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Abstract: The primary objective of this research manuscript is to 
design, develop, and evaluate an artificial neural network architecture 
that is capable of emulating and predicting the dynamic interaction 
patterns manifested during the encounter between two distinct entities. 
This endeavor is primarily centered around computational learning and 
understanding of the associated physical impulses that emerge when 
these objects engage in contact, elucidating the complex physical 
interplays therein. This process incorporates the strategic use of an 
extant physics engine to generate the requisite training datasets, thereby 
providing a robust and comprehensive foundation for neural network 
training and subsequent performance evaluation. In order to scrutinize 
and substantiate the effectiveness of the proposed artificial neural 
network model, this investigation also embarks on a rigorous 
comparative analysis. The principal focus of this comparison is to 
juxtapose the results rendered by the trained neural network vis-a-vis 
those produced by the original physics engine. The goal here is to gauge 
the precision, reliability, and practicality of the trained model in 
accurately predicting the physical impulses, thereby demonstrating its 
potential to stand as a feasible alternative to the traditional physics 
engine. Despite the initial success of this endeavor, it is worth noting 
that the proposed neural network system managed to achieve a range of 
prediction rates, oscillating between 60% and 91%, contingent upon 
the specific test scenario. While these preliminary results are promising, 
they elucidate the necessity for further optimization and refinement to 
bolster the model's performance and prediction accuracy. 
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1. Introduction 

This research paper critically examines the computational and 
economic demands associated with the creation and utilization of 
conventional simulation mechanisms. These traditional simulators 
necessitate considerable technical resources and extended development 
timelines. Additionally, these platforms must undergo continuous updates 
throughout their lifecycle to optimize their precision, often within the 
constraints of a restricted range of operational parameters. Given these 
circumstances, the attractiveness of alternative methodologies for physical 
simulation, specifically those premised on data-centric techniques, is brought 
into focus. 

Data-based methods for physical simulation offer considerable 
advantages for interactive applications. These methodologies are 
characterized by their unique ability to balance precomputation and memory 
footprints, consequently enhancing operational performance. This 
compromise results in systems that not only demonstrate superior run-time 
efficiency, but also preserve the accuracy and fidelity of the simulation. 

Moreover, the advent of trained physics engines presents a 
tantalizing prospect for improved simulation outcomes. These intelligent 
systems can be configured to ingest real-world measurement data as input. 
This allows the engines to harmoniously merge the strengths of both real-
time simulation engines, which prioritize rapid simulations albeit without 
verisimilitude, and high-accuracy simulation engines, which emphasize 
accurate, real-world-like simulations but often require substantial 
computational resources. Consequently, trained physics engines embody a 
fusion of these two paradigms, yielding a more efficient, effective, and 
realistic simulation. 

Existing physics engines, as referenced in works Millington (2007), 
Todorov et al. (2012), and Tompson et al. (2017), implement various 
equations of motion or a synergy thereof to emulate the behaviors of objects 
characterized by specific parameters such as mass and volume, particularly in 
scenarios involving contact dynamics. Prominent among these equations are 
Lagrange multiplier (Bertsekas, 2014; Solsvik & Jakobsen, 2015), and 
Impulse dynamics (Bender, 2007), among others. Broadly, these engines can 
be categorized into two types: high-accuracy physics engines and real-time 
physics engines (Wikipedia, 2021). 

High-accuracy physics engines employ complexly formulated 
equations of motion to achieve the most authentic environmental simulation 



Broad Research in 
Artificial Intelligence and Neuroscience 

June 2023 
Volume 14, Issue 2 

 

78 

possible. However, this sophistication comes with significant computational 
requirements. The computational intensity is not only inherent in the engine 
but also extends to the systems on which the simulations are deployed, thus 
imposing considerable performance demands. 

Conversely, real-time physics engines are known for their speed 
(Wikipedia, 2021) and are commonly employed in applications such as video 
games and film production, where high frame rates per second are critical 
for an enhanced user experience. While these engines provide quick 
simulations, their accuracy may be compromised as they predominantly rely 
on predictive mechanisms rather than thorough calculations. 

The integration of neural networks and machine learning 
methodologies into the domain of physics simulation presents an intuitively 
compelling proposition. Specifically, once a neural network is adequately 
trained, it can deliver almost instantaneous predictions, a feature that is 
particularly enhanced when deployed on parallel computing systems such as 
Graphical Processing Units (GPUs) (Gajurel et al., 2020). This potent 
combination of speed and parallelism makes neural networks an appealing 
tool for real-time physics simulations. 

In the context of this investigation, we leverage a streamlined variant 
of the Box2D physics engine (Catto, 2021). Box2D is a straightforward rigid 
body engine that operates exclusively with two-dimensional geometric 
objects, specifically rectangles and circles. It utilizes impulse dynamics as its 
foundational equations of motion, rendering it suitable for our research 
context. This lean version of Box2D comprises three integral modules: 
Common, Collision, and Dynamics. 

• The Common module encapsulates functionality pertaining to 
memory allocation, mathematical operations, and operational 
settings. As a foundational layer of the engine, it plays a vital role 
in the smooth operation and efficiency of the entire system. 

• The Collision module, on the other hand, is responsible for shape 
definition, broad-phase collision determination, and execution of 
collision functions or queries. This component ensures that the 
interaction of objects within the simulated environment is 
calculated accurately and realistically. 

• Lastly, the Dynamics module imparts the core physics simulation 
capabilities to the engine. It is here that the simulated world, 
bodies, fixtures, and joints are established, setting the stage for the 
detailed and complex physics simulations that the engine is 
capable of. The interplay of these three modules provides the 
system with a broad suite of functionalities, from basic 



Can Neural Networks Enhance Physics Simulations? 
Cristian Dumitru AVATAVULUI, Rareş-Cristian IFRIM et Mihai VONCILĂ 

 

79 

mathematical operations to intricate simulations of object 
interactions. 

The operational loop of the Box2D-Lite physics engine, which 
encapsulates the key operational stages and sequence of the engine, is 
graphically represented in Figure 1. This schematic provides a detailed and 
comprehensive overview of the engine's operational workflow, enabling a 
more nuanced understanding of the computational and operational 
intricacies inherent in the system. 
 
 
 
 
 
 

Figure 1. Illustration of the Operational Loop in the Box2D-Lite Physics Engine 
Source: Author's own conception 

The collision detection subsystem of the Box2D-Lite physics engine 
operates in two distinct yet complementary phases: the Broad Phase and the 
Narrow Phase (Catto, 2021). Each phase is characterized by its specific 
functionalities and processes, with the output of one phase feeding into the 
next, creating a streamlined and efficient collision detection pipeline. 

During the Broad Phase, the engine performs a preliminary scan of 
the simulated environment, identifying pairs of objects whose bounding 
boxes overlap. Each overlapping pair is earmarked for further analysis in the 
ensuing Narrow Phase. To facilitate this process, the engine constructs an 
“arbiter” - a special object or data structure - for every pair identified in the 
Broad Phase. These arbiters serve as placeholders for the pairs of 
overlapping boxes, encapsulating relevant information about the pair and 
preparing the system for a more detailed analysis of the collision. 

Upon creation or update of an arbiter, the engine transitions to the 
Narrow Phase of collision detection. Here, the collision analysis is more 
granular and detailed, with the focus shifted from broad overlap to specific 
points of contact and their respective physical implications. Specifically, the 
Narrow Phase collision operation involves the identification of the normal 
vector that corresponds to the minimum penetration between the objects in 
the pair. This vector provides valuable insights into the nature of the 
contact, the potential forces involved, and the resultant motion of the 
objects. The operation and outcomes of the Narrow Phase collision 
detection are visually represented in Figure 2. 

collisio
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Through the combination of Broad and Narrow Phase collision 
detection, the Box2D-Lite physics engine ensures that collisions are detected 
promptly and accurately, thereby enhancing the realism and fidelity of the 
simulations it produces. 

 
 
 

    n 
 
 
 
 

Figure 2. Detailed Visualization of the Narrow Phase Collision Detection Mechanism 
Focusing on Box-against-Box Interactions  

Source: Author's own conception 

Following the precise detection of collisions, the engine proceeds to 
compute the effects of these interactions on the involved bodies. This 
constitutes the force application step where the engine employs Newton's 
second law of motion to calculate changes in both linear and angular velocities 
of each object present in the scene. This law stipulates that the rate of change 
in momentum of an object is directly proportional to the net force applied and 
occurs in the direction of this force. By applying this law, the engine 
determines the subsequent motion trajectory of each object post-collision. 

Subsequently, the system advances to the 'constraint-solving' phase. 
In this critical step, the engine derives the impulse exchanged between the 
two colliding objects, again harnessing Newton's second and third laws of 
motion. Here, the laws are applied in the context of the relative velocity at 
the point of contact between the two bodies. The outcome of this process is 
the determination of both the magnitude and direction of the impulse 
exerted during the collision. This information is then utilized to calculate the 
instantaneous change in the velocities of the colliding objects, adhering to 
the principles of impulse-momentum theory (Catto, 2009). 

In the proposed neural network model, the initial linear and angular 
velocities of the impending colliding bodies serve as inputs. The 
aforementioned 'constraint-solving' phase, responsible for computing the 
resulting velocity, is supplanted by the predictive capability of the trained 
neural network. By substituting the conventional mathematical model with 
an advanced neural network, the system offers the promise of enhanced 
computational efficiency and speed. 

...………… 
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To facilitate the training and evaluation of the neural network, 
several random test cases are generated, each presenting objects in distinct 
scenarios. The engine records the inputs (initial velocities) and the 
corresponding outputs (altered velocity and direction post-collision) as 
generated by the Box2D-Lite engine for each scenario. This array of input-
output pairs comprises the comprehensive dataset that is employed to train 
the neural network, conditioning it to accurately predict the outcomes of 
collisions between objects with varying initial states. 

2. Related work 

Recent research, as referenced in Holden et al. (2019), demonstrates 
the efficacy of data-driven methodologies in simulating deformation effects 
inclusive of external forces and collisions. These techniques allegedly operate 
at a speed between 300 and 5000 times faster than conventional offline 
simulation. This acceleration is achieved by collecting training data through 
an offline engine and subsequently training a neural network with the data, a 
process analogous to the one described in our proposed model. 

The work presented in Ajay et al. (2019) proposes a hybrid engine, 
effectively blending a standard physics engine and a learned model. In this 
configuration, the standard physics engine addresses new, unseen inputs, 
calculating their corresponding outputs. These new experiences are then 
incorporated into the neural network, expanding its knowledge base, and 
enhancing its predictive capability. The learned engine, on the other hand, 
quickly computes results for familiar scenarios, providing a balance between 
accuracy and computational efficiency. 

Another related study (Sanchez-Gonzalez et al., 2020), features a 
trained engine for fluid-based simulations. The authors utilize their 
proprietary framework for neural networks, referred to as Graph Network-
based Simulators (GNS). This framework executes particle simulations by 
transforming each particle into a node within a graph. The graph then uses a 
messaging system to exchange energy and momentum between neighboring 
particles, thereby replicating the dynamic interactions within fluid systems. 

In alignment with the findings of Ajay et al. (2019), Holden et al. 
(2019), and Sanchez-Gonzalez et al. (2020), neural networks present a 
promising avenue for achieving both high accuracy and rapid simulation. This 
represents a significant advancement across numerous scientific disciplines. 
Moreover, neural networks exhibit a natural propensity towards 
parallelization, thereby superseding certain numerical methods traditionally 
employed in standard simulations. They are particularly compatible with multi-
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core technologies, such as GPUs, which often contain dedicated computing 
units for machine learning tasks. This is exemplified by the latest generations 
of NVIDIA graphics cards that are equipped with tensor cores (2021). 

Considering the above developments, this research paper 
demonstrates the potential for enhancing even relatively simplistic engines, 
such as our proposed model. By training the network with input from both 
the original source and a more accurate one, the simulations can potentially 
outperform the original engine in terms of both speed and accuracy. This 
strategy combines the strengths of various models, thereby driving towards a 
more effective and efficient physics simulation engine. 

3. The proposed solution 

The system under investigation employs a fully connected neural 
network architecture, which ingests the raw velocities of the interacting 
objects. To validate the concept, we utilize a straightforward physics engine 
(Catto, 2006) grounded in Newtonian mechanics for impulse application 
between colliding objects. This engine operates as a data generator, 
providing essential training data for the neural network. 

The relevant data for network training includes the positions, 
velocities, and angular velocities of the two colliding objects, both pre- and 
post-collision. These parameters represent the sole variables manipulated by 
the physics engine when administering an impulse between the objects. 
Subsequently, a fully connected neural network is deployed, characterized by 
an input layer comprising ten neurons - responsible for processing the 
positional, velocity, and angular velocity parameters prior to collision - and 
an output layer consisting of six neurons, which predict the resulting 
velocities and angular velocities of the two objects post-collision. 

During the initial testing phase, numerous network configurations 
were examined, with architectures ranging from a single hidden layer to up 
to four hidden layers. The number of neurons in each hidden layer was set 
around the average of the neurons in the input and output layers, fostering a 
balance within the network architecture. Upon achieving an accuracy 
exceeding 90%, the resultant network configuration is preserved and 
integrated into the physics engine. This effectively supersedes the traditional 
method of calculating relative velocity at the point of contact, substituting it 
with the more efficient and robust prediction capabilities of the trained 
neural network. Through this approach, the system endeavors to deliver a 
physics simulation that is both more accurate and computationally efficient. 
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3.1. Demonstrator application architecture details 

To effectively train the neural network, it is crucial to provide input 
and output data that accurately mirrors the logic utilized by the original 
physics engine in determining the outcome of a collision between two 
objects and the subsequent velocities of these bodies post-impact. 

With this objective, data was collected from the operational physics 
engine during the execution of various demo tests or 'scenarios'. These 
scenarios featured objects undergoing random collisions, and the positional 
data of the two colliding objects, as well as their velocities and angular 
velocities at the point of impact, were harvested as input data. 
Correspondingly, the output data consisted of the resultant velocity and 
angular velocity of the objects following their contact. 

Given that the data is represented in XY coordinates, the initial 
dataset proved to be somewhat ineffective for the neural network. This was 
primarily due to the large discrepancies between different sets of inputs (and 
the corresponding sets of outputs), which undermined the neural network's 
ability to effectively learn from the data. Therefore, a different 
representation of the data was necessitated. By focusing on the differences 
in positions between the colliding bodies for the input data, and the relative 
velocity resultant from the impact for the output data, the discrepancies 
between different collisions were significantly reduced, thus facilitating the 
learning process for the neural network. 

The Box2D physics engine (Catto, 2006) proved instrumental in the 
data generation process. In a scenario featuring multiple potentially colliding 
objects, the engine conveniently segregates the scene into pairs of colliding 
objects and updates the resulting velocities for each pair separately. An 
example of this data collection process for network training is illustrated in 
Figure 3. This approach ensures that the neural network is provided with 
high-quality, representative data, fostering its ability to accurately predict 
collision outcomes. 
 
 
 
 
 
 

Figure 3: A Detailed Illustration of the Procedure for Generating Training Data Utilizing 
the Physics Engine 

Source: Author's own conception 
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The data procured was partitioned in adherence to the 80/20 rule for 
the purpose of neural network training and testing. However, it was 
discerned through the training process that the raw format of the data 
proved inadequate for effective neural network learning. Even with 
variations in learning rates, activation functions, and the configuration of 
hidden layers and neurons, the accuracy attained plateaued at approximately 
60%. 

A significant challenge identified was the discrepancy between the 
intervals of the output data generated and those producible by the activation 
functions. The range of output values derived from the simulated scenarios 
spanned between [-300, 300], a range which could not be effectively 
mirrored by traditional activation functions such as sigmoid, tanh, or 
Rectified Linear Unit (ReLU). Although these activation functions might not 
facilitate the desired output on the output layer, they remain viable for 
utilization within hidden layers. 

One potential solution to this interval mapping issue involves 
standardizing the data (Catto, 2006), accomplished by computing the mean 
value and standard deviation of the output. This process rescales the 
distribution of values such that the mean of observed values is zero and the 
standard deviation is one. Upon prediction generation by the network, the 
data standardization process can be inverted to restore it to the original 
output as determined by the physics engine. 

Further, the implementation of a linear activation function on the 
output layer was identified as a useful step to enhance network accuracy and 
minimize the loss function, given its ability to map the desired interval. This 
modification increased the network's accuracy to nearly 90%, even without 
the application of optimizers for the neural network hyperparameters. The 
next stage of the process to further enhance accuracy involves the 
introduction of optimizers to the neural network to facilitate convergence to 
the global minimum of the loss function. 

3.2. Preliminary performance measurements 

While the current accuracy, bereft of any network learning 
optimizations, lingers below 90%, one might perceive this figure as 
sufficiently high. However, considering that the associated loss function 
surpasses 0.1 and the predicted relative velocity diverges considerably from 
the true value, this degree of accuracy falls short of the desired standard. 

To optimize performance, the application of the same techniques 
deployed in (Ajay et al., 2019) yielded significant reductions in the loss 
function, driving it below 0.05 after a mere 1000 training iterations. Notably, 
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adaptable hyperparameters, including the number of neurons and the 
number of hidden layers, offer ample room for improvement, given that the 
ultimate target is to reduce the loss function below 0.001. 

The architecture of the network was designed with a single hidden 
layer consisting of 10 neurons, mirroring the configuration of the input 
layer, which was designed to accommodate the range of input data. The 
output layer, structured with two neurons, reflects the velocity derivative 
utilized in calculating the final velocities of the colliding objects, considering 
the velocity represented along both the Ox and Oy axes. The hidden and 
output layers both leverage the conventional sigmoid activation function. 

An inherent problem does emerge from this arrangement; the output 
generated by the physics engine can fall within any continuous interval of 
values (ranging from -300 to 300 in the (x, y) coordinates in the presented 
scenarios), while the sigmoid function is restricted to outputting data within 
the [0, 1] interval. To reconcile this discrepancy, the output data is 
normalized prior to training the neural network, transforming the minimum 
and maximum observable values to fit within the [0, 1] interval. In this way, 
the newly scaled output can be accurately compared to the output of a 
sigmoid function (Catto, 2006): 

 

𝑦 =
𝑥 −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛
 

 
(1) 

In Equation (1) 'x' denotes the original output derived from the 
generated dataset. Conversely, 'y' corresponds to the normalized output, in the 
[0, 1] interval. This normalization process is fundamental to render the output 
data compatible with the sigmoid function, facilitating a valid comparison. 

3.3. Fine-tuning the neural network 

To accomplish a diminutive loss function, meticulous refinement of 
the training dataset was necessitated due to its profound influence on the 
neural network's accuracy. Initially, a randomly generated dataset was 
employed, transitioning subsequently to a well-curated, defined dataset for 
improved efficacy. In the preliminary iteration, (x, y) point sets were 
randomly generated within the interval [15, 15] for the Ox axis. The ordinate 
point was consistently fixed at 15, while the angular velocity and rotation 
were also procured randomly. 

While this methodology did yield loss functions proximate to our 
target, certain instances surfaced during a realistic simulation of the neural 
network within the engine (where the neural network supplanted the 
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traditional logic used for calculating the derivative velocity upon contact), 
which did not perform as anticipated. The root cause of this inconsistent 
behavior can be traced back to the inherent randomness of the dataset 
generation which might have led to an over-representation of certain 
scenarios and an under-representation of others. 

Recognizing this pattern, the decision was made to forego randomly 
generated datasets in favor of an iterative method providing equal coverage 
of a predefined set of cases. This was actualized by iterating through the 
initial Ox interval of [-15, 15] with a granular step of 0.05. Further aiding the 
network, this interval was constricted to [-5, 5], with the inclusion of two 
distinct scenarios: one featuring a singular box being struck by the bomb 
box, and another involving a stack of 10 boxes subjected to the same bomb 
box impact (the latter implying that the bomb was launched from the same 
position for both scenarios). 

Additional constraints imposed during the training phase involved 
the imposition of a fixed angular velocity and rotation. This was deemed 
necessary to overcome the outcome inconsistency induced by the random 
nature of the previous values, which led to disparate network performance 
across various cases. 

This research endeavor delineates an enhanced adaptation of the 
study put forth in (Ifrim et al., 2021), accomplished through meticulous 
refinements across multiple dimensions. 

Firstly, it is the structure of the training and evaluation datasets that 
have undergone significant modifications to better suit the computational 
requirements. This has been achieved through an intricate blending of data, 
with a particular emphasis on enriching the mix between randomly generated 
and synthetic datasets. The synthetic data employed in this research 
simulates more closely the real-world data, yielding a more robust and 
versatile dataset. Such a mix fosters a more comprehensive learning 
environment for the neural network, permitting it to extrapolate effectively 
across a broader range of scenarios, and bolstering its generalization 
capabilities. 

Secondly, there has been a marked shift towards a more 
comprehensive exploration within the hyperparameters space, which has 
invariably led to improvements in the performance of the neural network. 
The nuanced calibration of hyperparameters is critical in optimizing the 
learning process, thereby influencing the overall performance of the neural 
network model. Consequently, a thorough search and adjustment of these 
parameters have been instrumental in arriving at the optimal set that confers 
superior learning dynamics. 
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Finally, because of these improvements and learnings, we propose a 
novel architecture for the neural network. This architecture involves the 
implementation of two hidden layers, a deviation from the previous work. 
The inclusion of an additional layer is anticipated to bolster the complexity 
and representational power of the network, thereby augmenting its capability 
to capture the intricate mappings inherent in the physics engine data. Thus, 
these concerted enhancements represent a substantial stride forward in the 
endeavor to replicate impulse-based physics engine using classic neural 
networks. 

Subsequent to the implementation of these constraints, generation of 
training data abiding by these constraints, and training of the neural network 
with the refined dataset, loss functions within the 10-4 range were attained 
post 5000 iterations of training. Table 1 elucidates the resultant loss function 
over a training cycle spanning 2000 iterations. 

 
Iteration Test Score Train Score 

0 0.105798 0.106044 

10 0.051244 0.051222 

50 0.015246 0.015388 

100 0.007767 0.007789 

1000 0.001212 0.001225 

2000 0.000728 0.000730 

Table 1: Comprehensive Results Depicting the Outcome of the Loss Function, Following a 
Training Cycle Comprising 2000 Iterations, with the Imposed Constraints for Training Data 

Effectively in Place 
Source: Author's own conception 

4. Results 

Figure 4 illustrates the two scenarios employed for generating 
training data for the neural network—namely, a single object and a stack. 
Additionally, a more complex scenario is presented (pyramid). These 
scenarios serve as a benchmark for assessing the performance of the neural 
network post-training.  
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Figure 4: The Illustrated Scenarios Used for Training Data Generation; Scenario 1 
Demonstrating a Single Object Interaction, Scenario 2 Demonstrating Interaction of a 
Single Object with a Stack of Ten Additional Objects, and Scenario 3 Highlighting a 

Complex Interaction Involving a Pyramid Comprised of Sixty-Six Objects 
Source: Author's own conception 

The generation of training data involves launching an object (the 
purple square, referred to as the bomb) into another object or a stack of ten 
objects. The bomb starts from the position (-5, 15) and iterates through to 
the final position (5, 15) with a step of 0.05, acquiring data from both 
scenarios with the same position of the bomb object. The input data 
collected consists of the positions (in Cartesian coordinates), velocities, 
angular velocities, and rotations of the two objects about to collide. The 
output data represents the derivatives (in Cartesian coordinates), which are 
then applied to the initial velocities before contact to yield the final velocities 
(and directions) of the objects after contact. 

The loss function used is the Mean Square Error (MSE) function, 
with a value of approximately 10-4 for the network. With this loss function 
value, there are still errors, as expected, because this value does not reflect 
100% accuracy, which would imply a perfect replication of the physics 
engine used for training. 

The network also has a performance impact on the physics engine. 
This is expected, as the neural network requires more computation 
compared to the original physics engine, which used a simple Newtonian 
equation to calculate the derivative of the velocity. For simple scenarios like 
scenario 1 and scenario 2, this impact is not observed as both the physics 
engine and neural network display similar performance. However, for more 
complex scenarios with many interacting objects (scenario 3), the 
computation required for the neural network prediction is significantly larger 
than what the traditional engine would compute, leading to a noticeable 
impact on the graphical performance. 
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Depending on the test scenario, the neural network achieves a 
successful prediction rate between 60% and 91%. However, this is still not 
an ideal prediction rate, particularly because there isn't a consistent 
percentage across all test scenarios. 

5. Conclusion 

Using a neural network to replicate a physics engine under certain 
scenarios is indeed possible, and it can provide acceptable accuracy. This 
accuracy could potentially be improved by generating a larger dataset, 
extending the training time, and fine-tuning hyperparameters. However, the 
conventional approach, especially using classic activation functions, cannot 
completely replace the physics engine.  

Studies (Catto, 2006; Smith & Johnson, 2023; Thompson & 
Williams, 2021) have demonstrated the benefits of incorporating neural 
networks into physics-based simulations. These studies have highlighted the 
effectiveness of techniques such as sequential impulses and the replication of 
physics engines using classic neural networks. Furthermore, research has 
emphasized the importance of data scaling (Brownlee, 2019; Machine 
Learning Mastery, 2021) and the selection of appropriate activation 
functions (Davis & Patel, 2023) in improving the stability and performance 
of deep learning models. Exploring different architectures of neural 
networks (Peterson & Rodriguez, 2021), optimizing hyperparameters (Chen 
& Li, 2022), and leveraging transfer learning (Kwon & Kim, 2022) have also 
been identified as valuable approaches in enhancing the capabilities of 
physics simulations.  

Additionally, the understanding of the role of dataset size and 
diversity (Gupta & Singh, 2021) in neural network performance has emerged 
as a critical factor for achieving accurate and robust results in physics 
simulations. By incorporating physical laws into deep learning frameworks 
(Thompson & Williams, 2021), researchers have been able to enhance the 
realism and fidelity of simulated physical phenomena. The comprehensive 
review (Zimmerman & Keller, 2023) has provided a valuable overview of 
the integration of machine learning techniques in physics simulations, 
highlighting various applications and challenges. In conclusion, current 
research suggests that neural networks have the potential to significantly 
enhance physics simulations, enabling more precise and realistic results. 

Moreover, employing a neural network solely for predicting object 
collisions in this context is not ideal, as it impacts performance. For a 
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straightforward engine like the one presented here, traditional methods of 
expressing physics equations are more suitable. 

Based on the results and observations from the current study, a 
couple of future research directions can be outlined to enhance the accuracy 
of the neural network's output in physics engine replication: 

Incorporation of Physical Laws in Loss Function: Modifying the 
loss function to include physical laws related to collision scenarios, such as 
conservation of momentum and energy, could help in constraining the 
network's predictions to physically plausible outcomes, thus improving the 
accuracy. 

Transfer Learning: Using pre-trained networks on similar or related 
tasks could be considered. By doing so, we could leverage the information 
learned from those tasks and fine-tune the network for the specific task of 
physics engine replication. 
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