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Abstract: Theory of Graphs could offer a plenty to enrich the 
analysis and modelling to generate datasets out of the systems and 
processes regarding the spread of a disease that affects humans, 
animals, plants, crops etc., In this paper first we show graphs can 
serve as a model for cattle movements from one farm to another. 
Second, we give a crisp explanation regarding disease transmission 
models on contact graphs/networks. It is possible to indicate how a 
regular tree exhibits relations among graph structure and the 
infectious disease spread and how certain properties of it akin to 
diameter and density of graph, affect the duration of an outbreak. 
Third, we elaborate on the presence of a suitable environment for 
exploiting several streams of data such as genetic temporal and 
spatial to locate case clusters one dependent on the other of a disease 
that is infectious. Here a graph for each stream of data joining all 
cases that are created with pairwise distance among them as edge 
weights and altered by omitting exceeding distances of a cut-off 
assigned that relies on already existing assumptions and rate of 
spread of a disease information. Fourth we provide an overview of 
epidemiology, disease transmission, fatality rate and clinical features 
of zoonotic viral infections of epidemic and pandemic magnitude since 
2000. Fifth we indicate how the clinical data and virus spread data 
can be exploited for the creation of health knowledge graph. Graph 
Theory is an ideal tool to model, predict, form an opinion to devise 
strategies to quickly arrest the outbreak and minimize the 
devastating effect of zoonotic viral infections. 
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1. Introduction 

It is easy to notice a lot of sheep and cattle while travelling along the 
countryside of any country. A vast amount of data is collected and recorded 
regarding their management including its routine of movements from farms 
to markets and vice-versa. Epidemiologists as a group realized that cattle 
movements can be thought of as a graph and this visualization could help to 
detect and control among them the possibility of a disease spread.  It is usual 
to record cattle movements from one agricultural holding to another and are 
reported to government build a central database to mathematically model 
infectious disease spread of cattle and to monitor the operation of the 
agriculture industry as a wholesome. Due to pertinence of animal loitering in 
common disease outbreaks such as mouth-foot disease a huge amount of 
modeling work is done from the perspective of network science regarding 
how one can incorporate temporal information into such a graphical 
representation. 

1.1. Graph as a Model for Movements  

The dataset about cattle roam record register maintain roam records 
for each animal, including their births and deaths. A graph evolves by taking 
each farm as a vertex and an edge is introduced from one farm to another if 
there is trade or animal loiter among them within a given time span. This 
graphical formulation way gives huge information concerning their contact 
time, weight, and direction. Such a graph can be thought of as a directed, 
weighted, or temporal graph.  

If only a small number of auction markets are involved in cattle trade 
business, then the graph representing it will have farms and markets alone in 
the vertex set. So, number of vertices (the markets) is less but some of the 
vertices may have high degree, and some of them may have comparatively 
low degree. This structure will resemble a hub-and-spoke-like graph. Such 
structures provide quick easy solutions to many computationally difficult 
problems but not necessarily apt for each setting of a disease. A disease that 
is propagating at a slower rate may require close contact to spread and hence 
market may not be required. In that case one considers a market-san version 
of the graph in which an edge from one vertex to another shows only an 
animal loiter. 

 However, ignoring the information that is temporal while forming a 
cattle loiter data induced graph, may result in distorted view of transmission 
pathways of disease. The cattle trade timing is pertinent in disease modelling. 
For instance, consider P3 (a path of length 2 on 3 vertices), with all possible 
edge ordering. That is, let us deem that first in the path x-y-z, the edge (x, y) 
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occurs first and then the edge (y, z) and in the second case the edge (y, z) 
occurs first and the edge (x, y) occurs next. In the case of former we deem 
an infection spread from x to z, and a path, x-y-z is temporally admissible, in 
the case of the latter it is not. So, in a time-neglecting scenario with dataset 
of more than a cattle loiter data record for a week, half of the P3’s is 
temporally feasible when time factor is included. This aspect has resulted in 
the wide knowhow of graphs that are dynamic and temporal in the context 
of graph algorithmic treatment and in the science graphs/networks.  

By a graph in temporal sense we mean, G = (V, E, ∆), a triple with 
vertex set V and edge set E and ∆: E → T, a function with T a set of time 

steps. Here ∀ e ∈ E, ∆(e) denotes time steps. One can allow a 
weighted/temporal graph by letting G as so. As there are several tools 
available to deal static graphs, attempts are made to make it dynamic in static 
graphs. One can see (Vernon & Keeling, 2008) for more. In Kim and 
Anderson, 2012 a static & directed network is suggested in which V(G) is 
multiple copies of vertices, with appropriate vertex duplication at all 
appropriate time step, and edges pointing forward in time. In (Heath et al., 
2008) the authors made quick use of a line graph model to catch information 
concerning a disease’s infection period to form a graph that is static which 
provides vital information that is dynamic. In this graph, the vertex set 
comprise trade and days at which they happened and an edge is introduced 
between two vertices if disease spreads from one trade/time pair to another 
in the first instance and could move over to the second subsequently. 

Mathematically, from a given digraph G = (V, E, ∆) that is temporal 
along with δI (period of infection), a new digraph H = (U, E1) is formed with 

U = {(e, t),  e ∈ U and t ∈ ∆(e)}, and E1 = {((e, te)→ (f, tf )) where e = (u, v) 
and f = (v, w)} ↔ te < T(f ), tf −te ≤ δI. Here the static representation brings 
out the directionality of the original graph as well as time. 

2. How to reduce the disease spread? 

A high volume of previous research available in literature has 
indicated that the strategic omission of pertinent high degree vertices 
representing dealers or markets or the edges with several measures is more 
productive in lowering the size in a simulated disease outbreak. This act is 
preferred more to omission of farms that is random. The authors in (Gates 
& Woolhouse, 2015) provide supporting document by indulging in edge 
centrality, measure that is simple. They pick a high potential disease spread 
edges from a graph/network and rebuild by employing a process that is 
matching specific and heuristic and the one that preserves in/out degree. 
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This method provides networks with reduced prevalence of endemic disease 
compared to real-data networks. That is, when a graph with a budget 
provision is given for vertex/link omission, what could be a wise option? 
The reference (Enright &, Meeks, 2018) concentrates on omitting edges to 
reduce the size of a maximum connected component so that it serves as a 
maximum allowed limit for a huge outbreak. 

2.1. Contact Networks 

We have huge responsibility to prepare societies and spare further 
harm through mathematical models of different disease scenarios and 
contribute to better knowhow of disease dynamics and develop course of 
action like quarantine or vaccinations that is effective control specific (Just et 
al., 2015). Contact networks can be thought of as Graphs that stands for 
disease interaction are deemed as contact networks.  Here nodes indicate to 
persons and two nodes are joined when there is a chance them to 
communicate. For instance, a crop field could be a grid shaped graph that 
acts as a model for swarms (due to insect) affecting the crop (Keeling & 
Eames, 2005). A better representation for contact networks is through 
regular tree graphs (ie, graphs that are connected and acyclic with same 
number of edges for all its vertices). Tree graphs due to san of loops are 
sought after representation for SARS like outbreaks (Riley et al., 2003). For 
improving the reliability criteria of such networks one can refer to (Beiu et 
al., 2017; Rohatinovici et al., 2018). Instances of trees like structure are seen 
in systems such as the cardiovascular. Disease analysis is a first forward step 
on this type of graph to deeper and natural knowhow of it spread. 

It is important to keep in mind that a tree graph with equal number 
of incident edges for all its vertices gives a type of made easy structure to 
notice outbreak spread pattern on a network of disease contact. Pathogens 
and infectious hosts are mostly the cause for the dangerous outbreak that 
agrees aptly with network of disease contact. For instance, consider the 
information drift in an organization, where the CEO acts as the root and 
hence has links to various standalone divisions. Each division head passes 
the conveyable through his subordinate. An ‘outbreak’ of an order could 
trigger at the root and possess high probability of spreading. One can 
identify a human/rat infection spread via land route through various means. 
Genetic disorders akin to color blindness or cystic fibrosis that are hereditary 
can also cause outbreaks on networks that are tree structured.  The height of 
the graph also plays a crucial role in finding the outbreak duration.  

We define the height λ of a tree as the farthest distance from the 
root vertex to any other vertex. It is easy to observe that if T is a regular tree 
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with p vertices then  and d stands for degree of a vertex. 
Moreover, the parameters λ and d of graphs behave in a specific manner 
based on the size of the threshold (Seibold & Callender, 2016) found that d 

has slight effects when λ improves the chance of spread of an infection 
required for causing a disaster at a deceasing rate. This paves way for not 
only to foresee the threshold for tree graphs with equal number of incident 
edges for all its vertices, but also to foresee the threshold on tree graphs with 
unequal number of incident edges for all its vertices. Irregular graphs are apt 
to mimic contact type networks that lack the symmetry. Irregular trees with 
unequal number of incident edges for all its vertices have a smaller number 
of vertices than a regular tree with equal number of incident edges for all its 
vertices with equal λ and d. With lesser vertices and edges, the infection 
spread rate on an irregular tree are more prone to follow infection spreading 
rate on a regular tree graph with given λ and d. The behavior of a regular 
tree with equal number of incident edges for all its vertices could be of the 
maximum duration and final size of an outbreak on a graph structure with 
equal number of incident edges for all its vertices. The authors in (Seibold & 

Callender, 2016) did a matching work of the knowing the differences in 
vertex set size and the imminent outbreak duration and among the two types 
of graphs the final size. 

3. Detecting Outbreak Clusters 

Disease outbreaks that are infectious form a repeating menace both 
to animals and humans. It has devastating effect on all aspects of 
biodiversity, health and economy. Major epidemics like the influenza 
pandemic of 2009 (Fraser et al., 2009), MERS-the Middle-East Respiratory 
Syndrome (Bauch & Oraby, 2013; Cauchemez et al., 2014) and the EVD-
Ebola virus disease of West-Africa outbreak (Kreuels et al., 2014) reiterated 
the pertinence of early stage outbreak assessment. The best strategy to 
contain it is fast determination of cases forming clusters and mitigation 
follow up of the strategy to contain the epidemic spread. 

The bringing out of cases forming clusters is an adopted tactics to 
defeat the ongoing slaughter of epidemics. A fair valuation of benefactions 
of local transmission vs importation of case is irredundant for designing apt 
intercession plan of action. For example, an outbreak of nosocomial type 
may be due to transmissions in a hospital or from the community induced 
instigations, asking for control measures (Harris et al., 2013; Chung et al., 
2015; Cauchemez et al., 2013). Likewise, local transmissions and magnitude 
of cases from other places/nations demand control measures of varying 
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nature, such as anticipation and social distancing vs closing of borders 
(Cauchemez et al., 2016; Koopmans et al., 2004). If occurrence of zoonotic 
infections take place then locate the compass to which channelling within-
species and reservoir divulge accord to the descry prevalence, as explained in 
the case of avian influenza (Koopmans et al., 2004; Ferguson et al., 2004), 
bovine tuberculosis (Donnelly & Nouvellet, 2013) or MERS (Cauchemez et 
al., 2013; Cauchemez et al., 2016).  

We now see a framework for adjoining different provenance of 
information to locate cases leading to cluster formation of a disease. This 
approach based on corroboration coalescence can put forth into one 
numerous data stream like the prearrange and locale of the cases and WGS 
of the pathogen to point clusters forming outbreak. This way anticipates on 
the fact that persons in an outbreak who infect each other possess fair 
chance of being closely related with known characteristics. For example, the 
onset of their symptom happens within the identical period and in 
neighbouring locale and exhibit genetically identical pathogen strains. One 
can deem it to belong to same cluster of outbreaks, closely matching in all 
apposite data streams. These data origins narrate links between cases in 
varying spaces such as genetic, spatial and profane but all be put forth to 
determine pairwise distances between cases like number of days elapsed 
between various dates of onset, geographic distance between locations, 
number of mutations between pathogen WGS etc. One can define for each 
such data stream a weighted graph where vertices correspond to cases and 
the edge between two cases is weighted by the brace distance between two 
cases so that noticeable edges denote brace of cases with no chance to have 
infected one another. Then to consider only apropos links every graph is 
sheared by deleting identified edges whose weight is greater than a preset 
check distance. 

Setting the ample check is crucial to locate related cases forming 
clusters. Cori et al, 2018 introduced a skeleton for setting check depending 
on the contemplated distance distributions among perceived cases in an 
outbreak. This enabled them to consider pre-living counsel about a disease. 
That is, the prorating of its ensuing time elapsed from onset of symptoms in 
a person and his/her infector, its spatial kernel, and its rate of mutation. This 
counsel is available for thoroughly checked outbreaks which is not possible 
in practice to be the case. To resolve this underreporting is a right approach 
to be followed. They gave answer to the anticipated distances among 
watched cases for a pre-set level of announcing as well as some inquisitive 
results for common issuance wielded to describe distances among cases in 
time and space. Every trimmed graph point to epidemiological links among 
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cases for assumed data origin. To amalgamate these pieces of counsel, they 
merged the trimmed graphs through intersection. This makes the resulting 
connected components of the eventual graph mark clusters of cases 
corroborated for all data type. The ensuing clusters point to all possible 
cases dappling to the same channelling tree. Mainly the sizes of the clusters 
also comprise counsel about the underlying channelizing (Cauchemez et al., 
2013). The authors in (Cori et al., 2018) exploited this counsel by deriving 
reckons of the duplication number, R given the factual issuance of the 
cluster sizes and the surmised reporting rate. 

4. Viral Infections of Epidemic Magnitude Since 2000 

In what follows we are going to give a bird’s eye view of different 
zoonotic viral infections since 2000 and how they blossomed into epidemic 
proportion. In Figure 1 we give a Flow chart view of zoonotic animal-borne 
and vector-borne viral transmission to human species causing disease 
outbreaks. In Table 1 we provide the details of epidemiologic features, 
disease transmission and fatality rate of emerging viral infections. In Table 2 
we give a comparison of common clinical features of all the viral epidemics. 
In Table 3 we bring forth explicitly other cautioning symptoms of clinical 
nature. One can see WHO Ebola Response Team, 2015; World Health 
Orhanization, 2018b; Hamidouche, 2020; World Health Orhanization, 
2018a; World Health Orhanization, 2020a; 2020b; World Health 
Orhanization, 2018c; Centers for Disease Control and Prevention, 2019; 
2015 Indian Swine Flu Outbreak, 2020; Bennett & Domachowske, 2020; 
Noor & Ahmed, 2018; PAHO & WHO Data”, 2019; World Health 
Orhanization, 2017; 2020c) for a very crisp informative literature on various 
viral infections that assumed epidemic spread and some of it even became 
pandemic. Although a number of calculus centric mathematical methods are 
available in literature to mathematically model the virus spread, a 
mathematical model which discrete in nature and still serve as a good model 
like any other is available with Graph Theory. 

 



BRAIN. Broad Research in                                                                       June, 2021 
Artificial Intelligence and Neuroscience                                      Volume 12, Issue 2 

 

168 

 

 
 

Figure 1. Flow chart of zoonotic animal-borne and vector-borne viral transmission 

to human species causing disease outbreaks  

Source: Authors’ own conception 

 

Table 1. Details of epidemiologic features, disease transmission and fatality rate of 

emerging viral infections (authors' own contribution). 

 
Viral 

infection
s 

Family Natura
l 

reservo
irs 

Intermed
iate host 

Origin Perio
d of 

outbr
eak 

Outbr
eak 

status 

Total 
number 

of 
reporte
d case 

Fatal
ity 

rate 

SARS Coronovirid
ae 

Chinese 
rufous 
horsesh
oe bat 

Palm 
civets, 
raccoon 
dogs 

Foshan, 
China 

2002-
2003 

Epide
mic 

8,096 9.6% 

MERS Coronovirid
ae 

bats camels Jeddah, 
Saudi 
Arabia 

2012-
2018 

Epide
mic 

2,229 35.5
% 

Covid-19 Coronovirid
ae 

Bats, 
Pangoli
ns 

unknown Wuhan, 
China 

2019-
Presen
t 

Pande
mic 

1,773,08
4* 

2.55
% 

Nipah 
virus 

Paramyxoviri
dae 

Flying 
foxes, 

Infected 
food 

Kerala, 
India 

2018 Epide
mic 

700 40-
70% 
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fruit 
bats, 
Pigs 

Ebola 
virus 

Filoviridae Fruit 
bats 

Monkeys, 
pigs, bats 
infected 
surfaces 

West 
Africa 
 
Democr
atic 
republic 
of 
Congo 

2014-
2016 
 
 
2020 
 

Epide
mic 

28,616 
 
 
 
3,453 
 

50% 
 
 
66% 

Marburg 
virus 

Filoviridae Fruit 
bats 

Egyptian 
rousettes 

Equator
ial 
Africa 

2007-
2017 

Endem
ic 

26 100% 

Swine flu 

(H1N1) 
Orthomyxov
iridae 

Swine Contamin
ated 
environm
ent, 
poultry 

United 
States 
 
India 
 

2009-
2010 
 
2014-
2015 

Pande
mic 
 
 
Epide
mic 

60.8 
Million 
 
33,761 

1-4% 
 
 
6.03
% 

Avian Flu 

(H5N1) 
 
(H7N9) 

Orthomyxov
iridae 

Aquatic 
birds, 
Pigs 

Contamin
ated 
environm
ent, 
poultry 

Hong 
Kong 
 
China 
 

2003 
 
 
2013-
2017 

Epide
mic 

844 
 
 
631 

60% 
 
 
30% 

Zika 
Virus 

Flaviviridae Aedes 
Mosquit
oes 

Mosquito
-Monkey-
Mosquito 

Brazil 2015-
2016 

Epide
mic 

976,235 8.3% 

Chikung
unya 

Togaviridae Aedes 
Mosquit
oes 

- Africa  2014-
presen
t 

Epide
mic 

1.8 
million 

<1% 

Dengue Flaviviridae Aedes 
Mosquit
oes 

- Asian 
and 
Latin 
America 

2014- 
presen
t 

Epide
mic 

100-400 
million/
year 

<1% 

*data obtained as of 13th April 2020 published by WHO; Superscript 

numbers denote the references. 

 

Table 2. Comparison of common clinical features of all the viral epidemics 

Source: Authors’ own conception 

 
Clinical 
characterist
ic 

Co
vid
-19 

SA
RS 

ME
RS 

Eb
ola 

Mar
burg 

Swi
ne 
flu 

Avi
an 
flu 

Ni
pa
h 

Den
gue  

Chiku
nguny
a 

Zi
k
a 

Fever ++
+ 

++
+ 

++
+ 

++
+ 

+++ ++
++ 

++
++ 

++
+ 

++
++ 

+++ +
+
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+ 

Cough ++
++ 

++
++ 

++
++ 

++
+ 

+++ ++
+ 

++
+ 

- - - - 

Sneezing - - - - - ++
+ 

++
+ 

- - - - 

Sore Throat ++
++ 

++
++ 

++ ++
+ 

+++ ++ ++ - - - - 

Diarrohea ++ ++
+ 

++ ++
+ 

+++ ++
+ 

++
+ 

- - - - 

Vomiting 
and Nausea 

++ ++ ++ ++ ++ ++
+ 

++
+ 

- ++ ++ + 

Decreased 
appetite 

- - - - - ++
+ 

++
+ 

- - - - 

Weakness 
& Weight 
loss 

- - - ++ ++ ++
+ 

++
+ 

- ++ ++ +
+ 

Headache - - - ++
+ 

+++ ++
+ 

++
+ 

++
+ 

- - - 

Drowsiness 
& Mental 
confusion 

++
+ 

++ + - - ++ ++ ++
+ 

- - - 

Shock - - - - - ++
+ 

++
+ 

++ - - - 

Skin rashes - - - ++ ++ - - - ++
+ 

+++ - 

Conjuctiviti
s 

- - - ++ ++ + + - - +++ +
+ 

Pain in 
joints and 
back 

- - - ++ ++ - - - + ++++ +
+
+ 

Body pain - - - + + ++
+ 

++
+ 

- + ++ + 

Abdominal 
pain 

- - - ++ ++ ++
+ 

++
+ 

- - - - 

Shortness 
of breath 
/Breathing 
difficulty 

++
+ 

++
+ 

++ - - ++ ++ ++
+ 

+ + + 

Here +/- denotes the presence / absence of the symptoms for each viral 
infections. The double or triple ’+’ signs indicate the frequency of symptoms  
Source: Authors’ own conception 
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Table 3. Other cautioning clinical ailments 

Source: Authors’ own conception 

 
Viral Infections Diseases 

Covid-19 
SARS 
MERS 

ICU admission 
Ventilator support 
Acute Respiratory Distress Syndrome 
Pneumonia 
Kidney Injury 
Thrombocytopenia 
Leukopenia 
Lymphopenia 

Nipah virus COMA 
Encephalitis 

Ebola virus 
Marburg Virus 

Maculopapular rash 
Severe bleeding in the eyes and mucus 
membranes, Gastrointestinal tract, stools 
Hematoma 
Low Blood Pressure 

Swine flu 
Avian flu 

Severe pneumonia 
Acute Respiratory Distress Syndrome 
Encephalitis 
Multiorgan dysfunction 
Hypoxemic respiratory failure 

Dengue 
 
 
Chikungunya 
 
 
 
Zika virus 

Accumulation of fluid with respiratory 
insufficiency 
Severe bleeding  
Dengue Shock syndrome 
Polyarthralgia 
Arthritis 
Maculopapular rashes 
Hepatomegaly 
Seizures in children 
Periarticular edema 
Microcephaly 
Guillain-Barre Syndrome 

 

5. Knowledge Graphs on Clinical Data 

Network The flourishing graph model has shown its significance as a 
diagnostic measure by creating a link between disease and its set of 
symptoms. Exploiting Google as an information retrieval gateway, the 
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Google health knowledge graphs can be created for every kind of contagion 
by retrieving medical records and related information online. This Google 
health knowledge graph was developed in 2015 through a multi-step 
procedure fastening techniques of data mining with the help of manual 
curators to assist patients with their medical conditions. This graph is 
intended for patients who are looking for health related queries from Google 
which strictly appears only to the users of US, Brazil and India.  One can see 
(Rotmensch et al., 2017) for more. Knowing the knowledge graph comprises 
three critical steps. 1] Compilation of reports from positively tested disease 
and its symptoms from structured and unstructured inputs, 2] construction 
of statistical models for developed disease and symptoms, 3] development of 
knowledge graphs from the conceived data of statistical models. One may 
build a pertinence measure for every model to find out if an edge should be 
drawn between vertices denoting disease and symptom as this pertinence 
measure specifically tags the model’s relative confidence that an edge must 
exist or not. Based on this pertinence measure one can group the symptoms 
of the disease. Hence, we suggest that the clinical data given here in Section 
4 could be exploited for the creation of a health knowledge graph. One has 
to keep in mind the following eight uphill tasks while forming a health 
knowledge graph based on clinical data.    a) Understanding the impact of 
diversity on parameter estimation and epidemic outcome, (b) Developing 
analytical methods for studying epidemics based on static un-weighted 
knowledge graph, (c) Establishing analytical methods for modelling weighted 
and dynamic knowledge graph and epidemics thereon, d) Incorporating 
diminishing immunity in knowledge graph epidemic models, e) Developing 
and validating approximation schemes for epidemics on knowledge graphs, 
f) Illustrating the influence of knowledge graph properties on the outcome 
of an epidemic, g) reinforce the correlation between knowledge graph 
modelling and epidemiologically available data, and h) Design knowledge 
graph-based interventions. To explore the spread and management of 
contagious diseases in a closed population the authors introduced a new 
knowledge graph (Ancel Meyers et al., 2003). As the outbreaks occur in a 
closed or semi-closed environment, such epidemic conditions are hard to 
contain or manage due to delays in disease spotting and the long incubation 
period of the bacterium. One such case is the pneumonia caused by 
Mycoplasma pneumonia. This model clearly describes the dynamics of 
interactions between patients and caretakers. Despite the reduced incidence 
of Mycoplasma pneumonia found amongst caretakers, this health knowledge 
graph suggests the degree to which these caretakers are secured against 
infections which are central to the management of mycoplasma epidemic. 
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6. Conclusion 

Through Graph theory plays a pivotal role in exploring and 
understanding the procedures that generates statistics. Graphs that result out 
of modelling from geographical nearness are mostly planar. One can do a 
plenty of work on optimization problems linked to agriculturally derived 
graphs. We could see a spike in the development of the algorithmic studies 
of temporal graphs in the literature. A regular tree graph is a good model to 
probe trends in the evolution and progression of epidemic outbreaks on a 
contact network. Hereditary genetic disorders like colour blindness, cystic 
fibrosis or ALS on a contact network can be represented as tree networks to 
describe an outbreak. As the human species are susceptible to the infections 
and can be infested at several points of time generating several loops, the 
tree network generates a clear, uncomplicated structure for observed sets of 
symptoms. A standard graph is an excellent parameter to determine the 
duration of an outbreak. To conclude, each animal is a host of various virus 
strains, and the virus richness varies between different species. Since the 
outbreak of novel Corona virus, zoonotic viruses that cause 60-80% deadly 
infections in humans and animals has been a greater importance of research 
in medical science. These newly arising and resurfacing viral infections insist 
a great risk to global public health. Some of the zoonotic animal-borne viral 
epidemics that caused world-wide menace include Avian Influenza virus 
(H5N1, H7N9), Swine influenza virus (H1N1), Corona virus (SARS (Severe 
Acute Respiratory Syndrome), MERS (Middle East Respiratory Syndrome) 
and the novel Covid-19), Henipa virus (Nipah), Ebola virus, Marburg virus 
and some zoonotic vector-borne viral infections include Zika virus, 
Chikungunya and dengue. Ever since the discovery of coronavirus, scientists 
have been cautioning that some of them are uniquely related to cause human 
pandemics and today we find such a case, the novel covid-19. Graph Theory 
is really a good tool to model, predict, form an opinion to devise strategies 
to quickly arrest the outbreak and minimize the devastating effect of 
zoonotic viral infections. The authors in (Rotmensch et al., 2017) noted that 
a good quality health knowledge graph can be built from the medical records 
achieved electronically from the health care providers. This ideal health 
knowledge graph proved to be an exactitude model with their two-step 
methods just by correcting a few of the edges as proposed by the model. 
Reviewing the outcomes of the clinical assessment, one may conclude that if 
a correcting phase were implemented to the procedure, professionals would 
have had to eliminate some of the proposed edges to obtain complete 
precision with 60%. When this method is included in the procedure, the 
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coming graph model would indeed be completely reliable compared to that 
of a health knowledge graph developed by Google making it an experiential 
model for the physical world. 
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