonia, with pH, bases and acidity attributes representing the behaviour of the 
agroforestry under study.  
 S.O.M. was highly associated with Ca and K, showing the importance of biomass deposition on the 
soil surface and organic matter production for nutrients availability,  as found by some studies with 
agroforestry (Hossain et al. 2011; Dhanya et al. 2013), although this attribute could not be submitted to 
kriging due to the low quality of its semivaogram adjustment. These and principal components results 
reinforce the possibility of integrated management of these attributes, especially through localized 
application of acidity correctors, fertilizers and other incomes using the spatial variability of these fertility 
variables.  
 
5. Conclusions 
 

The spherical and Gaussian models are most recommended for adjusting soil fertility variables 
under agroforestry systems and native forest, under the conditions presented by the present study. The 
management practices adopted in AFS contributed to a greater homogeneity of organic matter, making 
this attribute present a similar behavior to FOR. In general, the variables studied can have their spatial 
variability estimated by semivariograms for later kriging, based on spatial dependence. Mostly, the kriging 
maps can be adopted as logistical maps for management and intervention practices in order to improve 
the soil fertility in the study areas, especially through localized application of fertilizers, lime and organic 
matter, which was corroborated by the results of principal components analysis. 
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