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Abstract. What is the relationship between the complexity of a learner
and the randomness of his mistakes ? This question was posed in [4] who
showed that the more complex the learner the higher the possibility that his
mistakes deviate from a true random sequence. In the current paper we report
on an empirical investigation of this problem. We investigate two character-
istics of randomness, the stochastic and algorithmic complexity of the binary
sequence of mistakes. A learner with a Markov model of order k is trained
on a finite binary sequence produced by a Markov source of order k∗ and is
tested on a different random sequence. As a measure of learner’s complexity
we define a quantity called the sysRatio, denoted by ρ, which is the ratio be-
tween the compressed and uncompressed lengths of the binary string whose
ith bit represents the maximum a posteriori decision made at state i of the
learner’s model. The quantity ρ is a measure of information density. The
main result of the paper shows that this ratio is crucial in answering the above
posed question. The result indicates that there is a critical threshold ρ∗ such
that when ρ ≤ ρ∗ the sequence of mistakes possesses the following features:
(1) low divergence ∆ from a random sequence, (2) low variance in algorithmic
complexity. When ρ > ρ∗, the characteristics of the mistake sequence changes
sharply towards a high ∆ and high variance in algorithmic complexity. It is
also shown that the quantity ρ is inversely proportional to k and the value of
ρ∗ corresponds to the value k∗. This is the point where the learner’s model
becomes too simple and is unable to approximate the Bayes optimal decision.
Here the characteristics of the mistake sequence change sharply.
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1. Overview

In computer science, the notion of computational complexity serves as a
measure of how difficult it is to compute a solution for a given problem. Com-
putations take time and complexity here means the time rate of growth to solve
the problem. Another related kind of complexity measure (studied in theoreti-
cal computer science) is the so-called algorithmic (or Kolmogorov) complexity
which measures how long a computer program (on some generic computational
machine) needs to be in order that it produces a complete description of an
object. Interestingly, the theory says that if we consider as an object a system
that can process input information (available as a binary sequence of high en-
tropy) and which produces another sequence as an output then the amount of
randomness in the output sequence is inversely proportional to the algorithmic
complexity of the system.

This has been known in the context of algorithmic randomness (see [1] and
references within) and it has been only until recently unknown whether such a
relationship between complexity and randomness exists for more general sys-
tems, for instance, those governed by physical laws. In [3] the complexity of
a general static system (for instance, a physical solid) is modeled algorithmi-
cally, i.e., by its description length. Using the model it is proposed that the
stability of a static system (from the physical perspective) is related to its
level of algorithmic complexity. This is explained by the relationship between
the complexity of a system and its ability to ’distort’ the randomness in its
environment. A proof of this concept appeared in several recent works [2, 6, 7]
where it is shown that this inverse relationship between system complexity
and randomness exists in a physical system. The particular system investi-
gated consisted of a one-dimensional vibrating solid-beam to which a random
sequence of external input forces is applied.

The current paper is yet another proof of concept of the model of [3].
We consider a decision system and study its influence on a random binary
data sequence on which prediction decisions are made. The decision system
is based on the maximum a posteriori probability decision where probabilities
are defined by a statistical parametric model which is estimated from data.
The learner of this model is a computer program that trains from a given
random data sequence and then produces a decision rule by which it is able
to predict (or decide) the value of the next bit in future (yet unseen) random
binary sequences.
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Our interest is in displaying a learning (and decision) system from the
perspective of static system complexity (as in [3]) and determine its influence
on a random input sequence.

2. Introduction

Let X(n) = X1, . . . , Xn be a sequence of binary random variables drawn
according to some unknown joint probability distribution P

(
X(n)

)
. Consider

the problem of learning to predict the next bit in a binary sequence drawn
according to P. For training, the learner is given a finite sequence x(m) of bits
xt ∈ {0, 1} , 1 ≤ t ≤ m, drawn according to P and estimates a model M that
can be used to predict the next bit of a partially observed sequence. After
training, the learner is tested on another sequence x(n) drawn according to the
same unknown distribution P. UsingM he produces the bit yt as a prediction
for xt , 1 ≤ t ≤ n. Denote by ξ(n) the corresponding binary sequence of mis-
takes where ξt = 1 if yt 6= xt and is 0 otherwise. In [4] the following question
was posed: how random is ξ(n) ? This question was answered for a particular
learning setting where the teacher uses a probability distribution P based on a
Markov model with a certain complexity. The learner has access to a hypothe-
sis class of Boolean decision rules that are based on Markov models. Learning
amounts to the estimation of parameters of a finite-order Markov model. The
answer shows theoretically that the random characteristics of the subsequence
of mistakes corresponding to the 0-predictions of a learner changes in accor-
dance with the complexity of the learner’s decision rule’s complexity. The
more complex the rule the higher the possibility of ’distortion’ of randomness,
i.e., the farther away it is from being truly-random.

In the current paper we take an experimental approach to answering the
above question. As in [4] we focus on Markov source and a Markov learner
whose orders may differ.

As this is only a short version of the paper in [5] in the next sections we
briefly describe the setup and summarize the results.

3. Experimental setup

The learning problem consists of predicting the next bit in a given sequence
generated by a Markov chain (model) M∗ of order k∗. There are 2k∗ states in
the model each represented by a word of k∗ bits. During a learning problem,
the source’s model is fixed. A learner, unaware of the source’s model, has a

115



Joel Ratsaby - Some consequences of the complexity of intelligent prediction

Markov model of order k. We denote by p(1|i) the probability of transiting
from state i whose binary k-word is bi = [bi(1), . . . , bi(k)] to the state whose
word is [bi(2), . . . , bi(k), 1]. Given a random sequence of length m generated by
the source the learner estimates its own model’s parameters p(1|i) by p̂(1|i),
1 ≤ i ≤ 2k, which is the frequency of the event “bi is followed by a 1” in the
training sequence. We denote by M̂ the learnt model with parameters p̂(1|i),
1 ≤ i ≤ 2k. We denote by p∗(1|i) the transition probability from state i of the
source model, 1 ≤ i ≤ 2k.

A simulation run is characterized by the parameters, k and m. It consists
of a training and testing phases. In the training phase we show the learner
a binary sequence of length m and he estimates the transition probabilities.
In the testing phase we show the learner another random sequence (generated
by the same source) of length n and test the learner’s predictions on it. For
each bit in the test sequence we record whether the learner has made a mis-
take. When a mistake occurs we indicate this by a 1 and when there is no
mistake we write a 0. The resulting sequence of length n is the generalization
mistake sequence ξ(n). We denote by ξ

(n)
0 the binary subsequence of ξ(n) that

corresponds to the mistakes that occured only when the learner predicted a 0.
For a fixed k denote by Nk,m the number of runs with a learner of order k

and training sample of size m. The experimental setup consists of Nk,m = 10
runs with 1 ≤ k ≤ 10, m ∈ {100, 200, . . . , 10000} with a total of 100·10·Nk,m =
10000 runs. The testing sequence is of length n = 1000. Each run results in a
file called system which contains a binary vector d whose ith bit represents the
maximum a posteriori decision made at state i of the learner’s model, i.e.,

di =

{
1 if p̂(1|i) > 1/2

0 otherwise
(1)

for 1 ≤ i ≤ 2k.
Another file generated is the errorT0 which contains the mistake subse-

quence ξ
(n)
0 . At the end of each run we measure the lengths of the system file

and its compressed length where compression is obtained via the Gzip algo-
rithm (a variant of [8]) and compute the sysRatio (denoted as ρ) which is the
ratio of the compressed to uncompressed length of the system file. Note that
ρ is a measure of information density since it captures the number of bits of
useful information (useful for describing the system) per bit of representation
(in the uncompressed file).

We do similarly for the mistake-subsequence ξ
(n)
0 obtaining the length `0 of
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the compressed file that contains ξ
(n)
0 (henceforth referred to as the estimated

algorithmic complexity of ξ
(n)
0 since it is an approximation of the Kolmogorov

complexity of ξ
(n)
0 , see [7]. We measure the KL-divergence ∆0 between the

probability distribution P (w|p̂) of binary words w of length 4 and the empirical
probability distribution P̂m(w) as measured from the mistake subsequence ξ

(n)
0 .

Note, P (w|p̂) is defined according to the Bernouli model with parameter p̂, that
is, P (w|p̂) = p̂i(1 − p̂)4−i for a word w with i ones, where p̂ is the frequency
of ones in the subsequence ξ

(n)
0 . The distribution P̂m(w) equals the frequency

of a word w in ξ
(n)
0 . Hence ∆0 reflects by how much ξ

(n)
0 deviates from being

random according to a Bernoulli sequence.

4. Results and conclusions

The first result of the experiment indicate that the mean of the sysRatio
ρ decreases as the learner’s model order k increases. As we discuss in the
full paper [5] this is attributed to the lowering in entropy of the decision rule
once the learner k surpasses k∗. We studied the characteristics of the mistake
subsequence ξ

(n)
0 . We observed that the mean of the estimated algorithmic

complexity `0 of ξ
(n)
0 has a low spread in values when the mean of the system

ratio ρ is low. There appears to be a sharp threshold at ρ∗ where the spread
around the mean value of `0 increases significantly. We saw a similar effect
on the mean of the divergence ∆0 of the mistake subsequence ξ

(n)
0 . For low

values of sysRatio the spread of ∆0 is low and there exists a threshold at ρ∗

where the standard deviation around the mean value of ∆0 increases signif-
icantly. We conclude that the sysRatio ρ is a proper measure of complexity
of a learner decision rule. It is with respect to ρ that the characteristics of
the random mistake subsequence ξ

(n)
0 follow what the theory [4] predicts. The

higher the sysRatio the more significant the deviation ∆0 of ξ
(n)
0 compared to

a pure Bernouli random sequence and the larger the possible fluctuations in
its algorithmic complexity `0.
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