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Abstract: Notice that the synapsis of brain is a form of 
communication. As communication demands connectivity, it is not a 
surprise that "graph theory" is a fastest growing area of research in 
the life sciences. It attempts to explain the connections and 
communication between networks of neurons. Alzheimer’s disease 
(AD) progression in brain is due to a deposition and development of 
amyloid plaque and the loss of communication between nerve cells. 
Graph/network theory can provide incredible insights into the 
incorrect wiring leading to memory loss in a progressive manner. 
Network in AD is slanted towards investigating the intricate 
patterns of interconnections found in the pathogenesis of brain. Here, 
we see how the notions of graph/network theory can be prudently 
exploited to comprehend the Alzheimer’s disease. We begin with 
introducing concepts of graph/network theory as a model for specific 
genetic hubs of the brain regions and cellular signalling. We begin 
with a brief introduction of prevalence and causes of AD followed by 
outlining its genetic and signalling pathogenesis. We then present 
some of the network-applied outcome in assessing the disease-
signalling interactions, signal transduction of protein-protein 
interaction, disturbed genetics and signalling pathways as compelling 
targets of pathogenesis of the disease. 
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1. Introduction 

There are 1011 neurons and 104 synaptic links in a human brain. 
Each of which contributes to the formation of a connectome with cellular 
connections of magnitude one Quadrillion. To access such a huge complex 
network e it is irredundant to design simple models of the brain network. 
Graph theory serves to the creation of one such class of simple model. 
Graph theory is a tool to extract topological attributes of brain network 
models, viz., “Graphs”. Graphs comprise of two vital elements called 
vertices or nodes and edges or links. The former stands for functional 
units/information sources/brain regions while the latter stands for the 
connections among them. 

Graphs accord pertinent measures depend on the path lengths 
between graph vertices. It is the number of edges among them with the 
understanding that two vertices separated by the path of length one is 
adjacent or neighbors. Network hubs are formed by those vertices that are 
part of many paths among other vertices. In view of this, by efficiency of a 
network we mean the inverse of average path lengths among all pairs of 
vertices. So lesser average path lengths are a characteristic for higher 

efficiency of the network. Also, path lengths between can be employed to 
narrate network clustering. Paths of short length in sub graphs with adjacent 
vertices are features for networks with huge size clique and modularity 
(Latora & Marchiori, 2001; 2003). By a clique we mean a subgraph in which 
every vertex is adjacent with every other vertex. 

Small-worldness is a crucial property that all brain networks hold in 
common is. Regular networks in general possess high clustering but exhibit 
low efficiency. By introducing only a few more random links to a regular 

network its efficiency can be altered from a meagre 4% to 40% (Watts & 
Strogatz, 1998). Further as axonal wiring is not cost effective the success of 
an evolutionary process depends on small-world attribute in brains.  

Brain acquires counsel from systems that are attentional, perceptual, 
and evaluative. Integration of these distinct types of counsel is mandatory 
for controlled behavior (Baars, 1997; Dehaene et al., 1998). Brain is made of 
regions that are distinct both functionally and anatomically. Counsel is 
divided as per various attributes and processed in distinct brain regions. 
Graph theory-based observations of high clustering and integrity explain 
brain architecture. This tunes graphs as brain models to access brain 
topology. 

To create a graph, one need to specify the data base based on which 
vertices and edges emanate. The former stand for various sources and the 
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latter for various connectivity metrics (Bullmore & Sporns, 2009). Intrinsic 
suddenly oscillation that are robust and strong induce brain activity in resting 
state across individuals and result in functional coherence patterns in a 
frequency range less than 10-1 Hz. In this frequency range the correlation 
values of the signal time courses are the metric measures of connectivity and 
exhibit between the signal sources high functional coupling. The graphs 
constructed on this database denote configurations of the brain functional 
network at rest.  

When we apply the techniques of Graph theory it has to be borne in 
mind that a single complex graph alone will not suffice. So, it is irredundant 
to look for graphs with same vertex/edge cardinality for comparison. A 

probe (Zalesky et al., 2010) proved that basic features like network efficiency 
and clustering are conserved across networks with nodes size between 100 
and 5000s. By vertex/edge cardinality we mean the number of elements in 
the vertex/edge set respectively. 

One common method of defining the edge set construction is by 
setting cost levels of a network. A graph’s cost level denotes its density and 
is set as the percentage of all possible edges. That is, a graph with n = 1000 
vertices has (1000× 999)/2 = 999000 possible edges and at a cost level of 
5%, this graph can have 49950 edges of all possible edges. This setting could 
allow comparison of graphs constructed at the identical cost level. The 
challenge is to determine the appropriate edge cardinality of a functional 
brain network. Due to the dynamic nature of brain network it has 
spontaneous pattern of coherence and hence very hard to address the above 
challenge. On one side we encounter lesser to huge population of neurons 
and on the other side on the option of seed regions coupled with varying 
sources as option for vertices. As for as the option of choosing the edges of 
a brain network/graph is concerned a justifiable lower and upper bound 
could dictated by two riddles. In a brain graph no region functions and gives 
the lower bound and the upper bound is set by a cost level of 50%.  

As of now no gold standard exists to choose an edge in the process 
of graph construction. However, edge selection is done depending on the 
correlation value with the constraint that the resulting graph should be 
connected. This is because brain networks cannot be disconnected. So, edge 
addition is done every time with the assurance that every vertex can be 
reached from a given vertex by a path. The first edges selected for each 
vertex were the one with the large correlation value between this vertex and 
another vertex. Next edge as per the next largest correlation value until the 
graph is connected. This process yields the minimum spanning tree (MST) 
of a graph/network. By a tree in a graph we mean the subgraph that relates 
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to no cycles. For each vertex further edges were included as per the 
correlation values among this vertex and all other vertices. This plan is called 
the k-nearest neighbor graph with k denoting the number of edges per 
vertex. This plan guarantee graph growing on equal foot (Alexander-Bloch 
et al., 2010). At last the edges among the vertices employed in a graph at 
some cost level, gives the highest order percent of edges. Graphs with huge 
cost level mostly consist edges at the lesser cost price. So, while averaging 
over a cost range on graph parameters, edges with higher correlation values 
in relative sense gain more weight. 

For well-known graphs, several graph parameters can be determined. 
They can be region specific such as the degree of a vertex or the number of 
paths going through a vertex also refereed as hubs or collection of more 
densely connected vertices or subgraph that exhibit less dense coherence to 
the rest of the graph or (path lengths among neighbored vertices refereed as 
clustering. At last measures that point to the whole graph/network such as 

average path lengths among all pairs of vertices refereed as efficiency and 
Euclidean distances between vertices. To sum up, clustering and vertex 

efficiency describe cognitive capacity through biomarker for and exhibit 
brain’s endurance to behavior adapt and adjustment. Euclidian distances 
among joined vertices describe communication pathways’ length in real 
space. Communication through real pathways of least path length was 
agreed as a plan of the brain to reduce metabolic costs (Kitzbichler et al., 

2011; Niven & Laughlin, 2008). Hence preferring communication through 
short distance is strongly visible in patients with poor performance and is 
viewed as a sequel of the affected brain that has to conserve energy to 
uphold intrinsic state values. 

Processing and transport of information in the brain takes place with 
the help of neurons by a series of electrical and chemical signal interactions. 
A neuron is structured with dendrites and axons and the signals are 
transmitted via synapses found between two neurons that allows them to 
receive and transmit information. The signals used in this information 
processing are neurotransmitters which are transported between neurons via 
synaptic cleft through a mechanism of action potential. Neurons contain ion 
channels found in the lipid bi-layer of neuronal cells and these ion-channels 
are known for transportation of Na+ and K+ ions on electrochemical 
gradient basis across the membrane. More data on axonal communication 
can be referred from (Arotaritei, 2013). The axon is a cylindrical structure 
made up of microtubules and these microtubules are connected to each 
other by tau proteins making up a cytoskeleton structure. To minimize the 
redundancy and increase the reliability of any interaction model, Moore and 
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Shannon proposed Hammocks networks which could be applied to brain 
interaction models. A reliable model is an error free model that would 
function with high precision even when applied to complex structures. The 
human brain consists of millions of neurons (nodes/vertices) connected to 
each other for information transmission via axons and dendrites (edges). In 
the articles (Beiu et al., 2017; Rohatinovici et al., 2018), the significance of 
application of hammock networks in the axonal communication and the 
model’s reliability were established. 

As seen through literature, graph theory is a very relativistic 
technique. Its parameters are useful in comparison. A lot needs to happen 
while setting rules for graph construction. Also, for the probe of brain 
regions, algorithms for identification and classification must be developed. 
Graph analysis opens new vistas into how the brain network is made and 

how it ensures efficient counsel flow. It has potential for application in 
clinical research. The advances made in explaining brain networks in patients 
provide the way for using graph metrics as supportive tool in diagnosis of 
psychological brain related diseases.  

Brain being a critical part of a human organ function rapidly to the 
requirements of the environment and adjust its behavior. While performing 
a task it is inclined to reconfigure its functional networks in milliseconds. 
Processes such as reconfiguration cannot be done with poorly sampled 
fMRI temporal data. 

2. Cellular Signalling Networks 

Network is a graphical representation of objects considered as nodes 
connected to each other through edges or links. Network has found its 
major position in biological concepts that helps in understanding the 
structural and functional organization of cells. A biological network 
represents the biological interaction of ecosystem describing relationship 
between same or different biological species, epidemiology describing spread 
of infectious diseases world-wide, immune system describing the process 
that takes places within an organism to protect against foreign antigens, 
neural networks representing the functional and structural interactions of 
brain, protein-protein interaction and gene regulation found in cells during 
DNA replication, transcription and translation processes, metabolic 
reactions determining the biochemical and physiological reactions inside an 
organism (Barabasi & Oltvai, 2004; Rangel et al., 2016). Several biology 
related databases are established to study and unravel the human body and 
its interplay in terms of cellular functions, molecular components, and 
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genetic interactions. The information retrieved from these biological 
databases are integrated into a model of gene ontology (GO). Gene 
ontologies helps in delineating the features of genes and its products dealing 
with molecular functions and cellular interaction (Gene Ontology 
Consortium, 2006). 

Interpretation of high-throughput analysis of genomic data to 
explore gene regulation and gene expression is of greater interest to the data 
related to GO and functional association of a set of genes retrieved from 
biological databases such as Reactome, Kyoto Encyclopedia of Genes and 
Genomes (KEGG), Pathway commons the intricate direct/indirect 
interactions among all sorts of macromolecules. Proteins, genes, protein-
protein interactions, and signal transduction mechanism can be well 
described using network science (Barabasi & Oltvai, 2004; Diao et al., 2007; 
Rangel et al., 2016; Gene Ontology Consortium, 2006). 

Cell signalling better defines the cellular activity, interaction between 
cellular components and their coordination, which can be represented as cell 
signalling networks. Depending on the functions of genes and proteins, a 
network system may elucidate each of the specified and unstated interactions 
with the other surrounding molecules called as neighbours. And the 
biological process of transmission of array of instructions is called signal 
transduction inside or outside the cell. In a normal biological process, each 
molecule relays a message to the others and the process continues until the 
final target molecule is activated or expressed. Any deviations in this array of 
aligned signal transduction can contribute to many human diseases. The 
network biology helps in elucidation of functional and interactional 
properties of genes and proteins in definite pathways and thus their end 
phenotypes between healthy and diseased individuals (Aggarwal et al., 2010; 
Chen et al., 2010). Taking advantage of the topological data of a network, 
functional analysis of each component in these biological processes can be 
presented as gene clusters and the methods employed to determine and 
analyse gene clusters can be referred (Everitt et al., 2011). 

3. Alzheimer’s disease (AD) 

Even though a precise mechanism of AD is vague, a complicated 
mix of factors attributable to environment, natural process of aging, routine 
living style of the individual, factors due to epigenetic and genetic are 
construed to be cause in general. AD is a dementia induced disorder that is 
neurodegenerative. It is characterized by impaired cognition with difficulties 
in the reasoning, problem solving abilities. A lot of research happened to 
address this global burden. This review gives an overview on genetic factors, 
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epidemiology and clinical symptoms employed in the diagnosis of AD. This 
is followed by the significance of Graph theory and networks application in 
understanding the complexities Alzheimer’s disease progression and 
management is described and concluding with few open problems of 
possible neurobiological research questions solved by mathematical graph-
network models. 

We are much grateful to James M. Ellison for nicely describing about 
the history of AD in (2018). We provide here a brief outline of his 
exposition. Emil Sioli brought to the notice of Alzheimer’s, the death of one 
of his patient Auguste Deter by sending her brain material. Alzheimer’s 
examined her brain material microscopically with new stains to announce 
what we coin as amyloid plaques and neurofibrillary tangles.  It was 
Kraepelin who honoured Alzheimer’s contribution and named this type of 
dementia as AD. As Auguste is middle aged this disease was classified at that 
time (in the first decade of 20th century) as presenile dementia. However, in 
1976 Robert Katzman a noted neurologist preferred to eliminate this 
distinction and AD is considered as main cause of dementia in older adults 
from early 1980’s.  

The historical context of Alzheimer’s disease dates back to 1906.The 
cognitive impairment in individuals with less than 65 years of age presented 
as presenile dementia and subjects above 65 years of age with vascular 
disease presented as senile dementia. Later, around 1950, vascular 
explanation of senile dementia was abandoned. In 1984, the clinical 
characteristics and pattern of neuropathology after death was formulated 
which can be referred at (Dubois et al., 2007).  

3.1. Epidemiology 

The neuro-pathogenesis of AD is linked to complex sets of 
molecular mechanisms, proteins and genes. This condition is not a single 
gene disorder. The function of different signalling pathways and various 
genes linked in cognitive impairment and disease progression are being 
addressed, yet, there is no definite explanation of specific mechanism and 
genetic predisposition to the disease development and progression. The 
research on this disease is long way to go for therapeutic development. The 
molecular interaction with disease progression varies with age, genetic 
susceptibility, geographical location, lifestyle and ethnicity. It is believed that 
AD appears 15-20 years before the actual cause of mild cognitive 
impairment is noticed.  

AD is progressive with time and diagnosed only in the later age of 60 
years or above. Facts and data from the literature shows the number of older 
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people aged 60 years or above will increase from 420 million to 1 billion 
from 2000-2030 (Reitz et al., 2011). World Health Organization (WHO) has 
estimated that the world-wide cases of dementia are 50 million with 10 
million new cases every year. Prevalence of a disease is the proportion of 
population with that particular condition found at a specific time. Through 
literature survey, the number of prevalent cases of dementia has increased by 
117% from 1990 – 2016. The global prevalence of AD was 701 cases per 
hundred thousand in 1990 which then increased by the rate of 1.7% leading 
to 712 cases per 100,000 population in 2016. Also, it is observed 1.17 times 
greater in women than in men. The incidence rate also increases 
exponentially with older age of 70 – 80 years (Robinson et al., 2017). The 
prevalence, death and disability-adjusted life years of AD is recorded in the 
Table 1. Yet, the prevailing rates of AD are age-adjusted and may vary with 
different geographical locations, sex and ethnicity. 

Table 1. Prevalence and death for dementia associated Alzheimer’s disease 
calculated by percentage rates of age adjusted rates by location, 1990-2016. 

Source: Authors’ own conception 

Populations Prevalence (%) Death (%) 

High Income North 
America 

-1.6 9.9 

Southern Latin America -4.4 -3.5 

Central Latin America -5.2 -7.2 

Tropical Latin America 5 0.1 

Andean Latin America -6 -3.2 

Western Europe -8.1 -7.4 

Eastern Europe -1.2 -0.3 

Central Europe -3.5 -2.9 

Caribbean -4.9 -3.5 

North Africa-Middle East -1.0 -1.8 

Southern Sub Saharan -3 9.9 

Western Sub Saharan -2.7 3.7 

Eastern Sub Saharan -4.1 6.5 

Central Sub Saharan -2.5 8.1 

Australasia -9.1 -6.2 

High Income Asia Pacific 15.6 9.2 

Central Asia -0.9 -1 

East Asia 5.4 -0.5 

South Asia -4.6 16.6 

South East Asia -1.5 6.5 

Oceania -1.6 -7.3 
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3.2. Contribution of Risk factors in AD onset 

As dementia associated AD is age-related, with rise in geriatric 
population will have greater impact on global public health. This disorder 
requires lot of care in its later stages and it is fatal. The disadvantage of the 
disease is that there is no definite diagnosis (biomarker detection) apart from 
clinical assessment (Nichols et al., 2019). The major causative factors of AD 
are given in the Figure 1.  

 

 
 

Figure 1. Potential risks factors that causes the onset of Alzheimer’s’s disease  

APP – Amyloid Precursor Protein; PS 1 – Presenilin; PS 2 – Presenilin 2;  

APOE – Apolipoprotein E  

Source: Authors’ own conception 

3.3. Clinical Symptoms of AD 

Although the memory loss is a part of aging, few other symptoms 
are exclusively observed in the dementia and AD patients due to the 
degeneration of neurons and loss of synapses in the hippocampal regions of 
central nervous systems. Table 2 gives different signs of impaired cognition 
observed in AD patients. As the disease is slowly progressive there is a long 
duration of disease before mortality which weakens the patients from being 
normal and makes them more dependent. This calls for more attention, care 
and time.  
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Table 2. Symptoms of AD and dementia in advanced form found in the moderate 

and later phases of cognitive impairment 

Source: Authors’ own conception 

 
Age-related clinical cause of AD 

Loss of Memory 
Difficulty in completing routine tasks and planning 
Loss of solving-problem ability 
Confusion with time and place 
Trouble in Vision – Cataract, Glaucoma, macular degeneration 
Loss of ability to differentiate color images 
Difficulty in speaking –employing appropriate word  
Loosing objects easily and problems in retracing/recalling the location 
where the object is lost 
Loss of judgmental ability 
Behavioral changes - mood and personality fluctuates 
Become socially insecure and inactive 
Withdrawal from work 

 

3.4. Cause of Alzheimer’s disease 

Pathological features of AD are: a) aggregation of amyloid b peptides 
referred to as amyloid plaques collected in the extracellular regions of the 
brain, b) aggregation of hyper-phosphorylated tau proteins contributing to 
the development of neurofibrillary tangles identified in spatial patterns in the 
intracellular regions of the hippocampus and cortical areas of the central 
nervous system. These proteins build up contributes to neuronal and 
synaptic dysfunction which promotes cognitive impairment to develop 
(Combs et al., 2016; Magalingam et al., 2018).  

Since the discovery of AD, heterogeneous causes and recognized 
theories (Kocahan & Doğan, 2017) have led to the neuronal impairments of 
AD. A ton of new knowledge has emerged that establishes the causes, 
disease mechanisms and prospective therapeutics, but no impactful solution 
has been described to help treat the diseases. This could be due to the 
unpredictability of the pathophysiology of the brain, as it includes different 
causal genetic and epigenetic predispositions. The demanding high-level 
genetic techniques such as Genome wide Association Studies (GWAS), 
CRISPR-CAS9, RNA sequencing, Next Generation Sequencing (NGS), help 
to transcribe the genetic sequence of different organisms. These 
technologies have pulled out various genes and their alleles involved in 
several human diseases along with the frequency data of specific forms of 
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mutations. The AD-associated genes were investigated by IGAP through 
GWAS. Some of the gene sets reported in AD include ABCA7, BIN1, 
CD33, CR1, CASS4, CD2AP, CLU, DRB5, DSG2, EPHA1, FERMT2, 
HLA-DRB5- HLA-DRB1, INPP5D, PTK2B, SLC24A4, TREM2 and 
ZCWPW1). Rare variants of some AD-connected genes such as APP, 
APOE, TREM2 have also been reported. While they study the multiple 
functionalities of these genes through various biological pathways, their 
functions in AD pathophysiology have yet to be studied (Kim, 2018; 
Rosenthal & Kamboh, 2014). One may refer (Andrews et al., 2020; Jansen et 
al., 2019) to know the various risk gene / loci and the functional pathways 
associated with AD discovered through GWAS and meta-analyses 
experiments. The Figure 2 handles some of the popular biological 
mechanisms studied in the phenomenon of AD (Bobba et al., 2013, Bota et 
al., 2005; Chouliaras et al., 2013; Esterbauer et al., 1991; Goedert & 
Spillantini, 2006; Hickman & El Khoury, 2014; Keck et al., 2003; McGeer et 
al., 1988; Okamoto et al., 2014; Priller et al., 2006; Yakes & Van Houten, 
1997). 

Though numerous facets recognized to cause AD are established, 
not all these abnormalities are recorded together in the cases of AD. There 
are reported cases of co-existence of multiple other disorders along with 
AD. The triggering or common causal factors of such diseases are to be 
researched deeply. The similarities found in various disease biology, 
pathways and genomic data has to be further investigated to unravel each 
one's function and interlinks in the pathological development of the disease. 
In order to achieve early detection of the disease, provide personalized 
medical approach, identify the prompt therapeutic target and establish 
disease management, it is significant to correlate and understand the hidden 
underlying concepts of the disease. This lays an emphasis on delineating the 
complexity and intricate details of disease mechanism through the right 
pavement of network biology. 
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Figure 2. Prevailing neuro-regressive pathways 

Source: Authors’ own conception 

4. Network approaches for AD 

A recent study on association of disease-pathway in human diseases 
was carried out by employing a bipartite Random Walk with Restart on 
heterogeneous network (RWRH). Network of disease similarity and pathway 
similarity and their association was constructed by retrieving data from 
various biological databases such as GO, KEGG, Reactome, OMIM. Based 
on the similarity scores and linkage analysis, primary and intermediate nodes 
were detected, and edges were linked to adjacent nodes and formed a 
specified disease-pathway network (Ghulam et al., 2020). This network of 
disease-pathways defines the genetic connections in different biological 
pathways with varied disease. The combination of biological experiment 
findings with graphical methods will aid in forecasting potential relationships 
in a disease between genes, proteins and signalling pathways. The cumulative 
principles of graph theory and cellular signalling have helped to define the 
relationship between TGF-β signalling and AD pathway incorporating 
clustering and semantic mining. The signalling pathway graph was created 
based on social network analysis (SNA) for cluster identification. This 
analysis gives the network of semantically enriched common genes and 
protein linked to both pathways (Rangel et al., 2016). Similarly, exploiting 
graph principles such as centrality, modularity, and mining, we might find 
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essential biological pathways, analyze the functional similarities between 
gene communities, and build protein interaction networks. Another study 
revealed relationships between AD and type 2 diabetes through the use of 
shared causal pipelines. Through the data collected from GWAS, GO, 
Reactome, random directed acyclic networks were created by linking some 
of the common genes and employed a graphical approach of causal network 
to assess the associations between these two diseases. This approach 
established 13 genes and 16 common pathways between AD and type 2 
diabetes, including 101 associated methylated genetic nodes linked to both 
the diseases described by causal networks (Zixin et al., 2020). This causal 
network approach can establish close association within/between genes and 
proteins denoted as nodes in graph theory. 

4.1. Genetic Networks and AD 

The genetics of Alzheimer's disease at the molecular level has 
evolved as alterations one after the other as interactions that are molecular 
centric in pathways to elucidate processes governing the states that are 
pathophysiological. Investigations of late onset Alzheimer's disease have 
exposed critical genomic regions connected to the disease and it is even 
today not known the actual reasons. A vast quanta of genetic data governing 
late onset has enables us to understand causally described processes to it. In 
(Zhang et al., 2016) the authors have discussed distinct features network-
based methods pointing to devising network of genes linked to AD from 
post-mortem samples of tissues of brain. They explained at length replica of 
network methods that are multi scalar that combines interaction and causal 
gene to probe gene expression, DNA. They made use of co-expressed 
weighted gene network study to build networks that are multi-tissue centric 
to explain interactions that are gene to gene to assess the connectivity 
changes due to late onset of co-expressed genes in comparison with the 
normal case. Regulatory connections that are causal between the genes along 
every module are found by framework of inference through Bayesian 
approach in network form. It is used to collate the counsel due to gene 
expression (Zhang et al., 2016). In (Kelly et al., 2020) the authors carried out 
a huge up to date probe of AD network in blood depending on its gene 
expressions. They located among the networks of disease and healthy 
control, the un-conserved modules and pertinent genes as hub with 
transcription factors. The module corresponding to lipolysis regulation in 
adipocytes and interaction that is neuroactive in ligand-receptor are not 
conserved in AD networks of both cases of healthy and mild cognitive 
impairment. Here the vital TRPC5 and BRAP lots are conceived as main 
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targets for treatments of therapeutic type.  Their investigation showed that 
AD possess in common genetics that are impaired and located pathways that 
are interesting (Kelly et al., 2020). 

4.2. Google Knowledge Graph for AD 

Graph theory is capable of briefly estimating the attributes of 
complex structure and replicating interconnections (denoted by edges) 
among brain lots (denoted by vertices). It can bring out the topological 
attributes and scrutinize the various brain network states through measures 
such as the vertex degree, clustering coefficient, characteristic path length, 
small-world attribute, betweenness centrality and global/local efficiency 
(Bullmore & Sporns, 2009). 

To reap the benefit from graph theory and pattern recognition, these 
two can be mingled through knowledge graph measures that could act as 
trained classifiers features. It further expands the classifiers to determine 
functional data from various group of cases that are unseen. This well 
explains hard brain conditions such as pathology. Because of high 
dimensional type of the fMRI data, features that are of graph theoretical type 
about brain network are also of higher dimensional and hence resorting to 
selection procedure is irredundant. Various options are weighed and the best 
one is chosen for the algorithm-based handling.   

The automated anatomical labelling technique divides the whole 
brain into 90 distinct lots. These lots are represented as vertices to build 
brain network. The signal corresponding to each vertex is achieved by 
expected value of the time series of all voxels within the lots. Then edges of 
the brain network are functional linking of all pairs of automated anatomical 
labelling lots through the correlation coefficient due to Karl Pearson. The 
resulting functional matrix that is undirected and weighted is a dense 
knowledge graph. It has to be made sparse with the setting threshold value p 
to lie between 0 and 1. Set diagonal weights that are self-links to zero. If 
value of p is high, then it becomes a dense knowledge graph by allowing 
weaker edges with respect to low and noisy correlations. Else, set a low value 
to p to drop more edges and it leads to a knowledge graph that is 
disconnected and hence its metrics cannot be found.  

Hence for the classifiers, it is clinically recommended to employ 
measures of brain network as input features. When the knowledge graphs 
are built, compute various metrics that are knowledge graph centric to 
explain the functional state of the brain and employ them as features to 
subject the classifier to test and train. Clustering coefficient normalized local 
efficiency and local efficiency are the three measures of functional 
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segregation to characterize the brain ability for processing to occur within 
densely interlinked cluster of distinct brain lots. Characteristic path length 
and global efficiency are two measures of functional integration to assess the 
brain strength for integrating the counsel from distributed lots. Then the 
three local vertex centred measures such as betweenness centrality, degree, 
and participation coefficient along with the small-world attribute of the 
network to probe the attributes of 90 automated anatomical labelling brain 
lots. These graph measures are found depending on the weightiness of the 
graph corresponding to its adjacency matrices through the toolbox of Brain 
link (Rubinov & Sporns, 2010). 

The clustering coefficient in weighted sense is an expanded version 
of binary clustering coefficient. Binary clustering coefficient of vertex x is 
the proportion of edge count among pairs of adjacent elements of the vertex 
x to the neighbour to neighbour edge count admissible. The mean clustering 
coefficient was determined through clustering coefficients of individual 
vertices which points to the existence of clustered linking about individual 
vertices. Local efficiency assesses the capacity of a network to transfer 
counsel at the local level. Normalized local efficiency is determined as the 
proportion of local efficiency to the global efficiency. These measures 
pertain to functional segregation of the brain knowledge graph. The 
characteristic path length is often employed measure of the network 
integration. It is conceived as the expected value of least path lengths among 
each pair of vertices in the network. Path length for a weighted knowledge 
graph is determined as the total sum of reciprocal of weights of each edge. 
Global efficiency is conceived as the expected value of the reciprocal of least 
path length and it finds the capacity of a network to transfer counsel at the 
global level (Rubinov & Sporns, 2010).  

The degree is a viable measure of centrality for a weighted 
undirected knowledge graph and is conceived as the sum of weights of links 
joined to a vertex. Large value of the degree implies more interaction. The 
knowledge graph’s modular system is found by looking at the node 
arrangement into huge modules so that highest count of links lies within 
groups and least count of links lies between groups. When the knowledge 
graph modules are spelled, the diversity of links among vertices can be 
found by the participation coefficient. Vertices with a huge participation 
coefficient implies varied links agreed as link hubs. It facilitates integration in 
between-module of the knowledge graph. But vertices with high-degree and 
low participation coefficient are known as provincial hubs they take part in 
interactions of within-module type. Then one more measure of centrality 
called betweenness centrality is dependent on the concept of least paths. It is 
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conceived as the normalized sum of estimated proportion of all least paths 
that pass through that vertex. The brain knowledge is designed obeying 
small world attribute. It gives a wise mix of functional segregation and 
integration. Small-worldness are conceived as the ratio of clustering 
coefficient and characteristic path length. The values of clustering coefficient 
and characteristic path length are normalized by their corresponding random 
knowledge graph values (Bullmore & Sporns, 2009; Rubinov & Sporns, 
2010). 

A statement in biology can be given a visual treatment by denoting 
by denoting it as a triple consisting of [subject, predicate, and object]. Note 
that here a subject point to a statement in a biology and the predicate points 
to the relation that links the subject and the object. Interpreted using the 
terminology of graph theory, a subject corresponds to vertex; a predicate 
corresponds to the incidence relation between vertex and edge; an object 
corresponds to edge. By following this convention one can create a 
knowledge graph exploiting the statements from biology. Lately, Google has 
undertaken a massive exercise to create such a knowledge graph for the 
purpose of ease and visual treat for further probe and analysis. A very useful 
counsel can be drawn by looking at the subgraphs or subnetworks of 
protein-protein interaction networks of both normal and AD affected 
people. One can extract the data of protein-protein interaction of healthy 
people, the following inference which is a union of two connected 
components A and B, where A consists of 6 vertices denoting the genes: 
APP, ADAM10, BACE1, MIF, MAPT, LRP1 and B consist of 2 vertices 
denoting the genes PTGS2 and IL1B. Here A is a star graph and B is a tree 
on two vertices. See Figure 3. 

 
Figure 3. Subgraph from normal person’s protein-protein interaction network 

Source: Authors’ own conception 
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One can extract the protein-protein interaction network of an AD 
affected person, the following inference which is a union of tree connected 
components A, B, C where A consists of 4 vertices denoting the genes: 
STAT4, JUN, MAPK3, STMN2; B consists of 5 vertices denoting the genes: 
APP, BACE1, LRP1, DLG4, TGFB1; C consists of 2 vertices denoting the 
genes: MAPT, TUBA4A (Iyappan et al., 2016). See Figure 4. 

 

 
Figure 4. Subgraph from AD affected person’s protein-protein interaction network 

Source: Authors’ own conception 

5. Graph/Network dependent proposition of AD 

Network outlook make use of muti-omic data to find out pathways 
and susceptibility genes in AD. The following networks are associated with 
AD. 1) Clathrin-mediated receptor endocytosis and MAPK/ERK. Here turn 
upside down of the pathway receptor conciliated by clathrin result in 
improved levels of APP paying way to progression of disease (Hallock & 
Thomas, 2012), 2) microglia  and Immune system (Zhang et al., 2013), 3) 
microglia-enriched modules  and Astrocyte-specific (Miller  et al., 2013), 4) 
innate immune response and Myelination (Humphries et al., 2015), 5) AD 
progression network modules (Kikuchi et al., 2013), 6) APOEε4 
stratification dependent co-expression modules (Jiang et al., 2016), 7) 
metastable proteins susceptible to aggregation inducing down regulated gene 
network (Ciryam et al., 2016), 8) myelination network with hypomethylation 
patterns (Humphries et al., 2015). In literature one can see umpteen 
instances on how networks could hasten personalized treatment.  Scrutiny of 
network modules that are unstable in various brain regions due to protein 
interaction, specifically, in the AD patient’s entorhinal cortex. At different 
Braak stages presence or otherwise of a lot of protein interactions give 
indication regarding upward progression of AD through network modules 
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(Kikuchi et al., 2013). Similarly network exploration of 6 critical brain 
regions observed in AD patients’ unravelled a hub of 136 genes where 72 of 
them well agree with the Mental State diagnose test and cognitive scores 
confirming progression dreadfulness of AD. APOEε4 is a grave risk factor 
for late onset of AD and responsible for greater than fifty percent of the 
affected cases. The carriers of APOEε4 exhibit clinical and pathological 
traits unlike in non-carriers. Further APOEε4 carriers’ co-expression 
modules are full of a) disorders that are hereditary, b) diseases that are 
neurological and c) function of nervous system. However, modules of non-
carriers were enhanced in diseases that are cardiovascular and immunological 
thereby conveying that several processes that are biological could cause a 
havoc with late onset of AD (Jiang et al, 2016). Network scrutiny other than 
determining genetic confederacy in share mode, enrol the evaluation of a 
similarity matrix spot clusters of gene associated to repair  of DNA, 
metabolism  due to RNA, and metabolism induced by glucose in AD 
(Calderone et al., 2016). Pertinently, conventional gene ontology is not used 
to detect these pathways. Latest meta-scrutiny of brain tissue of 
approximately 1600 microarrays of AD affected patients pronounce a set of 
genes that are down regulated related to metastable proteins accord to 
aggregation (Ciryam et al., 2016). So, proteome homeostasis network 
targeting components could facilitate therapeutic moment for diseases that 
are neurodegenerative. Temporally regulated Gene expression that are also 
spatial is created by DNA methylation. Such epigenetic changes could 
impact a global gene expression. Neurodegenerative disorders and aging can 
be scrutinized through epigenetic changes in gene expression. Further 
positive correlation was detected in AD affected individuals regarding 
cognitive repair, working memory, and acceleration epigenetic age coupled 
with episodic memory. For this various tool that are computational are put 
in place to integrate data that is epigenetic in networks. 

6. Conclusion 

Through network approach aided by graph theory attributes and the 
advantages of visual representation and pathway-centred strategy, we 
reviewed various mechanisms that are of genetic and pathogenetic types 
governing AD. Our review provides significant ideas for comprehending the 
mechanisms that are molecular with reference to AD. The article provides 
the applied concepts of graph theory principles of centrality, betweeness, 
pathlength, small-worldness, clustering coefficient, bipartite random 
network, causal path network, social network analysis with semantic mining, 
weighted network analysis and knowledge graph in accommodating genetics 
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and signalling interactions in the clinical course of development of AD. This 
gives an impression of the significance of network theory applications in 
neuroscience and disease biology mechanisms. More combined work of 
graph theory and biology can help elaborate the unknown causes and 
interaction networks in the study of any human disease. 
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