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Abstract: In today's world that called technology age, smartphones 
have become indispensable for users in many areas such as internet 
usage, social media usage, bank transactions, e-mail, as well as 
communication. The Android operating system is the most popular 
operating system that used with a rate of 85.4% in smartphones and 
tablets. Such a popular and widely used platform has become the 
target of malware. Malicious software can cause both material and 
moral damages to users. 
In this study, malwares that targeting smart phones were detected by 
using static, dynamic and hybrid analysis methods. In the static 
analysis, feature extraction was made in 9 different categories. These 
attributes are categorized under the titles of requested permissions, 
intents, Android components, Android application calls, used 
permissions, unused permissions, suspicious Android application 
calls, system commands, internet addresses. The obtained features 
were subjected to dimension reduction with principal component 
analysis and used as input to the deep neural network model. With 
the established model, 99.38% accuracy rate, 99.36% F1 score, 
99.32% precision and 99.39% sensitivity values were obtained in 
the test data set. 
In the dynamic analysis part of the study, applications were run on a 
virtual smartphone, and Android application calls with strategic 
importance were obtained by hooking. The method called hybrid 
analysis was applied by combining the dynamically obtained features 
with the static features belonging to the same applications. With the 
established model, 96.94% accuracy rate, 96.78% F1 score, 
96.99% precision and 96.59% sensitivity values were obtained in 
the test data set. 
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1. Introduction 

Nowadays, smart phones have occupied an important position in 
many users' lives and have become an indispensable part. Because the 
smartphone can be used not only as a phone, but also as a portable 
computer that provides various services, such as short message service 
(SMS), email, internet, social media, maps, GPS, banking applications, games 
(Alshahrani et al., 2018; Alzaylaee et al., 2020). 

According to the data of International Data Corporation (IDC) in 
June 2020, when examining the ratio of operating systems in the global 
smartphone market, Android’s share of the market is 85.4% and it is 
expected to be 86.3% in 2023 according to the company's estimate (IDC, 
2020). 

As an open source and widely preferred technology around the 
world, Android has become the target of malware. These malware have the 
ability to send text messages to special charge numbers, gain access to 
personal data, and even install code that can download and apply additional 
malware to the user's device without the user's consent. Malware can also be 
used to create mobile botnets (Alzaylaee et al., 2020; Anagnostopoulos et al., 
2016). In the last few years, the number of malware samples targeting the 
Android platform has increased significantly. According to a report by 
McAfee in 2018, more than 2.5 million new Android malware applications 
were detected in 2017, so the number of malware samples increased to 
nearly 25 million till 2017 (Alzaylaee et al., 2020; McAfee, 2018). 

The widespread use of Android and the increase the number of 
malicious software make it necessary to study on malware detection. In this 
context, Google Play introduced a detection mechanism called Bouncer in 
2012 to prevent the spread of malicious software. In order to detect any 
malware behavior, the Bouncer application was run in a virtual area for five 
minutes and tested to detect malicious behavior. However, it has been 
shown that this detection system can be circumvented by malware (Alzaylaee 
et al., 2020). In addition, Google announced Google Play Protect in 2017. 
Google Play Protect is a service that works constantly to keep data and apps 
safe and tries to provide mobile security by automatically scanning the 
device. At the same time, Google reported that more than 50 billion apps are 
scanned every day with this service, regardless of where they were 
downloaded (Google Play, 2018). However, in the report published by 
McAfee, they stated that the Google Play Protect service is not successful 
when tested against malwares that detected in the last 90 days (McAfee, 
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2018). As can be seen, in addition to the study of Google Play, various 
approaches and studies are still needed to combat malware. 

Various approaches have been proposed in previous studies to 
detect Android malware. These approaches are called static analysis, dynamic 
analysis or hybrid analysis. In the method called static analysis, it is based on 
the principle of analyzing the written code without running the application. 
Dynamic analysis is based on the principle of determining the behavior of 
the application by running the application in a controlled environment such 
as an emulator (Android Virtual Device- "AVD") or on a real device. The 
hybrid analysis method is based on the principle of combined usage of static 
and dynamic analysis method.  

In this study, it is aimed to detect malicious software that threatens 
Android platform. During the static analysis phase, the Java application that 
we named Kuzgun was developed and the feature extraction process was 
performed in 9 different categories. In this respect, contrary to studies such 
as Aafer et al. (2013), Au et al. (2012), Feizollah et al. (2017), Hou et al. 
(2016, 2017), Idrees et al. (2017), Rosmansyah and Dabarsyah (2015), 
Yerima et al. (2014), Yuan et al. (2016), the study has been analyzed in detail 
by using other features such as intents and system commands that can be 
obtained from Android applications, instead of focusing only on 
permissions and API calls. After the feature extraction process, size 
reduction was performed using Python and malware was detected using 
deep neural networks. As a result of the static analysis, 99.38% accuracy rate, 
99.36% F1 score, 99.32% precision and 99.39% sensitivity values were 
obtained in the test data set. 

2. Related Work 

In this section, a general literature review has been made on research 
studies for the analysis of Android malware. 

Au et al. (2012) made detailed mapping of Android permissions and 
API calls in their study called PScout. In particular, they have matched API 
calls that are not documented by Android with the necessary permissions to 
use them.  

Wu et al. (2012) developed a system called DroidMat. Firstly, they 
obtained API calls related to the requested permissions, intent messages, 
activities, services, recipients and permissions by using DroidMat. As a 
result, they made a classification with the K Nearest Neighbor algorithm.  
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Aafer et al. (2013), in their work called DroidAPIMiner, static 
analysis was performed using API calls obtained from application code 
through reverse engineering.  

Yerima et al. (2014) studied three methods of detecting Android 
malware based on data mining. By using a special application developed by 
Java, they made Bayesian classification by using data obtained from Android 
application packages by automatic reverse engineering techniques. In the 
first of the models that they perform static analyzis, they used the standard 
Android permissions obtained from Manifest files. In the second model, 
they used API calls to point out potential harmful they got from code 
features. In the third model, they made a classification by using the Android 
permissions and API calls they obtained in the first two models. 

Arp et al. (2014) developed a static analysis-based tool called 
DREBIN, which enables detecting harmful applications directly on 
smartphones. They gathered the attributes they obtained from the Android 
samples into 8 groups. The attributes that the application obtained from the 
manifest file are hardware properties, requested permissions, application 
attributes, intent filters. The attributes they obtain from the source code of 
the application are restricted API calls, used permissions, suspicious API 
calls, and network addresses. They tried to detect malicious software using 
Support Vector Machines, one of the machine learning methods.  

Rosmansyah and Dabarsyah (2015) used API calls in their study 
which they used the static analysis method. They made classification with 
Random Forest, J48, and Support Vector Machines algorithms. 

Fereidooni et al. (2016) used static analysis method in their study 
called ANASTASIA and created a malware detection system using machine 
learning techniques. They use the intents, the permissions used, system 
commands, suspicious API calls and malicious activities that obtained from 
the Android application as attributes. They obtained the best result with the 
XGBoost algorithm from the data they tested with machine learning 
techniques such as Extreme Gradient Reinforcement (XGBoost), Random 
Forest, and Support Vector Machines.  

Hou et al. (2016), in their study called Deep4MalDroid, they 
extracted the Linux kernel system calls of Android applications and used the 
weighted graph method for attribute representation. Deep Learning method 
was used in the study.  

Yuan et al. (2016), in their study called DroidDetector, they extracted 
attributes by static analysis and dynamic analysis, and then detected 
malicious applications by characterizing the attributes with Deep Learning 
method. In static analysis, they obtained Android permissions and sensitive 



BRAIN. Broad Research in                                                             December, 2021 
Artificial Intelligence and Neuroscience                                      Volume 12, Issue 4 

 

32 

API calls. In dynamic analysis, they obtained 192 attribute titles by using 
hooking methods to obtain file input/output, short message service, 
encryption and network operation attributes of application behavior 
characteristics.  

Hou et al. (2017) opened APK (Android Application Package) by 
using APKTool and extracted smali codes from dex files. They created Deep 
Neural Networks by dividing API calls obtained from Smali codes into 
blocks. Also made a comparison using deep learning methods such as Deep 
Belief Network, Stacked AutoEncoders. They found the Deep Belief 
Networks method more successful than the Stacked AutoEncoders method.  

Feizollah et al. (2017) evaluated Android intents as a distinctive 
feature to identify malicious applications. They stated that the intents 
contain semantically rich features in identifying malicious software compared 
to other well-studied features such as permissions. Bayesian Networks was 
usen in the tests.  

Idrees et al. (2017) proposed a permission and intent-based detection 
method in their study called PIndroid. They argued that Android 
permissions and intents are related, and they tested the attributes that consist 
of permissions and intents using machine-learning techniques.  

 
Milosevic et al. (2017) used 2 different machine learning methods in 

their studies. They made classification and clustering in the study where they 
used the static analysis method. They said that the results obtained using 
classification methods showed better performance than clustering methods.  

McLaughlin et al. (2017) performed a static analysis using the opcode 
arrays they extracted from the manifest file and the dex file. They trained 
their datasets with convolutional neural networks.  

Karbab et al. (2018) conducted static analysis using API calls in their 
study called MalDozer. They used the deep learning method in their 
detection mechanisms. 

Alshahrani et al. (2018), in their study named DDefender, used static 
and dynamic analysis techniques to extract features from the user's device 
and then applied a deep learning algorithm to detect malicious applications. 
Firstly, they used the dynamic analysis method to extract system calls, system 
information, network traffic, and required permissions from an audited 
application, then used the static analysis method to extract important 
features such as components of the application from the audited application.  

Yang et al. (2018) proposed a dynamic analysis method called 
DroidWard in order to characterize harmful behavior, increase the rate of 
detecting harmful applications, and extract the most relevant and effective 
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features. They gathered the attributes in 15 separate categories, and stated 9 
of them as classical methods and 6 as new. They used DroidBox while 
extracting dynamic attributes. However, they stated that the data monitored 
by DroidBox was limited, and they simulated precise API calls with 
Monkeyrunner by making changes to the source code of DroidBox. They 
use machine learning techniques such as Support Vector Machines, Decision 
Tree, and Random Forest.  

Sugunan et al. (2018) conducted a comparative study on the behavior 
of harmful and harmless applications using static and dynamic analysis. They 
extracted static attributes using APKtool and dynamic attributes using 
Droidbox APIMonitor. They stated that the combined use of static and 
dynamic analysis features and the results of their tests with methods such as 
machine learning algorithms RF, SVM, J48 and Naive Bayes were more 
successful. 

Cordonsky et al. (2018) proposed a system that uses static and 
dynamic analysis methods together. Cuckoo recorded features such as API 
calls, network activities, and string sequences obtained from malicious 
applications they analyzed in the sandbox in JSON format and used them as 
input to Deep Neural Networks.  

Alzaylaee et al. (2020) conducted a study called DL-Droid, which 
detects malicious Android applications with dynamic analysis method. They 
used the Deep Learning method in the study. They have extracted dynamic 
attributes using the application named DynaLog developed by Alzaylaee et 
al. (2016). 

Contrary to the previous studies, in the static analysis part of our 
study, the attribute category that can be effective for Android malware 
detection was evaluated in 9 different categories instead of a few specific 
categories (API, Permissions, etc.). 

In our static analysis, a total of 62.547 examples of Android harmful 
and harmless applications were used, again numerically more than other 
studies, and approximately 750.000 different features were obtained from 
these samples. The attributes are reduced to 900 by the IPCA method. In 
the hybrid analysis method, a data set was obtained by combining the 
features obtained by the static analysis method and the API calls obtained by 
the hooking method in the dynamic analysis method. When using the 
hooking method, API calls that are effective in Android malware detection 
are hooked. Again, 375.000 features were obtained by using 35.142 Android 
applications with a high numerical value and these attributes were reduced to 
5000 using IPCA. The obtained features were trained and tested with DNN 
and the results were presented. 
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3. Materials and Methods 

3.1. Android Software Analysis 

Analysis methods are analyzed in 3 categories in the literature. These 
methods are categorized as static analysis, dynamic analysis, hybrid analysis 
methods (Alshahrani et al., 2018; Bhilvare & Manik, 2015; Idrees et al., 
2017). 

3.2. Static analysis method 

The static analysis method involves analyzing the source code from 
the APK file of the applications using various reverse engineering 
techniques. In the static analysis method, applications are analyzed without 
running on an emulator or any device. APK files in compressed file format 
can be opened with compression programs such as Winzip, Winrar, and so, 
the dex, manifest and source files can be accessed. Tools such as apktool, 
dex2jar are used to analyze the dex file. For the analysis of the manifest file, 
applications such as AXML2jar, AXMLPrinter2.jar are used. Since the 
applications are not run while performing static analysis, there is no damage 
to the device. This is seen as an advantage of the static analysis method. 
However, if methods such as obfuscation are used in practice to make the 
codes difficult to understand, success cannot be achieved with the static 
analysis method, which is seen as the disadvantage of the static analysis 
method (Bhilvare & Manik, 2015; Türker & Can, 2019; Yerima et al., 2014). 

3.3. Dynamic analysis method 

Dynamic analysis method is based on the principle of running 
applications using a real device or a virtual device and following the behavior 
of the application at runtime. Since the application is analyzed by running 
the application in the dynamic analysis method, if the application is a 
harmful application, the device will be affected and damaged when it is run 
on real devices. For this reason, it is considered more appropriate to run 
applications in systems called sandbox (virtual device-emulator). Creating 
virtual, isolated systems is a costly and laborious method. At the same time, 
the dynamic analysis method takes a long time compared to the static 
analysis (Bhilvare & Manik, 2015; Kulkarni, 2018; Türker & Can, 2019). 
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3.4. Hybrid analysis method 

The hybrid analysis method is a method in which the static analysis 
method and the dynamic analysis method are used together. Hybrid analysis 
method generally consists of two stages. These stages are the first stage 
where the static attributes are extracted and the second stage where the 
dynamically extracted attributes are obtained (Tong & Yan, 2017). The aim 
of the hybrid analysis method is to achieve correct results by avoiding the 
disadvantages of the static analysis method and dynamic analysis method.  

3.5. Incremental Principal Component Analysis 

Principal component analysis (PCA) is a statistical method used to 
reach the basic attributes that can represent the data within the data set. 
Considering the multivariate distributed data set, While considering a 
multivariate distributed data set, PCA aims to represent the data set with the 
least data loss and the least variable. While given a set of multivariate 
distributed data in the X-Y coordinate system, the PCA firstly finds the 
maximum variations of the original data sets. These data points are then 
projected onto a new axis called the U-V coordinate system. The direction 
of the U and V axis is known as the main components. The main direction 
in which the data changes is indicated by the U-axis, whose orthogonal 
direction follows the V-axis. As in Figure 1, if all data points on the V axis 
are very close to zero, the data set can be represented with only one U 
variable and variable V can be omitted (Ng, 2017). 

 

 
 

Figure 1. Principal component analysis (Ng, 2017) 

 
Incremental principal component analysis (IPCA) is used instead of 

PCA if the size of the data set is too large. The large data set may cause 
insufficient system memory to run the algorithm. IPCA is a method 
developed to overcome this memory problem. In the IPCA method, which 
was first presented by Hall et al. and developed with subsequent studies, 
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instead of taking all training samples, it is based on the principle of dividing 
the training samples into the specified number and processing all training 
samples iteratively by processing this number of samples each time. 
Processing these training samples by dividing them into certain parts reduces 
the load on the memory and thus aims to prevent the memory deficiency 
problem (Hall et al., 1998; Ozawa et al., 2006). 

3.6. Deep neural network 

DNN can be expressed as a neural network with input layer, output 
layer and multiple hidden layers. The attributes extracted from the problem 
addressed in each layer of the DNN are learned and the attributes learned in 
that layer constitute the input values for the next layer. In this way, a 
network structure is created in which the attributes are learned from the first 
layer to the final layer (Tokmak & Küçüksille, 2019). A DNN with an input 
layer, two hidden layers and an output layer is shown in Figure 2. 

 

 
 

Figure 2. Deep neural network structure 

 
Neurons represented by circles in the DNN structure in Figure 2 

have weight value, bias and activation functions. Neurons produce an output 
value by adding the bias value after the input value and the weights are 
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multiplied. The activation function is used to control this output value, that 
is, to decide whether the neuron can be active or not.  

DNN is used in many areas such as natural language processing, 
image processing, speech recognition, time series analysis, malware detection 
(Barros et al., 2017; Cui et al., 2018; Kolosnjaji et al., 2016; Mezgec et al., 
2019; Qiu et al., 2017; Ranjan et al., 2017; Tokmak & Küçüksille, 2019; 
Zeyer et al., 2017). 

4. Research Findings 

In this study, static analysis method and hybrid analysis method were 
applied in the light of the literature in order to detect Android malware. The 
study conducted in this framework is explained under the headings of static 
analysis and hybrid analysis. 

4.1. Static Analysis Application 

For the analysis of Android applications with static analysis method 
using machine learning techniques, the attributes should be extracted and 
these extracted attributes should be given as input to the machine learning 
method. For this purpose, an application was developed in Java 
programming language during the creation of the attribute vector, and an 
application in Python programming language was developed at the stage of 
dimension reduction and DNN method for the created attribute vector. 

 
 

Figure 3. Static Analysis Framework 
 

A console application named Kuzgun has been developed in Java 
programming language for the purpose of analyzing Android applications. 
An open source apkfile library was developed and used to parse the APK 
application files (Fenton, 2018). With this application, the attributes required 
for analysis were extracted from Manifest.xml, classes.dex files of all APK 
files in the folder whose folder path is specified, and these attributes are 
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saved to the MySQL database. After the attributes obtained from all APK 
files were saved in the database, the attribute vector was saved in the csv file 
format by reading from the database. The saved attribute file was subjected 
to IPCA dimension reduction with the Python module and the results were 
obtained with the DNN Deep Learning method. Static analysis framework is 
shown in Figure 3. 

4.2. Data set 

The data set used in the study has a large-scale structure in terms of 
numerical and diversity. Malicious Android applications in the data set were 
obtained from AMD (Android Malware Dataset, 2018), while harmless 
applications were obtained from commercial applications collected by a 
group of researchers from the Hong Kong University of Science and 
Technology (AMD, 2018; Android Wake Lock Research, 2018; Liu et al., 
2016; Wei et al., 2017).  

The AMD dataset contains 24.553 samples, and the disk space is 
about 60 GB. The AMD data set was collected between 2010 and 2016 and 
consists of malicious software included in 71 different malware families. 
24.503 malware applications were used in the study due to errors such as 
certificate errors, signature errors and source table errors encountered during 
the parsing of malicious applications with Kuzgun software.  

Non-harmful software was shared by the research group in blocks of 
224 sections. The data set consists of 44,736 harmless applications. Due to 
the problems in the links given during the download and the errors 
encountered during the parsing of the applications with the developed 
Kuzgun software, 38.044 of these examples were used in the study, and 
these applications took up about 350 GB of space on the disk. The data set 
created includes 62.547 applications in total. 

4.3. Static analysis application attributes 

Data obtained from AndroidManifest.xml file and classes.dex file 
were used to detect Android malware while performing analysis with the 
static analysis method. When the studies were examined, it was revealed that 
the studies based on Android permissions are intense in detection 
mechanisms, but the permissions alone are not sufficient, and the need to 
address features such as API calls, intents, activity, etc. For this purpose, a 
wide range of features are used in the study. The attributes used are 
expressed with the Ö tag.  

Ö1 Requested permissions: It has an important place in Android 
security mechanism. Malware can gain access to the device and personal 
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information through the permissions they obtain and cause various damages. 
A software with CAMERA permission can access the camera and take 
photos and videos without the knowledge of the user. A software with 
SEND_SMS permission can send SMS messages, a software with 
RECEIVE_SMS permission can receive SMS messages. thanks to these 
permissions, messages sent and received without the knowledge of the user 
can cause high bills and unwanted subscriptions.  

Ö2 Intents: They provide information exchange and data transfer 
between Android application components. Starting an activity, switching 
between activities or starting a service is done through Intents. Typical 
example of malware-related Intent message BOOT COMPLETED is used 
to trigger malicious activity immediately after restarting the smartphone. 

Ö3 Android application components: They are represented in 4 
different categories. These are activities, services, content providers, 
broadcast receivers. Every application declares these components in their 
manifest file. The names of these components can also help identify well-
known malwares. DroidKungFu2, the second variant of the DroidKungFu 
malware can be identified by the broadcast receiver name 
com.eguan.state.Receiver and the service name com.eguan.state.StateService.  

Ö4 Restricted API calls: According to the Android Security 
Architecture, an Android application must define the necessary permissions 
in the manifest file to access critical API calls such as REBOOT, 
DELETE_PACKAGE. It is possible that the application is using these API 
calls unintentionally in the manifest file. The use of restricted API calls 
without asking for permission is an event that should be followed up in 
revealing harmful behavior. This may indicate that the malware uses root 
exploits to overcome the limitations imposed by the Android platform (Arp 
et al., 2014; Bhandari et al., 2015; Fereidooni et al., 2016). 

Ö5 Suspicious API calls: Some of the API calls can access sensitive 
resources or smartphone information. These types of API calls are often 
seen in malware samples and can cause malicious behavior. API calls such as 
getDeviceId() and getSubscriberId() used to access sensitive data, 
setWifiEnabled() and execHttpRequest() used to communicate over the 
network, sendTextMessage() for receiving and sending SMS, 
Cipher.getInstance() used for code scrambling are seen as suspicious (Arp et 
al., 2014; Seo et al., 2014). 

Ö6 Used permissions: Following API calls, they are defined in the 
attribute vector as both requested and actually used permissions. Analysis of 
the permissions used is also a determining factor as it determines application 
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behavior. To determine the permissions used, the study named PScout 
which maps the permissions required by API calls was used. 

Ö7 Unused permissions: In developed applications, it is defined in 
the manifest file, but this permission is defined as the permissions that are 
not used by the developed application. In order to make it difficult to 
understand the malicious behavior during malware analysis, some developers 
can define extra permissions to make the behavior analysis of the malware 
difficult. It is important to follow up the unused permissions for this 
purpose. Unused permissions are extracted using the shared API permission 
map in PScout. 

Ö8 System Commands: A set of commands can be used on the 
Android platform as in the Linux operating system. Thanks to these system 
commands, malicious applications can run exploit code, download and 
install executable files by taking root privileges (Fereidooni et al., 2016; Seo 
et al., 2014) listed the most frequently used system commands in their study. 
The commands in this list are based on attribute extraction.  

Ö9 Network addresses: A malicious software can regularly establish 
network connections in order to receive collected commands from the 
device or to send data out. Therefore, all IP addresses, hostnames, and 
URLs found in the application's code block are included in the attribute 
group.  

In order to detect malicious software, the features categorized in 9 
groups were expressed as vectors during DNN analysis. For this purpose, 
string values in 9 attributes sets are defined in Ö set. The Ö attributes set 
consists of approximately 750.000 different attributes. As in Equation 1, Ö 
can be expressed as a combination of 9 attributes groups. 

 

                  (1) 
 

|Ö| dimensional vector space in which each dimension is 0 or 1 has 
been defined by using the Ö set. An application x is mapped to the vector φ 
(x) so that for each feature extracted from the x application, the 
corresponding dimension is mapped as 1 and the other dimension is 0. This 
mapping is shown in Equation 2 for X application.  
 

    {   }| |      (      )
   

     (2) 

 

       function is simply shown in Equation 3. 
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4.4. Static analysis incremental PCA 

As a result of static analysis, a data matrix of 62.547 rows and 
750.000 columns was obtained. Since it would be very difficult to analyze 
with such a large data set, PCA was tried to be performed at first. However, 
due to the size (120 GB) of the data set, this operation could not be 
performed with the existing hardware. For this reason, a machine with 32 
Core and 400 GB RAM memory has been rented from Google Cloud 
servers. Ubuntu operating system was installed on this machine and Python 
libraries required for analysis were installed. Again, memory problems were 
encountered in the PCA process in one go and it was decided to perform 
IPCA. Python sklearn, h5py and numpy libraries were used during the IPCA 
process. As a result of various experiments, the data could be expressed with 
900 features. Explanation rate of these 900 features to the total data was 
determined as 95.72%. 

4.5. Static analysis deep neural network 

The 900 features obtained were modeled with an established DNN. 
The DNN model was created using Python and the sklearn, numpy, keras 
pandas libraries were used. During the modeling, random 80% of the data is 
reserved for training and 20% for testing. The established DNN model 
includes one input layer, 2 hidden layers and 1 output layer. Hidden layers 
consist of 6 nodes.  

As a result of the established model, the accuracy rate of the training 
set was 0.9974 and the accuracy rate of the test set was 0.9938. The success 
criteria obtained for the training set of the model are shown in Table 1, and 
the success criteria obtained for the test set are shown in Table 2. 
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Table 1. Static analysis training set, performance results 

 

 

Precision Recall F1-score Support 

Harmless application 0,9992 0,9965 0,9979 30.505 

Harmful application 0,9946 0,9988 0,9967 19.532 

Macro average 0,9969 0,9977 0,9973 50.037 

Weighted average 0,9974 0,9974 0,9974 50.037 

ROC AUC    0,9976 

Accuracy    0,9974 

 
 

Table 2. Static analysis test set, performance results 

 

 

Precision Recall F1-score Support 

Harmless application 0,9963 0,9935 0,9949 7539 

Harmful application 0,9902 0,9944 0,9923 4971 

Macro average 0,9932 0,9939 0,9936 12510 

Weighted average 0,9939 0,9938 0,9938 12510 

ROC AUC    0,9939 

Accuracy    0,9938 

 

4.6. Hybrid Analysis Application 

The hybrid analysis method is a method performed as a result of 
static analysis method and dynamic analysis method of Android applications. 
Hybrid analysis framework is shown in Figure 4. 
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Figure 4. Hybrid Analysis Framework 

 
The dynamic analysis phase of the hybrid analysis method is based 

on the principle of running Android applications on a real device or a virtual 
device and obtaining the necessary information and determining the 
behavior of the application. Considering the damages that malicious 
applications can cause on the real device, it seems more appropriate to 
perform the dynamic analysis in a virtual environment isolated from the real 
environment. For this purpose, the virtual Android emulator developed by 

Genymotion was used to perform the 
dynamic analysis part of this study. As a 
result of the analysis of the applications 
in the data set, Android 5.1 Lollipop API 
22 version was used, aiming to run most 
of the applications considering the 
minimum sdk, maximum sdk, target sdk 
features. The emulator used is shown in 
Figure 5. 

 
 

 

Figure 5. Android emulator 
 

The Xposed application 
framework, as shown in Figure 6, was 
used to capture the methods to be 
hooked while running Android 
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applications. Xposed Framework 89 
version was used with Xposed installer 
3.1.5 version.  

 

Figure 6. Android emulator and xposed 
application framework 

 

In order to use the Xposed 
application framework, the necessary 
definitions for Xposed should be made in 
the manifest file while developing the 
Android application. As in Figure 7, the 
required definitions in the manifest file in 
our application are: "xposedmodule" 
defined as true, "Xposedminversion" 
defined as 42 and above, 
"xposeddescription" is labeled as 
"Dynamic Analysis Tool". When the 
application is run, Xposed will be integrated into the application framework 
as a module as in Figure 8 and it will be able to hook the desired methods 
and functions in the developed application based on these definitions. 

 

 
Figure 7. KuzgunDroid manifest file 
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Figure 8. KuzgunDroid module 

 

 
 

Figure 9. Kuzgun PC application 
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With the Kuzgun PC application shown in Figure 9, the database is 
recorded automatically by specifying the path to the folder containing 
harmful and non-harmful applications by obtaining application permissions 
and application components statically and obtaining hooked API names 
dynamically when the application is running. Communication between the 
emulator and the PC is done with ADB commands. After the application is 
installed on the emulator with the adb "install" command, it is run with the 
"am start" command and the application is monitored for 1 minute after the 
log message is received from the system that the application is running. 
While the 1 minute running time of the applications on the emulator was 
determined, tests were made with some applications selected from the data 
set. As a result of the experiments, it was concluded that 1 minute is 
sufficient for the hook list used. In this 1 minute, log records are read with 
the "logcat" command and API calls about the installed application are 
obtained and recorded in the database. If an error is encountered during 
installation or during operation, the registration for this application has not 
been made. These errors are generally caused by changes introduced in 
Android versions or by definitions made in the application. For example, 
Android introduced the ART concept after the 4th version and did not 
guarantee operation in applications written in previous versions. In addition, 
some applications do not work in the emulator we use because some API 
calls have been removed or permission levels have been changed. After 
running for 1 minute without receiving an error, the application was stopped 
with the "shell am force-stop" command and removed using the "pm 
uninstall" command and the application information was removed with the 
"pm clear" command.  

4.7. Hybrid analysis data set 

The data set used in the static analysis phase was also used in the 
hybrid analysis phase of the study. While the applications used in the data set 
are subjected to dynamic analysis, some applications have received an error 
due to the updates introduced in Android versions. In order to ensure the 
consistency of the analysis, the applications with errors were removed from 
the data set. A total of 35.142 Android apps were analyzed without any 
errors, 14.205 of which were harmful apps and 20.937 non-harmful apps.  

4.8. Hybrid analysis attributes 

In the hybrid analysis, API calls that are dynamically hooked as a 
result of running Android applications are used. The list of APIs selected for 
hooking is given in the appendices of the study. In addition, the statically 
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obtained permissions and Android components are used as attributes in the 
dynamic analysis method. 

4.9. Hybrid analysis incremental PCA 

As a result of the hybrid analysis processes, a data matrix of 35.142 
rows and 375.000 columns was obtained. Since it would be very difficult to 
analyze with such a large data set, PCA was tried to be performed first, but 
due to the size of the data set (40 GB), this process could not be performed 
with the existing hardware. For this reason, a machine with 32 Core and 400 
GB RAM memory has been rented from Google Cloud servers. Ubuntu 
operating system was installed on this machine and Python libraries required 
for analysis were installed. Again, memory problems were encountered in 
the PCA process in one go and it was decided to perform IPCA. Python 
sklearn, h5py and numpy libraries were used during the IPCA process. As a 
result of various experiments, the data could be expressed with 5.000 
features. The disclosure rate of these 5.000 attributes to the total data was 
determined as 92%. 

4.10. Hybrid analysis deep neural network 

The obtained 5,000 features were modeled with an established 
DNN. During the modeling, random 80% of the data is reserved for 
training and 20% for testing. The established DNN model includes one 
input layer, 2 hidden layers and 1 output layer. Hidden layers consist of 6 
nodes.  

As a result of the established model, the accuracy rate of the training 
set was 0.9943 and the accuracy rate of the test set was 0.9694. The success 
criteria obtained for the training set of the model are shown in Table 3 and 
the success criteria obtained for the test set are shown in Table 4.   

 
Table 3. Hybrid analysis training set, performance results 

 

 

Precision Recall F1-score Support 

Harmless application 0,9949 0,9957 0,9953 16.901 

Harmful application 0,9936 0,9922 0,9929 11.212 

Macro average 0,9942 0,994 0,9941 28.113 

Weighted average 0,9943 0,9943 0,9943 28.113 

ROC AUC    0,9939 

Accuracy    0,9943 
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Table 4. Hybrid analysis test set, performance results 
 

 

Precision Recall F1-score Support 

Harmless application 0,968 0,9822 0,9751 4278 

Harmful application 0,9717 0,9495 0,9605 2751 

Macro average 0,9699 0,9659 0,9678 7029 

Weighted average 0,9694 0,9694 0,9693 7029 

ROC AUC    0,9658 

Accuracy    0,9694 

 

5. Discussion and Conclusions 

In today's technology world, where Android malware threatens 
users, taking security measures, detecting and preventing the damages that 
malicious software can cause emerges as an important field of study. In the 
study conducted within the framework of this important issue, it is aimed to 
detect malicious applications targeting the Android operating system.  

For the detection of Android malware, static analysis method and 
the hybrid analysis method were applied; hybrid analysis method is 
combined usage of static analysis and dynamic analysis methods. When 
looking at other applications in the literature, a data set that can be called big 
data in terms of quality and quantity was used. A detailed attribute vector 
was created on this data set, which is not available in other studies.  

In the application of the static analysis method, a wide range of 
attributes determined in 9 different categories were extracted without 
running applications by using the software called Kuzgun that developed 
using Java programming language. Although one or a few of the features 
extracted in 9 different categories have been used in other studies, this study 
is the first in the literature in terms of using all of these features together. As 
given in the data set sections of the study, the number of attribute categories 
has been examined in a broad perspective for the behavior of the harmful 
variants, since the obtained Android applications are very diverse and the 
detection of more malicious applications is aimed. Such a wide feature 
analysis has brought analysis difficulties with it. That is to say, since the 
extracted feature category is numerically high, naturally the total number of 
features obtained was also high. In total, the space occupied by the features 
in the memory also prevented analysis with the existing hardware. For this 
purpose, by using the Google Cloud server leasing method, the IPCA 



Deep Learning Based Malware Detection Tool Development for Android … 
Mahmut TOKMAK, et al. 

 

49 

method and dimension reduction method was used on attributes at first. The 
data set consisting of approximately 750.000 attributes could be represented 
with 900 attributes by the IPCA method. These 900 attributes reduced by 
IPCA method had a representation rate of 95.72%. The attributes obtained 
in the IPCA method formed the inputs of the established DNN model. The 
established DNN model includes the input layer consisting of 900 nodes, 
the first hidden layer consisting of 6 nodes, the second hidden layer 
consisting of 6 nodes and 1 output layer. With the training carried out in the 
established model, 99.74% accuracy rate, 99.73% F1 score, 99.69% certainty, 
99.77% sensitivity values were obtained in the training set. In the test data 
set, 99.38% accuracy rate, 99.36% F1 score, 99.32% precision, 99.39% 
sensitivity values were obtained. 

In the hybrid analysis part of the study, unlike the static analysis, the 
behavior of the applications was taken as a basis by running applications and 
the API calls hooked during execution were added to the features obtained 
by static analysis. An Android application called KuzgunDroid was 
developed in order to implement the method called dynamic analysis based 
on the principle of running Android applications on a virtual device or a real 
device, and strategically important API calls were obtained by hooking 
method. At the same time, a Java application named Kuzgun has been 
developed that communicates with the Android device, sends applications to 
the emulator, runs, follows the results and removes the application installed 
on the emulator. The Kuzgun PC application has been developed with the 
ability to record these attributes in the Mysql database by combining the API 
calls obtained from the Android emulator with the statically obtained 
attributes, as well as the ability to read these attributes from database and 
then record with required format for the DNN model. Obtaining API calls 
involves a difficult and laborious process as stated in the studies in the 
literature. Because after each Android application is installed on the 
emulator, it must be run for a certain period of time so that the behavior of 
the application can be followed. As in this study, in a study with a large 
number of data, this situation requires large self-data in terms of both time 
and the study platform. Due to the disadvantage of existing Android virtual 
devices, Genymotion Android device was taken as a license and used in the 
study. In this way, convenience was provided during the compilation and 
testing of the Kuzgun applications we developed. Another disadvantage 
encountered while performing dynamic analysis is the total time spent to 
perform the analysis. According to the literature, each application runs for 1 
minute on the emulator. Considering the number of data sets, the time spent 
for analysis is approximately 25 days. Considering these difficulties, other 
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studies usually limit the data set in numerical terms. However, in this study, 
these difficulties were ignored in order to detect more harmful application 
families without considering time and other difficulty constraints. As a result 
of the hybrid analysis method, 375.000 feature vectors were obtained from 
35.142 applications. As with static analysis, our existing hardware was 
insufficient to analyze this data. For this purpose, by using the Google Cloud 
server leasing method, the IPCA method and dimension reduction method 
was used primarily on the attributes. The data set consisting of 
approximately 375.000 features was represented with 5.000 features by the 
IPCA method. These 5.000 features reduced with the IPCA method had a 
92% representation rate. The attributes obtained in the IPCA method 
formed the inputs of the established DNN model. The established DNN 
model includes the input layer consisting of 5.000 nodes, the first hidden 
layer consisting of 6 nodes, the second hidden layer consisting of 6 nodes 
and 1 output layer. With the training performed in the established model, 
99.43% accuracy rate, 99.41% F1 score, 99.42% precision and 99.4% 
sensitivity values were obtained in the training set. In the test data set, 
96.94% accuracy, 96.78% F1 score, 96.99% precision, 96.59% sensitivity 
values were obtained. 

 

Table 5. Results of some DL studies in the literature (Alzaylaee et al., 2020) 
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DroidDetector 
Yuan et al. (2016) 

Static 880 880 89,03 90,39 89,04 89,76 

DroidDetector 
Yuan et al. (2016) 

Dynamic 880 880 71,25 72,59 71,25 71,92 

DroidDetector 
Yuan et al. (2016) 

Static & 
Dynamic 

880 880 96,76 96,78 96,76 96,76 

CNN McLaughlin 
et al. (2017) 

Static 863 1.260 98 99 95 97 

MalDozer 
Karbab et al. 
(2018) 

Static 37.627 20.089 - 96,29 96,29 96,29 

Deep4MalDroid 
Hou et al. (2016) 

Dynamic 1.500 1.500 93,68 93,96 93,36 93,68 

AutoDroid Hou Static 2.500 2.500 96,66 96,55 96,76 96,66 
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et al. (2017) 
Ddefender 
Alshahrani et al. 
(2018) 

Static & 
Dynamic 

2.104 2.104 95,13 - - 95,45 

DL-Droid 
Alzaylaee et al. 
(2020) 

Dynamic 19.620 11.505 94,95 94,08 97,78 95,89 

DL-Droid 
Alzaylaee et al. 
(2020) 

Static & 
Dynamic 

19.620 11.505 95,42 95,31 97,19 96,24 

 

Table 6. Results obtained with Kuzgun 
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KuzgunDroid 
Static & 
Dynamic 

20.937 14.205 96,94 96,99 96,59 96,93 

Kuzgun Static 38.044 24.503 99,38 99,32 99,39 99,36 
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