
BRAIN. Broad Research in Artificial Intelligence and Neuroscience
ISSN: 2068-0473 | e-ISSN: 2067-3957
Covered in: Web of Science (WOS); PubMed.gov; IndexCopernicus; The Linguist List; Google Academic; Ulrichs; getCITED;

Genamics JournalSeek; J-Gate; SHERPA/RoMEO; Dayang Journal System; Public Knowledge Project; BIUM; NewJour;

ArticleReach Direct; Link+; CSB; CiteSeerX; Socolar; KVK; WorldCat; CrossRef; Ideas RePeC; Econpapers; Socionet.

2021, Volume 12, Issue 4, pages: 28-56 | https://doi.org/10.18662/brain/12.4/237

Deep Learning Based
Malware Detection
Tool Development for
Android Operating
System

Mahmut TOKMAK¹,
Ecir Uğur KÜÇÜKSİLLE2,
Utku KÖSE3

1 Isparta University of Applied Sciences,
Gelendost Vocational School, Isparta,
Turkey, mahmuttokmak@isparta.edu.tr
2 Suleyman Demirel University,
Department of Computer Engineering,
Isparta, Turkey,
ecirkucuksille@sdu.edu.tr
3 Suleyman Demirel University,
Department of Computer Engineering,
Isparta, Turkey, utkukose@sdu.edu.tr

Abstract: In today's world that called technology age, smartphones
have become indispensable for users in many areas such as internet
usage, social media usage, bank transactions, e-mail, as well as
communication. The Android operating system is the most popular
operating system that used with a rate of 85.4% in smartphones and
tablets. Such a popular and widely used platform has become the
target of malware. Malicious software can cause both material and
moral damages to users.
In this study, malwares that targeting smart phones were detected by
using static, dynamic and hybrid analysis methods. In the static
analysis, feature extraction was made in 9 different categories. These
attributes are categorized under the titles of requested permissions,
intents, Android components, Android application calls, used
permissions, unused permissions, suspicious Android application
calls, system commands, internet addresses. The obtained features
were subjected to dimension reduction with principal component
analysis and used as input to the deep neural network model. With
the established model, 99.38% accuracy rate, 99.36% F1 score,
99.32% precision and 99.39% sensitivity values were obtained in
the test data set.
In the dynamic analysis part of the study, applications were run on a
virtual smartphone, and Android application calls with strategic
importance were obtained by hooking. The method called hybrid
analysis was applied by combining the dynamically obtained features
with the static features belonging to the same applications. With the
established model, 96.94% accuracy rate, 96.78% F1 score,
96.99% precision and 96.59% sensitivity values were obtained in
the test data set.

Keywords: Android malware analysis, static analysis, dynamic
analysis, hybrid analysis, deep learning.

How to cite: Tokmak, M., Küçüksille, E.E., & Köse, U.
(2021). Deep Learning Based Malware Detection Tool
Development for Android Operating System. BRAIN.
Broad Research in Artificial Intelligence and Neuroscience, 12(4),
28-56. https://doi.org/10.18662/brain/12.4/237

https://doi.org/10.18662/brain/12.4/237
mailto:mahmuttokmak@isparta.edu.tr
mailto:ecirkucuksille@sdu.edu.tr
mailto:utkukose@sdu.edu.tr
https://doi.org/10.18662/brain/12.4/237

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

29

1. Introduction

Nowadays, smart phones have occupied an important position in
many users' lives and have become an indispensable part. Because the
smartphone can be used not only as a phone, but also as a portable
computer that provides various services, such as short message service
(SMS), email, internet, social media, maps, GPS, banking applications, games
(Alshahrani et al., 2018; Alzaylaee et al., 2020).

According to the data of International Data Corporation (IDC) in
June 2020, when examining the ratio of operating systems in the global
smartphone market, Android’s share of the market is 85.4% and it is
expected to be 86.3% in 2023 according to the company's estimate (IDC,
2020).

As an open source and widely preferred technology around the
world, Android has become the target of malware. These malware have the
ability to send text messages to special charge numbers, gain access to
personal data, and even install code that can download and apply additional
malware to the user's device without the user's consent. Malware can also be
used to create mobile botnets (Alzaylaee et al., 2020; Anagnostopoulos et al.,
2016). In the last few years, the number of malware samples targeting the
Android platform has increased significantly. According to a report by
McAfee in 2018, more than 2.5 million new Android malware applications
were detected in 2017, so the number of malware samples increased to
nearly 25 million till 2017 (Alzaylaee et al., 2020; McAfee, 2018).

The widespread use of Android and the increase the number of
malicious software make it necessary to study on malware detection. In this
context, Google Play introduced a detection mechanism called Bouncer in
2012 to prevent the spread of malicious software. In order to detect any
malware behavior, the Bouncer application was run in a virtual area for five
minutes and tested to detect malicious behavior. However, it has been
shown that this detection system can be circumvented by malware (Alzaylaee
et al., 2020). In addition, Google announced Google Play Protect in 2017.
Google Play Protect is a service that works constantly to keep data and apps
safe and tries to provide mobile security by automatically scanning the
device. At the same time, Google reported that more than 50 billion apps are
scanned every day with this service, regardless of where they were
downloaded (Google Play, 2018). However, in the report published by
McAfee, they stated that the Google Play Protect service is not successful
when tested against malwares that detected in the last 90 days (McAfee,

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

30

2018). As can be seen, in addition to the study of Google Play, various
approaches and studies are still needed to combat malware.

Various approaches have been proposed in previous studies to
detect Android malware. These approaches are called static analysis, dynamic
analysis or hybrid analysis. In the method called static analysis, it is based on
the principle of analyzing the written code without running the application.
Dynamic analysis is based on the principle of determining the behavior of
the application by running the application in a controlled environment such
as an emulator (Android Virtual Device- "AVD") or on a real device. The
hybrid analysis method is based on the principle of combined usage of static
and dynamic analysis method.

In this study, it is aimed to detect malicious software that threatens
Android platform. During the static analysis phase, the Java application that
we named Kuzgun was developed and the feature extraction process was
performed in 9 different categories. In this respect, contrary to studies such
as Aafer et al. (2013), Au et al. (2012), Feizollah et al. (2017), Hou et al.
(2016, 2017), Idrees et al. (2017), Rosmansyah and Dabarsyah (2015),
Yerima et al. (2014), Yuan et al. (2016), the study has been analyzed in detail
by using other features such as intents and system commands that can be
obtained from Android applications, instead of focusing only on
permissions and API calls. After the feature extraction process, size
reduction was performed using Python and malware was detected using
deep neural networks. As a result of the static analysis, 99.38% accuracy rate,
99.36% F1 score, 99.32% precision and 99.39% sensitivity values were
obtained in the test data set.

2. Related Work

In this section, a general literature review has been made on research
studies for the analysis of Android malware.

Au et al. (2012) made detailed mapping of Android permissions and
API calls in their study called PScout. In particular, they have matched API
calls that are not documented by Android with the necessary permissions to
use them.

Wu et al. (2012) developed a system called DroidMat. Firstly, they
obtained API calls related to the requested permissions, intent messages,
activities, services, recipients and permissions by using DroidMat. As a
result, they made a classification with the K Nearest Neighbor algorithm.

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

31

Aafer et al. (2013), in their work called DroidAPIMiner, static
analysis was performed using API calls obtained from application code
through reverse engineering.

Yerima et al. (2014) studied three methods of detecting Android
malware based on data mining. By using a special application developed by
Java, they made Bayesian classification by using data obtained from Android
application packages by automatic reverse engineering techniques. In the
first of the models that they perform static analyzis, they used the standard
Android permissions obtained from Manifest files. In the second model,
they used API calls to point out potential harmful they got from code
features. In the third model, they made a classification by using the Android
permissions and API calls they obtained in the first two models.

Arp et al. (2014) developed a static analysis-based tool called
DREBIN, which enables detecting harmful applications directly on
smartphones. They gathered the attributes they obtained from the Android
samples into 8 groups. The attributes that the application obtained from the
manifest file are hardware properties, requested permissions, application
attributes, intent filters. The attributes they obtain from the source code of
the application are restricted API calls, used permissions, suspicious API
calls, and network addresses. They tried to detect malicious software using
Support Vector Machines, one of the machine learning methods.

Rosmansyah and Dabarsyah (2015) used API calls in their study
which they used the static analysis method. They made classification with
Random Forest, J48, and Support Vector Machines algorithms.

Fereidooni et al. (2016) used static analysis method in their study
called ANASTASIA and created a malware detection system using machine
learning techniques. They use the intents, the permissions used, system
commands, suspicious API calls and malicious activities that obtained from
the Android application as attributes. They obtained the best result with the
XGBoost algorithm from the data they tested with machine learning
techniques such as Extreme Gradient Reinforcement (XGBoost), Random
Forest, and Support Vector Machines.

Hou et al. (2016), in their study called Deep4MalDroid, they
extracted the Linux kernel system calls of Android applications and used the
weighted graph method for attribute representation. Deep Learning method
was used in the study.

Yuan et al. (2016), in their study called DroidDetector, they extracted
attributes by static analysis and dynamic analysis, and then detected
malicious applications by characterizing the attributes with Deep Learning
method. In static analysis, they obtained Android permissions and sensitive

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

32

API calls. In dynamic analysis, they obtained 192 attribute titles by using
hooking methods to obtain file input/output, short message service,
encryption and network operation attributes of application behavior
characteristics.

Hou et al. (2017) opened APK (Android Application Package) by
using APKTool and extracted smali codes from dex files. They created Deep
Neural Networks by dividing API calls obtained from Smali codes into
blocks. Also made a comparison using deep learning methods such as Deep
Belief Network, Stacked AutoEncoders. They found the Deep Belief
Networks method more successful than the Stacked AutoEncoders method.

Feizollah et al. (2017) evaluated Android intents as a distinctive
feature to identify malicious applications. They stated that the intents
contain semantically rich features in identifying malicious software compared
to other well-studied features such as permissions. Bayesian Networks was
usen in the tests.

Idrees et al. (2017) proposed a permission and intent-based detection
method in their study called PIndroid. They argued that Android
permissions and intents are related, and they tested the attributes that consist
of permissions and intents using machine-learning techniques.

Milosevic et al. (2017) used 2 different machine learning methods in

their studies. They made classification and clustering in the study where they
used the static analysis method. They said that the results obtained using
classification methods showed better performance than clustering methods.

McLaughlin et al. (2017) performed a static analysis using the opcode
arrays they extracted from the manifest file and the dex file. They trained
their datasets with convolutional neural networks.

Karbab et al. (2018) conducted static analysis using API calls in their
study called MalDozer. They used the deep learning method in their
detection mechanisms.

Alshahrani et al. (2018), in their study named DDefender, used static
and dynamic analysis techniques to extract features from the user's device
and then applied a deep learning algorithm to detect malicious applications.
Firstly, they used the dynamic analysis method to extract system calls, system
information, network traffic, and required permissions from an audited
application, then used the static analysis method to extract important
features such as components of the application from the audited application.

Yang et al. (2018) proposed a dynamic analysis method called
DroidWard in order to characterize harmful behavior, increase the rate of
detecting harmful applications, and extract the most relevant and effective

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

33

features. They gathered the attributes in 15 separate categories, and stated 9
of them as classical methods and 6 as new. They used DroidBox while
extracting dynamic attributes. However, they stated that the data monitored
by DroidBox was limited, and they simulated precise API calls with
Monkeyrunner by making changes to the source code of DroidBox. They
use machine learning techniques such as Support Vector Machines, Decision
Tree, and Random Forest.

Sugunan et al. (2018) conducted a comparative study on the behavior
of harmful and harmless applications using static and dynamic analysis. They
extracted static attributes using APKtool and dynamic attributes using
Droidbox APIMonitor. They stated that the combined use of static and
dynamic analysis features and the results of their tests with methods such as
machine learning algorithms RF, SVM, J48 and Naive Bayes were more
successful.

Cordonsky et al. (2018) proposed a system that uses static and
dynamic analysis methods together. Cuckoo recorded features such as API
calls, network activities, and string sequences obtained from malicious
applications they analyzed in the sandbox in JSON format and used them as
input to Deep Neural Networks.

Alzaylaee et al. (2020) conducted a study called DL-Droid, which
detects malicious Android applications with dynamic analysis method. They
used the Deep Learning method in the study. They have extracted dynamic
attributes using the application named DynaLog developed by Alzaylaee et
al. (2016).

Contrary to the previous studies, in the static analysis part of our
study, the attribute category that can be effective for Android malware
detection was evaluated in 9 different categories instead of a few specific
categories (API, Permissions, etc.).

In our static analysis, a total of 62.547 examples of Android harmful
and harmless applications were used, again numerically more than other
studies, and approximately 750.000 different features were obtained from
these samples. The attributes are reduced to 900 by the IPCA method. In
the hybrid analysis method, a data set was obtained by combining the
features obtained by the static analysis method and the API calls obtained by
the hooking method in the dynamic analysis method. When using the
hooking method, API calls that are effective in Android malware detection
are hooked. Again, 375.000 features were obtained by using 35.142 Android
applications with a high numerical value and these attributes were reduced to
5000 using IPCA. The obtained features were trained and tested with DNN
and the results were presented.

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

34

3. Materials and Methods

3.1. Android Software Analysis

Analysis methods are analyzed in 3 categories in the literature. These
methods are categorized as static analysis, dynamic analysis, hybrid analysis
methods (Alshahrani et al., 2018; Bhilvare & Manik, 2015; Idrees et al.,
2017).

3.2. Static analysis method

The static analysis method involves analyzing the source code from
the APK file of the applications using various reverse engineering
techniques. In the static analysis method, applications are analyzed without
running on an emulator or any device. APK files in compressed file format
can be opened with compression programs such as Winzip, Winrar, and so,
the dex, manifest and source files can be accessed. Tools such as apktool,
dex2jar are used to analyze the dex file. For the analysis of the manifest file,
applications such as AXML2jar, AXMLPrinter2.jar are used. Since the
applications are not run while performing static analysis, there is no damage
to the device. This is seen as an advantage of the static analysis method.
However, if methods such as obfuscation are used in practice to make the
codes difficult to understand, success cannot be achieved with the static
analysis method, which is seen as the disadvantage of the static analysis
method (Bhilvare & Manik, 2015; Türker & Can, 2019; Yerima et al., 2014).

3.3. Dynamic analysis method

Dynamic analysis method is based on the principle of running
applications using a real device or a virtual device and following the behavior
of the application at runtime. Since the application is analyzed by running
the application in the dynamic analysis method, if the application is a
harmful application, the device will be affected and damaged when it is run
on real devices. For this reason, it is considered more appropriate to run
applications in systems called sandbox (virtual device-emulator). Creating
virtual, isolated systems is a costly and laborious method. At the same time,
the dynamic analysis method takes a long time compared to the static
analysis (Bhilvare & Manik, 2015; Kulkarni, 2018; Türker & Can, 2019).

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

35

3.4. Hybrid analysis method

The hybrid analysis method is a method in which the static analysis
method and the dynamic analysis method are used together. Hybrid analysis
method generally consists of two stages. These stages are the first stage
where the static attributes are extracted and the second stage where the
dynamically extracted attributes are obtained (Tong & Yan, 2017). The aim
of the hybrid analysis method is to achieve correct results by avoiding the
disadvantages of the static analysis method and dynamic analysis method.

3.5. Incremental Principal Component Analysis

Principal component analysis (PCA) is a statistical method used to
reach the basic attributes that can represent the data within the data set.
Considering the multivariate distributed data set, While considering a
multivariate distributed data set, PCA aims to represent the data set with the
least data loss and the least variable. While given a set of multivariate
distributed data in the X-Y coordinate system, the PCA firstly finds the
maximum variations of the original data sets. These data points are then
projected onto a new axis called the U-V coordinate system. The direction
of the U and V axis is known as the main components. The main direction
in which the data changes is indicated by the U-axis, whose orthogonal
direction follows the V-axis. As in Figure 1, if all data points on the V axis
are very close to zero, the data set can be represented with only one U
variable and variable V can be omitted (Ng, 2017).

Figure 1. Principal component analysis (Ng, 2017)

Incremental principal component analysis (IPCA) is used instead of

PCA if the size of the data set is too large. The large data set may cause
insufficient system memory to run the algorithm. IPCA is a method
developed to overcome this memory problem. In the IPCA method, which
was first presented by Hall et al. and developed with subsequent studies,

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

36

instead of taking all training samples, it is based on the principle of dividing
the training samples into the specified number and processing all training
samples iteratively by processing this number of samples each time.
Processing these training samples by dividing them into certain parts reduces
the load on the memory and thus aims to prevent the memory deficiency
problem (Hall et al., 1998; Ozawa et al., 2006).

3.6. Deep neural network

DNN can be expressed as a neural network with input layer, output
layer and multiple hidden layers. The attributes extracted from the problem
addressed in each layer of the DNN are learned and the attributes learned in
that layer constitute the input values for the next layer. In this way, a
network structure is created in which the attributes are learned from the first
layer to the final layer (Tokmak & Küçüksille, 2019). A DNN with an input
layer, two hidden layers and an output layer is shown in Figure 2.

Figure 2. Deep neural network structure

Neurons represented by circles in the DNN structure in Figure 2

have weight value, bias and activation functions. Neurons produce an output
value by adding the bias value after the input value and the weights are

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

37

multiplied. The activation function is used to control this output value, that
is, to decide whether the neuron can be active or not.

DNN is used in many areas such as natural language processing,
image processing, speech recognition, time series analysis, malware detection
(Barros et al., 2017; Cui et al., 2018; Kolosnjaji et al., 2016; Mezgec et al.,
2019; Qiu et al., 2017; Ranjan et al., 2017; Tokmak & Küçüksille, 2019;
Zeyer et al., 2017).

4. Research Findings

In this study, static analysis method and hybrid analysis method were
applied in the light of the literature in order to detect Android malware. The
study conducted in this framework is explained under the headings of static
analysis and hybrid analysis.

4.1. Static Analysis Application

For the analysis of Android applications with static analysis method
using machine learning techniques, the attributes should be extracted and
these extracted attributes should be given as input to the machine learning
method. For this purpose, an application was developed in Java
programming language during the creation of the attribute vector, and an
application in Python programming language was developed at the stage of
dimension reduction and DNN method for the created attribute vector.

Figure 3. Static Analysis Framework

A console application named Kuzgun has been developed in Java
programming language for the purpose of analyzing Android applications.
An open source apkfile library was developed and used to parse the APK
application files (Fenton, 2018). With this application, the attributes required
for analysis were extracted from Manifest.xml, classes.dex files of all APK
files in the folder whose folder path is specified, and these attributes are

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

38

saved to the MySQL database. After the attributes obtained from all APK
files were saved in the database, the attribute vector was saved in the csv file
format by reading from the database. The saved attribute file was subjected
to IPCA dimension reduction with the Python module and the results were
obtained with the DNN Deep Learning method. Static analysis framework is
shown in Figure 3.

4.2. Data set

The data set used in the study has a large-scale structure in terms of
numerical and diversity. Malicious Android applications in the data set were
obtained from AMD (Android Malware Dataset, 2018), while harmless
applications were obtained from commercial applications collected by a
group of researchers from the Hong Kong University of Science and
Technology (AMD, 2018; Android Wake Lock Research, 2018; Liu et al.,
2016; Wei et al., 2017).

The AMD dataset contains 24.553 samples, and the disk space is
about 60 GB. The AMD data set was collected between 2010 and 2016 and
consists of malicious software included in 71 different malware families.
24.503 malware applications were used in the study due to errors such as
certificate errors, signature errors and source table errors encountered during
the parsing of malicious applications with Kuzgun software.

Non-harmful software was shared by the research group in blocks of
224 sections. The data set consists of 44,736 harmless applications. Due to
the problems in the links given during the download and the errors
encountered during the parsing of the applications with the developed
Kuzgun software, 38.044 of these examples were used in the study, and
these applications took up about 350 GB of space on the disk. The data set
created includes 62.547 applications in total.

4.3. Static analysis application attributes

Data obtained from AndroidManifest.xml file and classes.dex file
were used to detect Android malware while performing analysis with the
static analysis method. When the studies were examined, it was revealed that
the studies based on Android permissions are intense in detection
mechanisms, but the permissions alone are not sufficient, and the need to
address features such as API calls, intents, activity, etc. For this purpose, a
wide range of features are used in the study. The attributes used are
expressed with the Ö tag.

Ö1 Requested permissions: It has an important place in Android
security mechanism. Malware can gain access to the device and personal

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

39

information through the permissions they obtain and cause various damages.
A software with CAMERA permission can access the camera and take
photos and videos without the knowledge of the user. A software with
SEND_SMS permission can send SMS messages, a software with
RECEIVE_SMS permission can receive SMS messages. thanks to these
permissions, messages sent and received without the knowledge of the user
can cause high bills and unwanted subscriptions.

Ö2 Intents: They provide information exchange and data transfer
between Android application components. Starting an activity, switching
between activities or starting a service is done through Intents. Typical
example of malware-related Intent message BOOT COMPLETED is used
to trigger malicious activity immediately after restarting the smartphone.

Ö3 Android application components: They are represented in 4
different categories. These are activities, services, content providers,
broadcast receivers. Every application declares these components in their
manifest file. The names of these components can also help identify well-
known malwares. DroidKungFu2, the second variant of the DroidKungFu
malware can be identified by the broadcast receiver name
com.eguan.state.Receiver and the service name com.eguan.state.StateService.

Ö4 Restricted API calls: According to the Android Security
Architecture, an Android application must define the necessary permissions
in the manifest file to access critical API calls such as REBOOT,
DELETE_PACKAGE. It is possible that the application is using these API
calls unintentionally in the manifest file. The use of restricted API calls
without asking for permission is an event that should be followed up in
revealing harmful behavior. This may indicate that the malware uses root
exploits to overcome the limitations imposed by the Android platform (Arp
et al., 2014; Bhandari et al., 2015; Fereidooni et al., 2016).

Ö5 Suspicious API calls: Some of the API calls can access sensitive
resources or smartphone information. These types of API calls are often
seen in malware samples and can cause malicious behavior. API calls such as
getDeviceId() and getSubscriberId() used to access sensitive data,
setWifiEnabled() and execHttpRequest() used to communicate over the
network, sendTextMessage() for receiving and sending SMS,
Cipher.getInstance() used for code scrambling are seen as suspicious (Arp et
al., 2014; Seo et al., 2014).

Ö6 Used permissions: Following API calls, they are defined in the
attribute vector as both requested and actually used permissions. Analysis of
the permissions used is also a determining factor as it determines application

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

40

behavior. To determine the permissions used, the study named PScout
which maps the permissions required by API calls was used.

Ö7 Unused permissions: In developed applications, it is defined in
the manifest file, but this permission is defined as the permissions that are
not used by the developed application. In order to make it difficult to
understand the malicious behavior during malware analysis, some developers
can define extra permissions to make the behavior analysis of the malware
difficult. It is important to follow up the unused permissions for this
purpose. Unused permissions are extracted using the shared API permission
map in PScout.

Ö8 System Commands: A set of commands can be used on the
Android platform as in the Linux operating system. Thanks to these system
commands, malicious applications can run exploit code, download and
install executable files by taking root privileges (Fereidooni et al., 2016; Seo
et al., 2014) listed the most frequently used system commands in their study.
The commands in this list are based on attribute extraction.

Ö9 Network addresses: A malicious software can regularly establish
network connections in order to receive collected commands from the
device or to send data out. Therefore, all IP addresses, hostnames, and
URLs found in the application's code block are included in the attribute
group.

In order to detect malicious software, the features categorized in 9
groups were expressed as vectors during DNN analysis. For this purpose,
string values in 9 attributes sets are defined in Ö set. The Ö attributes set
consists of approximately 750.000 different attributes. As in Equation 1, Ö
can be expressed as a combination of 9 attributes groups.

 (1)

|Ö| dimensional vector space in which each dimension is 0 or 1 has
been defined by using the Ö set. An application x is mapped to the vector φ
(x) so that for each feature extracted from the x application, the
corresponding dimension is mapped as 1 and the other dimension is 0. This
mapping is shown in Equation 2 for X application.

 { }| | ()

 (2)

 function is simply shown in Equation 3.

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

41

 x, {

 f application x contains feature

 f not
 (3)

 attribute vector is shown in Equation 4.

φ x

(

…

…

…)

…

android.permission.A A

android.permission. A
…

get evice d

set ifi nabled
…

 (4)

4.4. Static analysis incremental PCA

As a result of static analysis, a data matrix of 62.547 rows and
750.000 columns was obtained. Since it would be very difficult to analyze
with such a large data set, PCA was tried to be performed at first. However,
due to the size (120 GB) of the data set, this operation could not be
performed with the existing hardware. For this reason, a machine with 32
Core and 400 GB RAM memory has been rented from Google Cloud
servers. Ubuntu operating system was installed on this machine and Python
libraries required for analysis were installed. Again, memory problems were
encountered in the PCA process in one go and it was decided to perform
IPCA. Python sklearn, h5py and numpy libraries were used during the IPCA
process. As a result of various experiments, the data could be expressed with
900 features. Explanation rate of these 900 features to the total data was
determined as 95.72%.

4.5. Static analysis deep neural network

The 900 features obtained were modeled with an established DNN.
The DNN model was created using Python and the sklearn, numpy, keras
pandas libraries were used. During the modeling, random 80% of the data is
reserved for training and 20% for testing. The established DNN model
includes one input layer, 2 hidden layers and 1 output layer. Hidden layers
consist of 6 nodes.

As a result of the established model, the accuracy rate of the training
set was 0.9974 and the accuracy rate of the test set was 0.9938. The success
criteria obtained for the training set of the model are shown in Table 1, and
the success criteria obtained for the test set are shown in Table 2.

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

42

Table 1. Static analysis training set, performance results

Precision Recall F1-score Support

Harmless application 0,9992 0,9965 0,9979 30.505

Harmful application 0,9946 0,9988 0,9967 19.532

Macro average 0,9969 0,9977 0,9973 50.037

Weighted average 0,9974 0,9974 0,9974 50.037

ROC AUC 0,9976

Accuracy 0,9974

Table 2. Static analysis test set, performance results

Precision Recall F1-score Support

Harmless application 0,9963 0,9935 0,9949 7539

Harmful application 0,9902 0,9944 0,9923 4971

Macro average 0,9932 0,9939 0,9936 12510

Weighted average 0,9939 0,9938 0,9938 12510

ROC AUC 0,9939

Accuracy 0,9938

4.6. Hybrid Analysis Application

The hybrid analysis method is a method performed as a result of
static analysis method and dynamic analysis method of Android applications.
Hybrid analysis framework is shown in Figure 4.

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

43

Figure 4. Hybrid Analysis Framework

The dynamic analysis phase of the hybrid analysis method is based

on the principle of running Android applications on a real device or a virtual
device and obtaining the necessary information and determining the
behavior of the application. Considering the damages that malicious
applications can cause on the real device, it seems more appropriate to
perform the dynamic analysis in a virtual environment isolated from the real
environment. For this purpose, the virtual Android emulator developed by

Genymotion was used to perform the
dynamic analysis part of this study. As a
result of the analysis of the applications
in the data set, Android 5.1 Lollipop API
22 version was used, aiming to run most
of the applications considering the
minimum sdk, maximum sdk, target sdk
features. The emulator used is shown in
Figure 5.

Figure 5. Android emulator

The Xposed application
framework, as shown in Figure 6, was
used to capture the methods to be
hooked while running Android

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

44

applications. Xposed Framework 89
version was used with Xposed installer
3.1.5 version.

Figure 6. Android emulator and xposed
application framework

In order to use the Xposed
application framework, the necessary
definitions for Xposed should be made in
the manifest file while developing the
Android application. As in Figure 7, the
required definitions in the manifest file in
our application are: "xposedmodule"
defined as true, "Xposedminversion"
defined as 42 and above,
"xposeddescription" is labeled as
"Dynamic Analysis Tool". When the
application is run, Xposed will be integrated into the application framework
as a module as in Figure 8 and it will be able to hook the desired methods
and functions in the developed application based on these definitions.

Figure 7. KuzgunDroid manifest file

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

45

Figure 8. KuzgunDroid module

Figure 9. Kuzgun PC application

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

46

With the Kuzgun PC application shown in Figure 9, the database is
recorded automatically by specifying the path to the folder containing
harmful and non-harmful applications by obtaining application permissions
and application components statically and obtaining hooked API names
dynamically when the application is running. Communication between the
emulator and the PC is done with ADB commands. After the application is
installed on the emulator with the adb "install" command, it is run with the
"am start" command and the application is monitored for 1 minute after the
log message is received from the system that the application is running.
While the 1 minute running time of the applications on the emulator was
determined, tests were made with some applications selected from the data
set. As a result of the experiments, it was concluded that 1 minute is
sufficient for the hook list used. In this 1 minute, log records are read with
the "logcat" command and API calls about the installed application are
obtained and recorded in the database. If an error is encountered during
installation or during operation, the registration for this application has not
been made. These errors are generally caused by changes introduced in
Android versions or by definitions made in the application. For example,
Android introduced the ART concept after the 4th version and did not
guarantee operation in applications written in previous versions. In addition,
some applications do not work in the emulator we use because some API
calls have been removed or permission levels have been changed. After
running for 1 minute without receiving an error, the application was stopped
with the "shell am force-stop" command and removed using the "pm
uninstall" command and the application information was removed with the
"pm clear" command.

4.7. Hybrid analysis data set

The data set used in the static analysis phase was also used in the
hybrid analysis phase of the study. While the applications used in the data set
are subjected to dynamic analysis, some applications have received an error
due to the updates introduced in Android versions. In order to ensure the
consistency of the analysis, the applications with errors were removed from
the data set. A total of 35.142 Android apps were analyzed without any
errors, 14.205 of which were harmful apps and 20.937 non-harmful apps.

4.8. Hybrid analysis attributes

In the hybrid analysis, API calls that are dynamically hooked as a
result of running Android applications are used. The list of APIs selected for
hooking is given in the appendices of the study. In addition, the statically

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

47

obtained permissions and Android components are used as attributes in the
dynamic analysis method.

4.9. Hybrid analysis incremental PCA

As a result of the hybrid analysis processes, a data matrix of 35.142
rows and 375.000 columns was obtained. Since it would be very difficult to
analyze with such a large data set, PCA was tried to be performed first, but
due to the size of the data set (40 GB), this process could not be performed
with the existing hardware. For this reason, a machine with 32 Core and 400
GB RAM memory has been rented from Google Cloud servers. Ubuntu
operating system was installed on this machine and Python libraries required
for analysis were installed. Again, memory problems were encountered in
the PCA process in one go and it was decided to perform IPCA. Python
sklearn, h5py and numpy libraries were used during the IPCA process. As a
result of various experiments, the data could be expressed with 5.000
features. The disclosure rate of these 5.000 attributes to the total data was
determined as 92%.

4.10. Hybrid analysis deep neural network

The obtained 5,000 features were modeled with an established
DNN. During the modeling, random 80% of the data is reserved for
training and 20% for testing. The established DNN model includes one
input layer, 2 hidden layers and 1 output layer. Hidden layers consist of 6
nodes.

As a result of the established model, the accuracy rate of the training
set was 0.9943 and the accuracy rate of the test set was 0.9694. The success
criteria obtained for the training set of the model are shown in Table 3 and
the success criteria obtained for the test set are shown in Table 4.

Table 3. Hybrid analysis training set, performance results

Precision Recall F1-score Support

Harmless application 0,9949 0,9957 0,9953 16.901

Harmful application 0,9936 0,9922 0,9929 11.212

Macro average 0,9942 0,994 0,9941 28.113

Weighted average 0,9943 0,9943 0,9943 28.113

ROC AUC 0,9939

Accuracy 0,9943

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

48

Table 4. Hybrid analysis test set, performance results

Precision Recall F1-score Support

Harmless application 0,968 0,9822 0,9751 4278

Harmful application 0,9717 0,9495 0,9605 2751

Macro average 0,9699 0,9659 0,9678 7029

Weighted average 0,9694 0,9694 0,9693 7029

ROC AUC 0,9658

Accuracy 0,9694

5. Discussion and Conclusions

In today's technology world, where Android malware threatens
users, taking security measures, detecting and preventing the damages that
malicious software can cause emerges as an important field of study. In the
study conducted within the framework of this important issue, it is aimed to
detect malicious applications targeting the Android operating system.

For the detection of Android malware, static analysis method and
the hybrid analysis method were applied; hybrid analysis method is
combined usage of static analysis and dynamic analysis methods. When
looking at other applications in the literature, a data set that can be called big
data in terms of quality and quantity was used. A detailed attribute vector
was created on this data set, which is not available in other studies.

In the application of the static analysis method, a wide range of
attributes determined in 9 different categories were extracted without
running applications by using the software called Kuzgun that developed
using Java programming language. Although one or a few of the features
extracted in 9 different categories have been used in other studies, this study
is the first in the literature in terms of using all of these features together. As
given in the data set sections of the study, the number of attribute categories
has been examined in a broad perspective for the behavior of the harmful
variants, since the obtained Android applications are very diverse and the
detection of more malicious applications is aimed. Such a wide feature
analysis has brought analysis difficulties with it. That is to say, since the
extracted feature category is numerically high, naturally the total number of
features obtained was also high. In total, the space occupied by the features
in the memory also prevented analysis with the existing hardware. For this
purpose, by using the Google Cloud server leasing method, the IPCA

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

49

method and dimension reduction method was used on attributes at first. The
data set consisting of approximately 750.000 attributes could be represented
with 900 attributes by the IPCA method. These 900 attributes reduced by
IPCA method had a representation rate of 95.72%. The attributes obtained
in the IPCA method formed the inputs of the established DNN model. The
established DNN model includes the input layer consisting of 900 nodes,
the first hidden layer consisting of 6 nodes, the second hidden layer
consisting of 6 nodes and 1 output layer. With the training carried out in the
established model, 99.74% accuracy rate, 99.73% F1 score, 99.69% certainty,
99.77% sensitivity values were obtained in the training set. In the test data
set, 99.38% accuracy rate, 99.36% F1 score, 99.32% precision, 99.39%
sensitivity values were obtained.

In the hybrid analysis part of the study, unlike the static analysis, the
behavior of the applications was taken as a basis by running applications and
the API calls hooked during execution were added to the features obtained
by static analysis. An Android application called KuzgunDroid was
developed in order to implement the method called dynamic analysis based
on the principle of running Android applications on a virtual device or a real
device, and strategically important API calls were obtained by hooking
method. At the same time, a Java application named Kuzgun has been
developed that communicates with the Android device, sends applications to
the emulator, runs, follows the results and removes the application installed
on the emulator. The Kuzgun PC application has been developed with the
ability to record these attributes in the Mysql database by combining the API
calls obtained from the Android emulator with the statically obtained
attributes, as well as the ability to read these attributes from database and
then record with required format for the DNN model. Obtaining API calls
involves a difficult and laborious process as stated in the studies in the
literature. Because after each Android application is installed on the
emulator, it must be run for a certain period of time so that the behavior of
the application can be followed. As in this study, in a study with a large
number of data, this situation requires large self-data in terms of both time
and the study platform. Due to the disadvantage of existing Android virtual
devices, Genymotion Android device was taken as a license and used in the
study. In this way, convenience was provided during the compilation and
testing of the Kuzgun applications we developed. Another disadvantage
encountered while performing dynamic analysis is the total time spent to
perform the analysis. According to the literature, each application runs for 1
minute on the emulator. Considering the number of data sets, the time spent
for analysis is approximately 25 days. Considering these difficulties, other

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

50

studies usually limit the data set in numerical terms. However, in this study,
these difficulties were ignored in order to detect more harmful application
families without considering time and other difficulty constraints. As a result
of the hybrid analysis method, 375.000 feature vectors were obtained from
35.142 applications. As with static analysis, our existing hardware was
insufficient to analyze this data. For this purpose, by using the Google Cloud
server leasing method, the IPCA method and dimension reduction method
was used primarily on the attributes. The data set consisting of
approximately 375.000 features was represented with 5.000 features by the
IPCA method. These 5.000 features reduced with the IPCA method had a
92% representation rate. The attributes obtained in the IPCA method
formed the inputs of the established DNN model. The established DNN
model includes the input layer consisting of 5.000 nodes, the first hidden
layer consisting of 6 nodes, the second hidden layer consisting of 6 nodes
and 1 output layer. With the training performed in the established model,
99.43% accuracy rate, 99.41% F1 score, 99.42% precision and 99.4%
sensitivity values were obtained in the training set. In the test data set,
96.94% accuracy, 96.78% F1 score, 96.99% precision, 96.59% sensitivity
values were obtained.

Table 5. Results of some DL studies in the literature (Alzaylaee et al., 2020)

S
tu

d
ie

s

A
n

a
ly

si
s

M
e
th

o
d

N
u

m
b

e
r

o
f

N
o

-H
a
rm

A
p

p
s

N
u

m
b

e
r

o
f

H
a
rm

fu
l

A
p

p
s

A
c
c
u

ra
c
y

P
re

c
is

io
n

S
e
n

si
ti

v
it

y

F
1-

 s
c
o

re

DroidDetector
Yuan et al. (2016)

Static 880 880 89,03 90,39 89,04 89,76

DroidDetector
Yuan et al. (2016)

Dynamic 880 880 71,25 72,59 71,25 71,92

DroidDetector
Yuan et al. (2016)

Static &
Dynamic

880 880 96,76 96,78 96,76 96,76

CNN McLaughlin
et al. (2017)

Static 863 1.260 98 99 95 97

MalDozer
Karbab et al.
(2018)

Static 37.627 20.089 - 96,29 96,29 96,29

Deep4MalDroid
Hou et al. (2016)

Dynamic 1.500 1.500 93,68 93,96 93,36 93,68

AutoDroid Hou Static 2.500 2.500 96,66 96,55 96,76 96,66

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

51

et al. (2017)
Ddefender
Alshahrani et al.
(2018)

Static &
Dynamic

2.104 2.104 95,13 - - 95,45

DL-Droid
Alzaylaee et al.
(2020)

Dynamic 19.620 11.505 94,95 94,08 97,78 95,89

DL-Droid
Alzaylaee et al.
(2020)

Static &
Dynamic

19.620 11.505 95,42 95,31 97,19 96,24

Table 6. Results obtained with Kuzgun

S
tu

d
ie

s

A
n

a
ly

si
s

M
e
th

o
d

N
u

m
b

e
r

o
f

N
o

-H
a
rm

A
p

p
s

N
u

m
b

e
r

o
f

H
a
rm

fu
l

A
p

p
s

A
c
c
u

ra
c
y

P
re

c
is

io
n

S
e
n

si
ti

vi
ty

F
1-

 s
c
o

re

KuzgunDroid
Static &
Dynamic

20.937 14.205 96,94 96,99 96,59 96,93

Kuzgun Static 38.044 24.503 99,38 99,32 99,39 99,36

Acknowledgement

 his study is derived from the r. ahmut A ’s h thesis called
‘ eep Learning ased alware etection ool evelopment for Android
 perating ystem’.

References

Aafer, Y., Du, W., & Yin, H. (2013). DroidAPIminer: Mining api-level features for
robust malware detection in android. In T. Zia, A. Zomaya, V.
Varadharajan & M. Mao (Eds.), International conference on security and privacy in
communication systems (pp. 86-103). Springer.
https://www.cs.ucr.edu/~heng/pubs/droidapiminer-securecomm13.pdf

Alshahrani, H., Mansourt, H., Thorn, S., Alshehri, A., Alzahrani, A., & Fu, H.
(2018). Ddefender: Android Application Threat Detection Using Static and
Dynamic Analysis. In 2018 IEEE International Conference on Consumer
Electronics (ICCE), Las Vegas, USA, (pp. 1-6).

https://www.cs.ucr.edu/~heng/pubs/droidapiminer-securecomm13.pdf

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

52

https://drive.google.com/file/d/1CQfDO7VwqwYzkrYrWPdsbyST8pW
qwalE/view

Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2016). Dynalog: An Automated
Dynamic Analysis Framework for Characterizing Android Applications. In
2016 International Conference on Cyber Security and Protection Of Digital Services
(Cyber Security), London, United Kingdom (pp. 1-8).
https://arxiv.org/ftp/arxiv/papers/1607/1607.08166.pdf

Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2020). DL-Droid: Deep Learning
Based Android Malware Detection Using Real Devices. Computers &
Security, 89, 101663. https://doi.org/10.1016/j.cose.2019.101663

AMD. (2018). Android Malware Dataset. Retrieved May 10, 2018 from
http://amd.arguslab.org/

Anagnostopoulos, M., Kambourakis, G., & Gritzalis, S. (2016). New Facets of
Mobile Botnet: Architecture and Evaluation. International Journal of
Information Security, 15(5), 455-473. http://doi.org/10.1007/s10207-015-
0310-0

Android Wake Lock Research. (2018). Obtain the commercial Android apps. Retrieved
May 06, 2018, from http://sccpu2.cse.ust.hk/elite/downloadApks.html

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E.
R. T. (2014). Drebin: Effective and explainable detection of android
malware in your pocket. In Network and Distributed System Security Symposium,
14 (pp. 23-26). The Internet Society. http://user.cs.uni-
goettingen.de/~krieck/docs/2014-ndss.pdf

Au, K. W. Y., Zhou, Y. F., Huang, Z., & Lie, D. (2012). Pscout: Analyzing the
Android Permission Specification. In T. Yu (Ed.), Proceedings of the 2012
ACM Conference on Computer and Communications Security, Raleigh North
Carolina, USA (pp. 217-228). Association for Computing Machinery.
http://dx.doi.org/10.1145/2382196.2382222

Barros, P., Parisi, G. I., Weber, C., & Wermter, S. (2017). Emotion-Modulated
Attention Improves Expression Recognition: A Deep Learning Model.
Neurocomputing, 253, 104-114.
http://dx.doi.org/10.1016/j.neucom.2017.01.096

Bhandari, S., Gupta, R., Laxmi, V., Gaur, M. S., Zemmari, A., & Anikeev, M.
(2015). DRACO: DRoid analyst combo an android malware analysis
framework. In O. Makarevich (Ed.), Proceedings of the 8th International
Conference on Security of Information and Networks (pp. 283-289). Association
for Computing Machinery. https://doi.org/10.1145/2799979.2800003

Bhilvare, A., & Manik, T. (2015). An Overview of Different Malware Analysis
Techniques in Android. IJSRD - International Journal for Scientific Research &
Development, 3(1), 368-372.
http://www.ijsrd.com/articles/IJSRDV3I1264.pdf

https://drive.google.com/file/d/1CQfDO7VwqwYzkrYrWPdsbyST8pWqwalE/view
https://drive.google.com/file/d/1CQfDO7VwqwYzkrYrWPdsbyST8pWqwalE/view
https://arxiv.org/ftp/arxiv/papers/1607/1607.08166.pdf
https://doi.org/10.1016/j.cose.2019.101663
http://amd.arguslab.org/
http://doi.org/10.1007/s10207-015-0310-0
http://doi.org/10.1007/s10207-015-0310-0
http://sccpu2.cse.ust.hk/elite/downloadApks.html
http://user.cs.uni-goettingen.de/~krieck/docs/2014-ndss.pdf
http://user.cs.uni-goettingen.de/~krieck/docs/2014-ndss.pdf
http://dx.doi.org/10.1145/2382196.2382222
http://dx.doi.org/10.1016/j.neucom.2017.01.096
https://doi.org/10.1145/2799979.2800003
http://www.ijsrd.com/articles/IJSRDV3I1264.pdf

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

53

Cordonsky, I., Rosenberg, I., Sicard, G., & David, E. O. (2018). DeepOrigin: End-
to-end deep learning for detection of new malware families. In 2018
International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE.
https://elidavid.com/pubs/deeporigin.pdf

Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G.-g., & Chen, J. (2018). Detection of
Malicious Code Variants Based on Deep Learning. IEEE Transactions on
Industrial Informatics, 14(7), 3187-3196.
https://doi.org/10.1109/TII.2018.2822680

Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017).
Androdialysis: Analysis of Android Intent Effectiveness in Malware
Detection. Computers & Security, 65, 121-134.
https://doi.org/10.1016/j.cose.2016.11.007

Fenton, C. (2018). GitHub. Retrieved July 6, 2018 from
https://github.com/CalebFenton/apkfile

Fereidooni, H., Conti, M., Yao, D., & Sperduti, A. (2016,). ANASTASIA: ANdroid
mAlware detection using STatic analySIs of Applications. In 2016 8th IFIP
international conference on new technologies, mobility and security (NTMS) (pp. 1-5).
IEEE. https://doi.org/10.1109/NTMS.2016.7792435

Google Play. (2018). Retrieved December 11, 2018 from
https://www.android.com/play-protect/

Hall, P. M., Marshall, A. D., & Martin, R. R. (1998). Incremental Eigenanalysis for
Classification. In J. N. Carter & M. S. Nixon (Eds.), Proceedings of British
machine vision conference (pp. 286-295). BMVC.
http://www.bmva.org/bmvc/1998/pdf/p186.pdf

Hou, S., Saas, A., Chen, L., & Ye, Y. (2016). Deep4maldroid: A deep learning
framework for android malware detection based on linux kernel system call
graphs. In 2016 IEEE/WIC/ACM International Conference on Web Intelligence
Workshops (WIW) (pp. 104-111). IEEE.
https://doi.ieeecomputersociety.org/10.1109/WIW.2016.040

Hou, S., Saas, A., Chen, L., Ye, Y., & Bourlai, T. (2017). Deep neural networks for
automatic android malware detection. In Proceedings of the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2017
(pp. 803-810). https://doi.org/10.1145/3110025.3116211

IDC. (2020). International Data Corporation. Retrieved December 2, 2020 from
https://www.idc.com/promo/smartphone-market-share

Idrees, F., Rajarajan, M., Conti, M., Chen, T. M., & Rahulamathavan, Y. (2017).
PIndroid: A novel Android Malware Detection System Using Ensemble
Learning Methods. Computers & Security, 68, 36-46.
https://doi.org/10.1016/j.cose.2017.03.011

https://elidavid.com/pubs/deeporigin.pdf
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1016/j.cose.2016.11.007
https://github.com/CalebFenton/apkfile
https://doi.org/10.1109/NTMS.2016.7792435
https://www.android.com/play-protect/
http://www.bmva.org/bmvc/1998/pdf/p186.pdf
https://doi.ieeecomputersociety.org/10.1109/WIW.2016.040
https://doi.org/10.1145/3110025.3116211
https://www.idc.com/promo/smartphone-market-share
https://doi.org/10.1016/j.cose.2017.03.011

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

54

Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2018). MalDozer:
Automatic framework for android malware detection using deep learning.
Digital Investigation, 24, 48-59. https://doi.org/10.1016/j.diin.2018.01.007

Kolosnjaji, B., Zarras, A., Webster, G., & Eckert, C. (2016). Deep learning for
classification of malware system call sequences. In B. H. Kang & Q. Bai
(Eds.), Australasian joint conference on artificial intelligence (pp. 137-149).
Springer. http://cys.ewi.tudelft.nl/~zarras/files/AI_2016_Deep.pdf

Kulkarni, K. (2018). Android Malware Detection through Permission and App Component
Analysis using Machine Learning Algorithms [Master Thesis, University of
Toledo]. OhioLINK.
http://rave.ohiolink.edu/etdc/view?acc_num=toledo1525454213460236

Liu, Y., Xu, C., Cheung, S. C., & Terragni, V. (2016, November). Understanding
and detecting wake lock misuses for android applications. In T.
Zimmerman (Ed.), Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (pp. 396-409). Association for
Computing Machinery.
http://cse.sustech.edu.cn/faculty/~liuyp/files/FSE2016.pdf

McAfee. (2018). Mobile Threat Report. Retrieved December 3, 2019 from
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-
threat-report-2018.pdf

McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S.,
... & Joon Ahn, G. (2017, March). Deep android malware detection. In G.-
J. Ahn (Ed.), Proceedings of the seventh ACM on conference on data and application
security and privacy (pp. 301-308). Association for Computing Machinery .
https://dora.dmu.ac.uk/bitstream/handle/2086/16947/Deep-Android-
Malware-Detection.pdf?sequence=1&isAllowed=y

Mezgec, S., Eftimov, T., Bucher, T., & Seljak, B. K. (2019). Mixed Deep Learning
and Natural Language Processing Method for Fake-Food Image
Recognition and Standardization to Help Automated Dietary Assessment.
Public health nutrition, 22(7), 1193-1202.
https://doi.org/10.1017/s1368980018000708

Milosevic, N., Dehghantanha, A., & Choo, K.-K. R. (2017). Machine Learning
Aided Android Malware Classification. Computers & Electrical Engineering, 61,
266-274. https://doi.org/10.1016/j.compeleceng.2017.02.013

Ng, S. (2017). Principal Component Analysis to Reduce Dimension on Digital
Image. Procedia computer science, 111, 113-119.
https://doi.org/10.1016/j.procs.2017.06.017

Ozawa, S., Pang, S., & Kasabov, N. (2006). An incremental principal component
analysis for chunk data. In 2006 IEEE International Conference on Fuzzy
Systems (pp. 2278-2285). IEEE.
http://dx.doi.org/10.1109%2FFUZZY.2006.1682016

https://doi.org/10.1016/j.diin.2018.01.007
http://cys.ewi.tudelft.nl/~zarras/files/AI_2016_Deep.pdf
http://rave.ohiolink.edu/etdc/view?acc_num=toledo1525454213460236
http://cse.sustech.edu.cn/faculty/~liuyp/files/FSE2016.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://dora.dmu.ac.uk/bitstream/handle/2086/16947/Deep-Android-Malware-Detection.pdf?sequence=1&isAllowed=y
https://dora.dmu.ac.uk/bitstream/handle/2086/16947/Deep-Android-Malware-Detection.pdf?sequence=1&isAllowed=y
https://doi.org/10.1017/s1368980018000708
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://doi.org/10.1016/j.procs.2017.06.017
http://dx.doi.org/10.1109%2FFUZZY.2006.1682016

Deep Learning Based Malware Detection Tool Development for Android …
Mahmut TOKMAK, et al.

55

Qiu, X., Ren, Y., Suganthan, P. N., & Amaratunga, G. A. (2017). Empirical Mode
Decomposition Based Ensemble Deep Learning for Load Demand Time
Series Forecasting. Applied Soft Computing, 54, 246-255.
https://doi.org/10.1016/j.asoc.2017.01.015

Ranjan, R., Patel, V. M., & Chellappa, R. (2017). Hyperface: A Deep Multi-Task
Learning Framework for Face Detection, Landmark Localization, Pose
Estimation, and Gender Recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 41(1), 121-135. IEEE.
https://arxiv.org/pdf/1603.01249.pdf

Rosmansyah, Y., & Dabarsyah, B. (2015). Malware detection on android
smartphones using API class and machine learning. In 2015 International
Conference on Electrical Engineering and Informatics (ICEEI) (pp. 294-297).
IEEE. http://dx.doi.org/10.1109%2FICEEI.2015.7352513

Seo, S.-H., Gupta, A., Sallam, A. M., Bertino, E., & Yim, K. (2014). Detecting
Mobile Malware Threats to Homeland Security Through Static Analysis.
Journal of Network and Computer Applications, 38, 43-53.
http://doi.org/10.1016/j.jnca.2013.05.008

Sugunan, K., Kumar, T. G., & Dhanya, K. (2018). Static and Dynamic Analysis for
Android Malware Detection. In E. Blessing Rajsingh, J. Veerasamy, A. H.
Alavi & J. Dinesh Peter (Eds.), Advances in Big Data and Cloud Computing
(pp. 147-155). Springer.

Tokmak, M., & Küçüksille, E. U. (2019). Detection of Windows Executable
Malware Files with Deep Learning. Bilge International Journal of Science and
Technology Research, 3(1), 67-76. http://dx.doi.org/10.30516/bilgesci.531801

Tong, F., & Yan, Z. (2017). A Hybrid Approach of Mobile Malware Detection in
Android. Journal of Parallel and Distributed computing, 103, 22-31.
https://doi.org/10.1016/j.jpdc.2016.10.012

Türker, S., & Can, A. B. (2019). Andmfc: Android malware family classification
framework. In 2019 IEEE 30th International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC Workshops) (pp. 1-6). IEEE.
http://doi.org/10.1109/pimrcw.2019.8880840

Wei, F., Li, Y., Roy, S., Ou, X., & Zhou, W. (2017). Deep ground truth analysis of
current android malware. In M. Polychronakis & M. Meier (Eds.), 14th
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (pp. 252-276). Springer, Cham.
http://www.arguslab.org/documents/tech_reports/2017/amd_fgwei_201
7.pdf

Wu, D. J., Mao, C. H., Wei, T. E., Lee, H. M., & Wu, K. P. (2012). Droidmat:
Android malware detection through manifest and api calls tracing. In 2012
Seventh Asia Joint Conference on Information Security (pp. 62-69). IEEE.
https://doi.org/10.1109/AsiaJCIS.2012.18

https://doi.org/10.1016/j.asoc.2017.01.015
https://arxiv.org/pdf/1603.01249.pdf
http://dx.doi.org/10.1109%2FICEEI.2015.7352513
http://doi.org/10.1016/j.jnca.2013.05.008
http://dx.doi.org/10.30516/bilgesci.531801
https://doi.org/10.1016/j.jpdc.2016.10.012
http://doi.org/10.1109/pimrcw.2019.8880840
http://www.arguslab.org/documents/tech_reports/2017/amd_fgwei_2017.pdf
http://www.arguslab.org/documents/tech_reports/2017/amd_fgwei_2017.pdf
https://doi.org/10.1109/AsiaJCIS.2012.18

BRAIN. Broad Research in December, 2021
Artificial Intelligence and Neuroscience Volume 12, Issue 4

56

Yang, Y., Wei, Z., Xu, Y., He, H., & Wang, W. (2018). Droidward: an Effective
Dynamic Analysis Method for Vetting Android Applications. Cluster
Computing, 21(1), 265-275. https://doi.org/10.1007/s10586-016-0703-5

Yerima, S. Y., Sezer, S., & McWilliams, G. (2014). Analysis of Bayesian
Classification-Based Approaches for Android Malware Detection. IET
Information Security, 8(1), 25-36.
https://arxiv.org/ftp/arxiv/papers/1608/1608.05812.pdf

Yuan, Z., Lu, Y., & Xue, Y. (2016). Droiddetector: Android Malware
Characterization and Detection Using Deep Learning. Tsinghua Science and
Technology, 21(1), 114-123. https://doi.org/10.1109/TST.2016.7399288

Zeyer, A., Doetsch, P., Voigtlaender, P., Schlüter, R., & Ney, H. (2017). A
comprehensive study of deep bidirectional LSTM RNNs for acoustic
modeling in speech recognition. In 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP) (pp. 2462-2466). IEEE.
https://www-i6.informatik.rwth-
aachen.de/publications/download/1030/Zeyer-ICASSP-2017.pdf

https://doi.org/10.1007/s10586-016-0703-5
https://arxiv.org/ftp/arxiv/papers/1608/1608.05812.pdf
https://doi.org/10.1109/TST.2016.7399288
https://www-i6.informatik.rwth-aachen.de/publications/download/1030/Zeyer-ICASSP-2017.pdf
https://www-i6.informatik.rwth-aachen.de/publications/download/1030/Zeyer-ICASSP-2017.pdf

