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Elman network. The method applied for four benchmark problems: 
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algorithm in terms of accuracy and MSE eror over many heuristic 
algorithms. 
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1. Introduction 

Among the varied types of Neural Nets, Recurrent Neural Network 
(RNN) is able to forecast the most accurate results (Senjyu et al., 2006). In 
case of the RNN, the fixed back-connections save a copy of the previous 
values of the hidden units in the context units. Actually, the RNN was 
applied in various applications, such as, pattern recognition (Hori et al., 
2016), robotic control (Sharma et al., 2016), and genetic data prediction 
(Baldi & Pollastri, 2003). Therefore, RNN has been widely used as a tool in 
data classification (Nawi et al., 2015) and time series prediction (Chandra, 
2015; Koskela et al., 1996). 

In fact, there are two types of RNN; a fully RNN used by Kechriotis 
Zervas and Manolakos (1994), and a Partially RNN used by Robinson and 
Fallside (1991). Concerning the fully RNN, each unit of the NN is 
connected to every other unit. BAM (Bidirectional Associative Memory) 
(Kosko, 1988) and Hopfield (1982) are examples of FRNN. The recurrent 
networks are still complicated in dealing with complex problems. While the 
partially training is faster compared to globally recurrent NNs. Recent 
researches exhibit that PRNN can be a highly effective forecasting method 
in fields like Electricity Consumption and Wind Speed (Cao, Ewing, & 
Thompson, 2012; Marvuglia & Messineo, 2012). PRNN offer both features. 
This topology is considered for non-linear applications  and  also  to 
modulate time series data ( Müller-Navarra, Lessmann & Voß 2015). Elman 
Neural Network (ENN) (Elman, 1990) is the most widely used PRNN 
architecture. Its structure chosen over the Jordan network (Jordan, 1997) 
thanks to its hidden layer being wider than the output layer.  This wider layer 
allows more values to be feedback to the input, consequently authorizing 
more information to be available to the network (Venayagamoorthy, Welch 
& Ruffing, 2009). Optimisation can be performed by metaheuristic methods 
(Yao & Kim, 2014). This class of network could be trained with heuristics 
algorithms because of the inconveniences gradient-based algorithms such as 
suffering from the local minima. Generally, it was three tasks for RNN 
optimization; weight and bias optimization, architecture optimisation and 
parameter gradient optimization. This work concerns the first optimization 
task in order to find the minimum training error. 

A metaheuristic is officially known as an iterative generation process, 
which guides a subordinate heuristic by combining rationally different 
concepts for exploring and exploiting the search space, and learning the 
strategies which are used for organizing information to find efficiently near-
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optimal solutions (Osman & Laporte, 1996). In general, the Nature Inspired 
Algorithms is mainly classified in three major’s groups: Evolutionary 
Algorithms, Ecology-Based Algorithms and Bio-Inspired Algorithm. 

The Evolutionary computation algorithms are based on biological 
Darwinian evolution to design a solution and it include the Genetic 
Algorithms (Pham & Karaboga, 1999), the Differential Evolution (Storn & 
Price, 1997) and Evolutionary Strategies (Kawada, Yamamoto, & Mada, 
2004). 

The Ecology-Based Algorithms is based on the ecosystems to solve 
the problem. This group include Biogeography-Based Optimization (BBO) 
and Invasive Weed colony Optimization (IWO) algorithms (Mehrabian & 
Lucas, 2006).  

Bio-Inspired Algorithm are inspired from the interactions between / 
with the species. Based on the behaviours of species, different algorithms 
have been invented. This category includes Particle Swarm Optimization 
(Kennedy & Eberhart, 1995), Artificial Bee Colony  (Karaboga & Basturk, 
2007), Fish Swarm Algorithm (Li, Shao & Qian, 2002), Firefly Algorithm 
(Yang, 2009), Bacterial Foraging Algorithm (Passino, 2002), Ant Colony 
Optimization  (Zhipeng et al., 2012), Cuckoo Search Optimization  (Yang, & 
Deb, 2009), Fruit fly Algorithm (Pan, 2012) and Bat Algorithm (Yang, 2010).  

Despite the generation of an evolving solution is common for the 
most of approaches, they have their distinctive way to exploit and explore 
the search space of the problem.  

BBO algorithm considered one of the powerful algorithms due to its 
exploration and exploitation strategies depend on the two BBO operators; 
migration and mutation. 

The main objective of the mutation operator is to enhance the 
diversity of the population. Based on this operator, the solution with low 
HSI can improved as well as the solutions with high HSI. Consequently, the 
probabilistic operator can be applied for any candidate solution. Unlike the 
evolutionary algorithms, at each generation the solutions are the 
combination of the parents ‘solutions and their offspring. 

The rate of emigrations is evolved from one generation to another. 
The habitat with a high emigration rate can share the information with the 
one with low emigration rate.  

Several techniques have been used to optimize Elman RNN 
performance such as Genetic Algorithm (GA) (Pham & Karaboga, 1999), 
Particle Swarm Optimization PSO (Xiao, Venayagamoorthy, & Corzine, 
2007), Ant Colony Optimization (ACO) (Zhipeng et al., 2012), Evolutionary 
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Strategies (ES) (Kawada, Yamamoto, & Mada, 2004) and Population Based 
Incremental Learning (PBIL) (Palafox & Iba, 2012). 

Both BBO and GA are evolutionary algorithm, but each of them has 
a specific characteristic. In (Simon et al., 2011), the authors claim that BBO 
and GA have the same chances of finding the optimal solution, but BBO 
able to conserve this optimum once it found. Thanks to immigration rate, 
which help to retain good solutions in the population and reduces with 
fitness. In addition, the use of mutation for each individual in a population 
enhances the exploitation capability of BBO compared to GA, which applies 
a single mutation for the entire population. In fact,  (Simon, Ergezer & Du, 
2009) prove that the advantage of BBO compared to GA is more marked 
with larger and higher dimensional problems. 

PSO is based on the behaviour of birds seeking their feeds while 
BBO uses the principle of migration to the islands, despite this difference, 
these two algorithms have similar characteristics as the sharing of 
information between populations but the strength of BBO is that it retains 
solutions from one iteration to another and ameliorate the solutions by the 
migration mechanism. BBO uses the mutation mechanism that represents a 
strong point compared to the Swarm Intelligence techniques (PSO, ACO). 

In (Hordri, Yuhaniz, & Nasien, 2013), the author compares the 
performance of BBO, PSO and GA, treating fourteen benchmark functions, 
and finds that BBO makes a success in the convergence time and a great 
performance in avoiding local minima. 

In this work, the used BBO algorithm is for optimizing the weight of 
the ENN. We also examine the advantages of this algorithm on the training 
ENN for the classification and prediction of benchmark problems. The 
performance of our algorithm will be compared also with other well-known 
heuristics algorithms. 

The results indicate that BBO algorithm proves its effectiveness on 
training Elman Neural Network. 

The used methodology in our analysis is as follows: Section II 
presents a broad description of Elman Neural Network (ENN); Section III 
explains the basic concept of the BBO algorithm and its use for the design 
ENN. The experimental results will be given in the fourth Section. Finally, 
the last Section gives the conclusions. 

2. Elman Neural Network 

Elman Neural Network (ENN) proposed in (Elman, 1990) designed 
with the input layer, the hidden layer, the recurrent link known as context 
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layer and the output layer. It is based on the context layer that contains a 
copy of the hidden layer, which are subsequently used as input. The main 
advantage of this layer is to store the information in the hidden layer and to 
preserve the memory, which gives more information entered as input. As is 
well known, this simple Recurrent Network has many advantages, such as 
faster convergence, more accurate mapping and nonlinear prediction 
capability (Chandra, 2015). 

Let assume xi( i = 1 .. m ) the input vector, yk the output of ENN 
and zj( j = 1 .. n ) the output of hidden layer. bj and bk are the biases in the 
hidden layer and the output layer respectively. uj denotes the context layer 
neurons. wij is the weight that connects between the input nodes (i) and the 
hidden nodes (j). cj denotes the weight that connects between the hidden 
nodes and the context nodes. vjk is the weight that connects the node j in the 
hidden layer to the output nodes. 

 (1) 

uj is the context node value, calculated by (2) 
1) (2) 

The activation function selected in hidden layer is the sigmoid function 
defined as follows: 

 
 

(3) 

The output of ENN is given as follows: 

 
 

(4) 

The architecture of ENN is presented in Figure 1. 

 

Fig. 1. Elman Neural Network architecture. 
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3. BBO Trained Elman RNN 

Biogeography-Based Optimization (BBO) proposed in (Simon, 
2008) is an Evolutionary Algorithm (EA), which is based on migration and 
immigration to the islands. Recently BBO algorithm has proved its efficiency 
and success to supply global optimal solution in different problems such as 
(Ma et al., 2015; Mirjalili, Mirjalili, & Lewis, 2014; Rodan, Faris & Alqatawna, 
2016; Zhang et al., 2019). 

The general idea of this algorithm is to get the relation between the 
species by emigration, immigration and mutation. Similarly, to GA, BBO 
employs the habitats as chromosome. Each habitat is assigned by a vector of 
habitants (genes in a GA), which are used as changeable variables to 
optimize the process problem. To achieve this objective, BBO offers 
Habitat Suitability Index (HSI) as performance index. High HSI represents a 
good solution, so a large number of habitants, which are more likely to 
immigrate to other islands with low HIS. Those poor solutions have a low 
HSI and a higher immigration rate. The BBO algorithm is characterised by 
emigration, immigration and mutation rates.  

The time complexity analysis of BBO depends on numbers of used 
resources. Based on the O-notation the time complexity expressed as 
function describing the asymptotic upper bound. The big O notation is 

defined as follows:  
The computational complexity of the BBO algorithm depends on 

the number of species (habitats), the number of generations, the migration 
(selection of the solutions) and mutation operator and finding the best 
solution. Therefore, at each iteration, the computational complexity of BBO 
is as follows  
O(BBO) = O(O(Initialization) + O(migration) + O(mutation) + O (best habitat)) 

The time complexity of Initialization is of O(nmd) where d is the 
dimension of habitats, m is the number of habitants and n is the number of 
habitats but in our implementation  d is one dimension. In the migration 
operation, the roulette wheel selection is used to select of a candidate 
solution from which to immigrate so the computation complexity of 
migration is of O(mn2). For each habitant, the mutation operation has been 
applied, thus the computational complexity of the mutation is of O(nm). 
The selection of the best solution is based on the fitness value of each 
habitat. Consequently, the computational complexity of best habitat is of 
O(n2). Therefore, the final computational complexity of the proposed 
method is as follows: O(BBO)= O(g(mn2 +mn+ n2) where g is the number 
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of generations. In the expression of time complexity, all variables with zero 
space dimension are ignored because to their constant complexity time.  

Generally, the main steps of BBO in (Simon, Ergezer & Du, 2009) 
defined as follows: 

1- Initialize habitats values and BBO parameters. 
2- Calculate HSI for each island. 
3- Update the immigration, emigration and mutation rates. 
4- Modify habitats according to the last rates. 
5- Mutate some habitants of different habitats, which selected randomly. 
6- Save the best habitats as elites. 
7- Replace the worst habitats with the elites. 
8- If satisfying condition, terminate, else, repeat from step 2. 
The BBO algorithm is used to an ENN to finding the best combination 

of biases and weights based on two phases: 
i. Encoding strategy: represent weights and biases in the proper 

scheme (habitats) for BBO. 
ii. Fitness evaluation: Calculate HSI as fitness function defined by the 

error of ENN to evaluate habitats performance. 

Encoding scheme of ENN trained by BBO  

The optimization algorithm evolves the parameter of ENNs. Thus, 
in BBO, a structure habitat is encoded based on vector scheme which is 
defined as follows  ENN = [ W12 W32 W24 b1 b2 ] 

 

Fig. 2. ENN with the structure of 1-1-1. 

 
In Figure 2 example, each layer (input, hidden and output) is 

composed by only one node. W12 denotes the weight between input node 
and hidden node. W32 denotes the weight between context node and hidden 
node. W24 denotes the weight between hidden node and output node. b1 
and b2 are the biases value of hidden node and output node respectively. So 
the encoding vector scheme contains the list of weights between input and 
hidden layer, the list of weights between the context and hidden layer, the 
list of weights between hidden and output layer and biases values. 

Fitness function 
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The fact remains that training RNNs is a challenging optimization 
problem. So each training set should be evaluated by a fitness measure. 
Thus, for each individual, the HSI function should be assigned depending to 
the desired optimization. In this work, the Mean Square Error (MSE) is used 
to compute the output error as HSI function: 

 
(5) 

Where S is the number of training samples, m denotes the number 
of output,  is the obtained output of the ith input unit and d denotes the 
desired output. In this study, the proposed algorithm aims to minimize 
network performance. The computational complexity can have written as 
follows: 
O(BBO-ENN) = O ( i( x(z+y) + hH2 + Hh + H2 )) (6) 

Where i is the number of iterations, x is the number of input training 
sets, z and y are the number of nodes in the hidden layer and the output 
layer respectively, h is the number of habitants (weights and biases) and H is 
the number of habitats (ENNs). Denotes that H2 represent the elitism 
complexity, Hh is the mutation complexity, hH2 is the migration complexity 
and x(z+y) is our ENN complexity. The proposed model BBO-ENN given 
in Figure 3. 

 

Fig. 3. BBO-ENN model. 
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In fact, the first step of the proposed model is to generate a random 
set of ENNs as habitats and initialize randomly weights and biases values as 
habitants. The second step is to calculate MSE for each ENN by Eq. (1) to 
distinguish between the best and the worst habitat. The third step is to 
update and modify the emigration, immigration and mutation rates. After 
having an idea about the good and poor solutions, we must make the 
combination between different islands then select some habitats to mutate 
various habitants. The last step is to select the good solution as elitism for 
future generations. These steps repeated until satisfaction of the stop 
condition, which can be the number of iterations or the error rate. Figure 4 
presents a conceptual picture of the BBO-ENN. 

 

Fig. 4. Conceptual picture of BBO-ENN model. 

 
As seen in this figure, there are three habitats (ENNs). Habitat 1 

provides a lower HIS, highest emigration and lower immigration. It presents 
the good solution, so it is more likely to share weights and biases with 
Habitat 2 and Habitat 3. Whereas, Habitat 2 provides a highest HIS, llower 
emigration and a highest immigration, it presents the poor solution, then, it 
is more likely to accept shared features (weights and biases) from Habitat 1 
and Habitat 3. 

Theoretically, the proposed BBO-ENN model can improve the 
training phase according to the various advantages of emigration and 
immigration rates, which are evolutionary mechanisms for each habitat, 
which encourages exploration. Thus, BBO forced not to fall in local optima. 
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In addition, thanks to the migration of the better weights/biases towards the 
worse ENNs, the error rate MSE (HSI) of ENN (habitat) can be improved 
during the generation. Not to forget that the mutation mechanism helps 
each habitat to show the various exploitations mechanisms. Finally, elitism 
phase helps the proposed method to keep some of the best solutions, which 
are never lost. 

After having an idea about the theoretical functionality of the 
proposed method, in the following section, we will see the results of the 
practical handling, followed by a comparative study between different 
algorithms. 

4. Experiments 

To verify the performance of BBO algorithm for training Elman 
NN, it’s necessary to compare it with PSO, GA, ACO, ES and PBIL over 
four benchmark problems: Breast Cancer (Wolberg & Mangasarian, 1990), 
Iris (Fisher, 1936) for classification and Mackey and Glass (1977),  and 
Lorenz Attractor (1963) for time series prediction.  

The classification datasets based on two performance criteria: (a) 
MSE value and (b) classification accuracy. 

In fact, the increase in population size and the number of iterations, 
could improve the performance of the algorithms, but in this work, we are 
interested on comparing the six algorithms during a fixed number of 
iterations. Thus, we are not forced to find the best parameters. Just use the 
same network parameters such as number of nodes, the value of weight 
initialization and size of population. In this architecture, the log-sigmoid is 
used as activation function. 

For all algorithms, we initialise the habitat randomly in the range [-
10, 10]. The population size is 200 for each dataset. For all the experiments, 
the performance was computed after 30 executed runs with 300 generations 
for all the used methods. 

According to (Shamsuddin, 2004) there is no standard rule for 
determining the suitable number of hidden nodes. We fixed it based on this 
theorem "One hidden layer and 2N + 1 hidden neuron sufficient for N 
inputs". Table 1 show the different number of input, hidden and output 
node of each datasets. 
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Table 1. Structure of each datasets 

Classification 
datasets 

Number of input 
nodes 

Number of 
hidden nodes 

Number of 
output nodes 

Iris 4 9 3 

Breast Cancer 9 19 1 

Mackey Glass 4 9 1 

Lorenz 3 7 1 

 
The initial parameters of meta-heuristics algorithms fixed in table 2; 

it shows various initialization settings for the optimization methods.  All the 
parameters are chosen based on literature used value. 

Table 2. Parameters settings of algorithms 

Method Parameter Value 

BBO Max immigration/emigration 
Mutation 
immigration bounds per gene 

1 
0.005 
[0,1] 

ACO Initial pheromone (τ0) 
Pheromone update constant (Q) 
Pheromone constant (q0) 
Global Pheromone decay rate (pg) 
Local Pheromone decay rate (pt) 
Pheromone sensitivity (α) 
Visibility sensitivity (β) 

1e -06 
20 
1 
0.9 
0.5 
1 
5 

GA Selection mechanism 
Crossover probability 
Mutation probability 

Roulette wheel 
1 
0.01 

PSO Cognitive constant (c1) 
Social constant (c2) 
Inertia weight (w) 

1 
1 
0.3 

ES  Λ 
Σ 

10 
1 

PBIL Learning rate 
Elitism parameter 
Mutation 

0.05 
1 
0.1 
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A. Breast Cancer  

This dataset was obtained from the UCI Machine Learning 
Repository. This dataset contains 699 instances and 9 attributes with 458 
benign and 241 malignant instances. The first 599 patterns are used for 
training phase, and remaining for testing. The outputs convergences of 
different algorithms are presented in Figure 5. Table 3 presents the 
experimental results of different algorithms.  
 

Table 3. Experimental results for Breast Cancer dataset 
 

Algorithms MSE error Accuracy 

BBO 0.0024175 99.99 

GA 0.0025149 98.45 

PSO 0.0043705 94.50 

ACO 0.0073633 76.25 

ES 0.0062843 73.00 

PBIL 0.032001 03.99 

 
From the table 3, it can be seen that the MSE value for our BBO-

ENN is less than PSO, GA, ACO, ES and PBIL algorithms, which 
demonstrates the efficacy of BBO-ENN for data classification. The 
proposed algorithm achieves the small MSE (0.0024175) and the highest 
accuracy with 99.99. Meanwhile, the other methods (PSO, ACO, ES, and 
PBIL) converge with large MSE and lower accuracy. Whereas, the MSE 
value of GA is closer to MSE BBO. As shown in Figure 5, the BBO 
technique has a faster and lower convergence curves among all the methods 
for Breast Cancer. From the simulation results, the BBO algorithm proves 
its superiority in terms of MSE and accuracy.  
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Fig. 5. Convergence Breast Cancer Elman RNN. 

B. Iris dataset   

The Iris Plants data set contains 150 samples and four attributes 
(sepal length, sepal width, petal length, petal width).  It has actually, three 
major classes: Setosa, Versicolour and Virginica. In this experiment, we used 
four inputs, nine hidden nodes and three outputs . The first 150 patterns are 
selected for training phase, and remaining 150 for testing.  

Table 4 presents the results of training algorithms. It illustrates the 
comparison between performances of BBO-ENN with GA, PSO, ACO, ES 
and PBIL algorithms. From table 4, it can be easier to show that the 
proposed algorithm achieves with a lower MSE (0.017371) and higher 
accuracy (93.96) 

Table 4. Experimental results for Iris dataset 

Algorithms MSE error Accuracy 

BBO 0.017371 93.96 
GA 0.029781 91.22 
PSO 0.21166 66.53 
ACO 0.40017 38.56 
ES 0.30877 66.00 
PBIL 0.1116 57.66 
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Fig. 6. Convergence Iris Elman RNN. 
 

Figure 6 shows the convergence of each algorithm, and illustrates the 
success of BBO compared to the other methods. From these results, the 
BBO algorithm achieves with higher performance. 

C. Mackey–Glass time series prediction 

The Mackey-Glass time series prediction is defined using the following 
equation: 

 
( )( )

( )
1 ( )c

ax tdx t
bx t

dt x t





−
= −

+ −
   

(7) 

In our work, the input of ENN with four data points: x(t), x(t-6), x(t-12) 
and x(t-18). The output is defined in equation 8: 

( ) ( ) ( ) ( ) ( )( )6    ,   6 ,    12 ,    18      x t f x t x t x t x t+ = − − − (8) 

The first 500 samples are selected for training phase, and remaining 
500 for testing. After 300 generations of the training process, the outputs 
convergences of different algorithms are presented in Figure 7. Table 5 
shows the comparison of MSE error of the BBO-ENN to the other used 
meta-heuristics algorithms. In this experiment, the BBO and GA algorithm 
achieves with the smallest MSE error of 0.009702. In some implementation, 
the MSE-GA equal to MSE-BBO. However, BBO-ENN is still promising in 
cases where the convergence to the best solution is faster than the other 
methods. 
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Table 5. Experimental results for Mackey-Glass dataset 

Algorithms MSE training error   MSE Test error 

BBO 0.00925 0.009702 
PSO 0.01043 0.071985 
GA 0.01130 0.009851 
ACO 0.04851 0.093598 
ES 0.04748 0.082876 
PBIL 0.02293 0.091885 

 

 

Fig. 7. Convergence Mackey-Glass Elman RNN. 

D. Lorenz attractor 

The Lorenz system was given by the following differential equations: 

( ) ( )( )

( ) (

( )

( )

(

) ( ) ( )

( ) ( ) ( )
)

z

d

dt

y t x t t
dt

x t y t z t
dt

x t
y t x t

dy t
x t

dz t











− −



−

−



=

=

=

                           (9) 

Where and  are positive real parameters. 
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In these three equations, the component x denotes the used time series. In 
this work, the input of ENN is defined by  x(t), x(t-1), x(t-2). The output  is 
presented in equation 10: 

( ) ( ) ( ) ( )( )1    ,   1 ,    2x t f x t x t x t+ = − −           (10) 

The first 500 samples from 1000 simulation data points are chosen for 
training phase, and  the remaining 500 for testing. The convergence curve of 
each algorithm summarized in Figure 8. Table 6 illustrates the MSE training 
error and MSE testing error of each algorithm. From this table, it can be seen 
that BBO achieves with  a lower MSE error for both training and testing 
phase (0.14278, 0.241291). However, the other algorithms: PSO, GA, ACO, 
ES and PBIL have MSE of 0.21271, 0.48498, 1.27504, 0.29753, and 0.28753, 
quite larger than  BBO. Similarly, Figure 8 represents the MSE convergence 
for Lorenz problem. This Figure demonstrates that the proposed BBO-ENN 
have better result than the other algorithms.  The BBO-ENN shows again its 
efficiency for the prediction of Lorenz time series. 

Table 6. Experimental results for Lorenz dataset 

Algorithms MSE training error 
 

MSE test error 

BBO 0.14278 0.241291 
PSO 0.21271 0.253047 
GA 0.48498 0.242105 
ACO 1.27504 0.962869 
ES 0.29753 0.293404 
PBIL 0.28753 0.283424 
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Fig. 8. Convergence Lorenz Elman RNN. 

 
During the previous experiments, the BBO proves its good 

performances compared to the other applied algorithms. The obtained 
results can be explained based on the philosophy of the BBO technique over 
the other evolutionary algorithms. During the generation, the BBO solutions 
are maintained depending on their emigration rate. At each iteration, the 
BBO improves the habits by changing some features. The poor solutions 
can be improved from the good solutions by sharing theirs SIVs (attributes). 
However, in GA, ACO, PBIL techniques, the worse solutions are discarded 
from the populations and only the best candidate’s solutions are maintained. 
Thus, the population evolves using the elite solutions.  BBO also clearly 
similar to PSO and DE approach in maintaining solutions. The solution 
learns from theirs neighbours and evolves based on the movements of the 
around particles. 

Conclusion 

In this work, a Biogeography-Based Optimization (BBO) algorithm 
proposed to train Elman Neural Network (ENN) for four benchmark 
problems. The experiment results show that the BBO-ENN model can 
effectively classify the data such as Breast Cancer and Iris data sets. The 
method applied to Mackey Glass and Lorentz equations, which produce 
chaotic time series. Statistical results show that the proposed algorithm 
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outperforms the GA, PSO, EA, ACO and PBIL algorithms. Performance 
and success of BBO-ENN is mainly due to the use of the Biogeography-
Based Optimization (BBO) algorithm, which can successfully optimize the 
weight parameter of Elman Neural Network. BBO-ENN makes a success in 
the convergence time and a great performance in avoiding local minima. 
Although, BBO has shown a good performance when being applied to 
classification and time series prediction, BBO inherently lacks exploration 
ability to increase the diversity of habitats, which lead to slow down the 
convergence of the algorithm. The expansion of applying BBO algorithms in 
many types of problems open several research areas. One suggested research 
for the future work is to automating parameter tuning.  Additional study is 
to apply the BBO algorithm for complicated problems. 
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