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Abstract 
Our purpose with this paper may be clearly established: to show many essential aspects of 

such active topic of research. For this objective, previously we may analyze here some relevant 
features strongly supported on Graph Theory (the modern Theory of Graphs and of Complex 
Networks). 
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1. Introduction  
Complex Networks are everywhere [1, 3]. This can be considered am important tenet of 

current science. And the language of such networks is precisely Graph Theory [16], which 
represents by nodes the different states or situations, and by edges connecting them their mutual 
relationships. Therefore, it is essential to learn these new codes and rules, allowing us to understand 
the new scientific challenges. 

Almost all the tools necessaries to represent and solving problems by Graph Theory shown 
appealing features, very appropriated to develop in student´s mathematical abilities, by reasoning 
and developing very intuitive and useful methods. So, enhancing their motivation and increasing 
their enthusiasm with respect to Mathematics. Because it provides a fascinating sample of beautiful 
and visual mathematical objects, disposable to any people with a minimal theoretical basis. It will 
be very important in problem solving.  

In the words of Georges Pólya "we expect that any symmetry found in the data and 
conditions of the problem will be mirrored by the solution" [20]. 
 

2. Graphs  
Graphs are mathematical objects [14, 16] very frequently used in Computer Science, and 

other important fields. Because often we can reduce a real-world problem to a mathematical 
statement about graphs. Hence, if the graph problem is solved, then the real-world problem it is also 
solved. 

A graph is a pair, G = (V, E), where V is a set of points, called nodes, and E will be the set 
of their edges, or links, between nodes. Sometimes, it is denominated simple graph. Note that a 
simple graph represents a symmetric relation, R, according which two nodes, a and b, being 
connected by an edge are related to each other in both directions, i.e. a R b and b R a. 

Many times, we said Undirected Graph (UG, in acronym), instead of simple graph.  
V and E are usually taken to be finite, because some of the well-known results can fails for 

infinite graphs. It is due that many times the arguments are not applicable in such infinite case.  
The order of a graph is the number of their nodes. That is, the cardinality of the set V, 

sometimes denoted by |V|, also by card (V), or c(V).  
The size of a graph is the number of their edges. That is, the cardinality of the set E, 

sometimes denoted by |E|.  
The degree of a graph is the number of edges that connect to it.  
Note that an edge that connects to the node at both ends (therefore, a loop) is counted twice.  
Let G = (V, E) be a graph. Then, we see as its complement a new graph, with the same set of 

nodes, but its set of edges contains the complement of E. So, we consider G as a graph. 
It will be very interesting to give some previous concepts, as that of line graph, vertex-

transitivity, edge-transitivity, and so on. 
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The so-called line graph of G will be the graph whose set of nodes is E (therefore, it 
coincides with the set of edges of G), and whose edges connect all pairs of E which have one 
common end (or extremity) in G. Usually, it is abridged by L(G). Hence, the Line Graph of G is 
another graph that represents the adjacencies between edges of G. The Line Graph is sometimes 
called Adjoint Graph, Interchange Graph, Edge Graph, Derived Graph of G, and so on.  

A graph, G, is said to be node-transitive (or vertex-transitive), if for any two of its nodes, 
there is an automorphism which acts between them.  

A simple graph, G, is said to be edge-transitive (or link-transitive), if for any two of its 
edges, e and e´, there is an automorphism which maps e into e´.  

A simple graph, G, is said to be symmetric, when it is both, node-transitive and edge-
transitive. 

But a simple graph, G, which is edge-transitive, but not node-transitive, is said semi-
symmetric.  

Obviously, such a graph will be necessarily a bipartite graph.  
An auxiliar concept, which many times appears at Graph Theory problems, will be the 

Chordality.  
Let G be an undirected graph (UG). We says that G is chordal, if every cicle of length 

greater than three possesses a "chord". This name ("chord") means an edge joining two non-
consecutive nodes of the cycle. Therefore, an UG will be chordal, if it does not contain an induced 
subgraph isomorphic to the Cn, when n > 3. 

The chordality result a hereditary property, because all the induced subgraphs of a chordal 
graph will be also chordal. For instance, the interval graphs are chordal. 
 

3. Graph Symmetry  
As we known, Symmetry into a system means invariance of its elements under a group of 

transformations [25]. When we take Network Structures [23, 24], it means invariance of adjacency 
of nodes under the permutations on node set.  

Let G and H be two graphs [16]. An isomorphism from G to H will be a bijection between 
the node sets of both graphs, i. e. an application, f: G → H, such that any two nodes, u and v, of G 
are adjacent in G if and only if f(u) and f(v) are also adjacent in H. Usually, it is called "edge-
preserving bijection".  

If an isomorphism exists between two graphs, G and H, then such graphs are called 
Isomomorphic Graphs.  

The graph isomorphism is an equivalence, or equality, as relation on the set of graphs. 
Therefore, it partitions the class of all graphs into equivalence classes. 

The underlying idea of isomorphism is that some objects have the same structure, if we omit 
the individual character of their components.  

A set of graphs isomorphic to each other is denominated an isomorphism class of graphs. 
An automorphism of a graph, G = (V, E), will be an isomorphism from G onto itself. So, a 

graph-automorphism of a simple graph, G, is simply a permutation on the set of its nodes, V (G), f: 
G → G, such that the image of any edge of G is always an edge in G. That is, if  e = {u, v}∈V(G), 
then  

f(e) = {f(u), f(v)}∈V(G) 
Either expressed in group theoretical way, we have  

u ∼ v ⇔  ug ∼ vg  ⇔  ug ∼ vg 
being ug and vg the corresponding images of u and v under the permutation g.  

The family of all automorphisms of a graph G is a permutation group on V(G). The inner 
operation of such group is the composition of permutations. Its name is very well-known, the 
Automorphism Group of G, and abridgedly, it is denoted by Aut(G). 

And conversely, all groups may be represented as the automorphism group of a connected 
graph. 
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The automorphism group is an algebraic invariant of a graph. So, we can say that an 
automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while 
preserving the edge-node connectivity. Such automorphic tool may be applied both on Directed 
Graphs (DGs) and on Undirected Graphs (UGs).  

About another interesting concept in Mathematics, the word "genus" has different, but very 
related, meanings. So, in Topology, it depends on to consider orientable or non-orientable surfaces.  

In the case of connected and orientable surfaces, it is an integer that represents the maximum 
number of cuttings, along closed simple curves, without rendering the resultant manifold 
disconnected. For this reason, it is the number of "handles" on it. Usually, it is denoted by the letter 
g. 

It will be also definable through the Euler number, or Euler Characteristic, denoted by χ. 
Such relationship will be expressed, for closed surfaces, by  

χ  = 2 - 2g 
When the surface has b boundary components, this equation transforms to  

χ = 2 - 2g – b 
which obviously generalizes the above equation. For example, a sphere, an annulus, or a disc have 
genus g = 0. Instead of this, a torus has g = 1.  

In the case of non-orientable surfaces, the genus of a closed and connected surface is a 
positive integer, representing the number of cross-caps attached to a sphere.  

Recall that a cross-cap is a two-dimensional surface that is topologically equivalent to a 
Möbius string.  

As in the precedent analysis, it can be expressed in terms of the Euler characteristic, by  
χ = 2 - 2k 

being k the non-orientable genus. For example, a projective plane have non-orientable genus k = 1. 
And a Klein bottle has a non-orientable genus k = 2.  

Turning to graphs [16], its corresponding genus will be the minimal integer, n, such that the 
graph can be drawn without crossing itself on a sphere with n handles. So, a planar graph has genus 
n = 0, because it can be drawn on a sphere without self-crossing. 

In the non-orientable case, the genus will be also the minimal integer, n, such that the graph 
can be drawn without crossing itself on a sphere with n cross-caps.  

 If we pass now to topological graph theory, we will define as genus of a group, G, the 
minimum genus of any of the undirected and connected Cayley graphs for G.  

From the viewpoint of the Computational Complexity, the problem of "graph genus" is NP-
complete.  

We will says either graph invariant or graph property, when it depends only of the abstract 
structure, not on graph representations, such as particular labeling or drawings of the graph. So, we 
may define a graph property as every property that is preserved under all its possible isomorphism 
of the graph. Therefore, it will be a property of the graph itself, not depending on the representation 
of the graph.  

The semantic difference also consists in its character quantitative or quantitative. For 
instance, when we said "the graph does not possess directed edges", this will be a property, because 
it is a qualitative statement. While when we said that "the number of nodes of degree two in such 
graph", this would be an invariant, because it is a quantitative statement.  

From a mathematically strict viewpoint, a graph property can be interpreted as a class of 
graphs, composed by the graphs that have in common the accomplishment of some conditions. 

Hence, also can be defined a graph property as a function whose domain would be the set of 
graphs, and its range will be the bivalued set composed by two options, true and false, {T, F}, 
according which a determinate condition is either verified or violated for the graph.  

A graph property is called hereditary, if it is inherited by its induced subgraphs. And it is 
additive, if it is closed under disjoint union.  

For example, the property of a graph to be planar is both additive and hereditary. Instead of 
this, the property of being connected is neither.  
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The computation of certain graph invariants may be very useful, with the purpose to 
discriminate when two graphs are isomorphic, or rather non-isomorphic. 

The support of these criteria will be that for any invariant at all, two graphs with different 
values cannot be isomorphic between them. But however, two graphs with the same invariants may 
or may not be isomorphic between them. So, we will arrive to the notion of completeness. 

Let I (G) and I (H) be invariants of two graphs, G and H. It will be considered complete, if 
the identity of the invariants ever implies the isomorphism of the corresponding graphs, i. e.  

I(G) = I(H) ⇒ G ≈ H. 
A directed graph, or digraph, is the usual pair G = (V, E), but now with an additional 

condition: it have at most one directed edge from node i to node j, being 1 ≤ i, j ≤ n. We add the 
term acyclic when there are no cycles of any length. Usually, we use the acronym DAG to denote an 
acyclic directed graph.  

A very important result may be this:   
For each n, the cardinality of the n-DAGs, or DAGs with n labeled nodes, is equal to the 

number of (n×n)-matrices of 0´s and 1´s whose eigenvalues are positive real numbers, i. e. 
λi ∈ R+, with 1 ≤ i ≤ n 

A previous result said that a digraph contains no cycle if and only if all eigenvalues of its 
adjacency matrix are equal to zero.  

It is possible to prove that every group is the automorphism group of a graph. If the group is 
finite, the graph may be taken to be finite.  

And George Pólya observed that not every group is the automorphism group of a tree. 
 

4. Enumerating Digraphs  
Among the different types of graphs [15], Bayesian Networks (BNs, in acronym) are the 

most successful class of models to represent uncertain knowledge. But the representation of 
conditional independencies (CIs, also in acronym) does not have uniqueness. The reason is that 
probabilistically equivalent models may have different representations. 

And this problem is overcome by the introduction of the concept of Essential Graph, as 
unique representation of each equivalence class. They represent Conditional Independence Models 
by graphs. Such mathematical and graphical tools containing both, directed or/and undirected 
edges; hence, producing respectively Directed Graphs (DGs), in particular acyclic elements, or 
Directed Acyclic Graphs (DAGs), either Undirected Graphs (UGs), or Chain Graphs (CGs), in the 
mixed case. So, DAG models are generally represented as Essential Graphs (EGs). 

Knowing the ratio of EGs to DAGs is a valuable tool, because through this information we 
may decide in which space to search. If the ratio is low, we may prefer to search the space of DAG 
models, rather than the space of DAGs directly, as it was usual until now. 

The most common approach to learning DAG models is that of performing a search into the 
space of either DAGS or DAG models (EGs). 

It is preferable, from a mathematical point of view, to obtain the more exact solution 
possible, studying its asymptotic behavior. But also it is feasible to propose a Monte Carlo Chain 
Method (MCMC) to approach the ratio, avoiding the straightforward enumeration of EGs. And a 
many more elegant construct, if very difficult, through the Ihara Zeta function for counting graphs.  

Recall that a DAG, G, is essential, if every directed edge of G is protected. So, an Essential 
Graph (EG) is a graphical representation of a Markov equivalence class. 

In relation with the Essential Graph, each directed edge would have the same direction in all 
the graphs that belongs to its equivalence class. There is a bijective correspondence (one-to-one) 
among the set of Markov equivalence classes and the set of essential graphs, their representatives.  

The labeled or unlabeled character of the graph means whether its nodes or edges are 
distinguishable or not. For this, we will say that it is vertex-labeled, vertex-unlabeled, edge-labeled, 
or edge-unlabeled. The labeling will be considered as a mathematical function, referred to a value 
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or name (label), assigned to its elements, either nodes, edges, or both, which makes them 
distinguishable. 
 

5. Complex Networks  
A system can be defined as a set of components functioning together as a whole. A systemic 

point of view allows us to isolate a part of the world, and so, we can focus on those aspects that 
interact more closely than others. 

Network Science is a new scientific field that analyzes the interconnection among diverse 
networks, as for instance, on Physics, Engineering, Biology, Semantics, and so on. Between its 
developers, we may remember to Duncan Watts, with the Small-World Network, and Albert-László 
Barabasi, which developed the Scale-Free Network [2, 4, 8, 22]. About its work, this author has 
found that the websites that form the network (of the WWW) have certain mathematical properties. 

Network Theory is a quickly expanding area of Network and Computer Sciences, and also 
may be considered a part of Graph Theory [6].  

Many phenomena in nature can be modeled as a network, as   
• Brain structures. The brain as a network of neurons (as nodes) connected by synapses (their 

edges).  
• Social interactions or the World Wide Web (WWW). All such systems can be represented in 

terms of nodes and edges.   
• On Internet, the nodes can represent routers, and the edges by wires, or physical connections 

between them.  
• In transport networks, the nodes can represent the cities and the edges the roads that connect 

them. These edges can have weights. 
These networks are not random. The topologies of different networks are sometimes very 

close.  
We may distinguish four structural models. So Regular Networks, Random Networks, 

Small-World Networks and Scale-free Networks.  
In the Regular Network, each node is connected to all other nodes. I.e. they are fully 

connected. Because such type of structure, they have the lowest path length (L), and the lowest 
diameter (D), being  

L = D = 1 
Also they have the highest clustering coefficient. So, it holds C = 1.  
Furthermore, the highest possible number of edges  

card (E) = ((n (n-1))/2) ~ n² 

About Random Graphs (RGs), we can say that each pair of nodes is connected with 
probability p. They have a low average path length, according to  

L  ≈  ((ln n) / (ln <k>)) ∼  ln n 
for n >> 1.  

It is because the total network may be covered in <k> steps, from which 
n ∼ <k>L 

Also they possess a low clustering coefficient, when the graph is sparse. Thus,  
C = p = ((<k>) / n) << 1 

given that the probability of being connected each pair of neighboring nodes is precisely equal to p.  
The Small-World effect is observed on a network when it has a low average path length, i.e. 

L << n,  for n >> 1 
Recall the now famous "six degrees of separation", also called the small-world phenomenon 

[4, 6]. This hypothesis was firstly formulated by the Hungarian thinker Frigyes Karinthy, in 1929. 
Then, it was tested by Stanley Milgram, in 1967. The subjacent idea is that two arbitrarily selected 
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people may be connected by only six degrees of separation (in average, and it is not too larger than 
this value). Therefore, the diameter of the corresponding graph is not much larger than six. For 
instance, on social connections.  

In the case of the Watts-Strogatz (in acronym, WS) small-world model (1998), it represent a 
hybrid case between a Random Graph and a Regular Lattice. So, Small-World models share with 
RGs some common features, as may be  

• Poisson or Binomial degree distribution, near to Uniform distribution.  
• Network Size: it does not grow.  
• Each node has approximately the same number of edges, i.e. it shows a homogeneous 

nature.  
WS-models shows the low average path length typical of Random Graphs, i.e.  

L ∼ ln n,  for n >> 1 
And also such models the usual high clustering coefficient of Regular Lattices, giving  

C ≈  0.75,  for k >> 1 
In consequence, WS-models have a small-world structure, being well clustered. Whereas the 

Random Graphs coincides on the small-world structure, but they are poorly clustered. This model 
(WS) has a peak degree distribution, of Poisson type.  

In reference to the last model, called Scale-Free Network, it appears when the degree 
distribution follows a Power-Law, i.e.  

P(k) ~  k-γ 
In such case, there exist a small number of highly connected nodes, called hubs, being the 

tail of the distribution. Whereas many of their nodes have sparse connections. They represent the 
head of such distribution. Such model [2, 5] was introduced by A.-L. Barabási and R. Albert in 
1999.  

Some of their most notable features may be  
• Non-homogeneous nature, in the sense that some (few) nodes have many edges from them, 

and the remaining nodes only have very few edges, or links.  
• About the network size, it continuously grows.  
• And on the connectivity distribution, it obeys a Power-Law distribution.  

A very notable example of Scale-Free Network may be the World Wide Web (WWW, in 
acronym). As we known [2, 8, 21, 22], it is a collection of many sub-networks. In such case the 
nodes corresponding to their pages, whereas the edges to hyperlinks. 
 

6. Searching Communities  
One of the most interesting research points in Computer Science is the analysis of the 

structure and properties of Complex Networks. To understanding the function and the dynamics of 
a network [2, 4], the first step will be known the topology of such network. 

Hierarchical Clustering of Networks is one classical method for finding community 
structures in a Complex Network. The technique establishes a hierarchy of groups according to an 
associated weight function. So, the data set may be represented by a “dendogram”, which is a 
typical tree structure.  

Another technique may be the Girman-Newman (expressed GN by acronym) algorithm [18].  
Many real networks contain parts in which the nodes are more connected to each other than 

to the rest of the network. Such parts are called Communities, Clusters, Modules, or Cohesive 
Groups. Graph Clustering is an essential problem in the analysis of relational data. It is now 
described as the problem of partitioning networks into communities.  

A new and interesting index for Graph Clustering is the so-called Modularity, which was 
proposed by Newman and Girvan, in 2004. It is a quality index for clustering [16, 18]. From then, 
many algorithms of heuristic type have been proposed attempting to optimize such quality measure 
[13, 18]. 
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Among the lines of research in the more recent times has been also the aforementioned 
possible decomposition of every network into independent subsets called "communities". A 
community would be a group of nodes that is densely connected internally, but sparsely connected 
externally.  

To sociologists, this concept is also named a "cohesive subgroup". So, a typical community 
[20] consists of several subgraphs, fully connected, with trend to share many of their nodes.  

A more precise name would be "k-clique community", being defined as a union of all k-
cliques that can be reached from each other, through a series of adjacent k-cliques. Recall that a k-
clique means a complete subgraph of size n. 

In a network, it is possible to make groups of elements, by equivalence classes. It will be 
according the role played by such elements [4, 5]. The assignment of roles, in Social Networks, 
permits us establish two new concepts, as may be Structural Equivalence and the Regular 
Equivalence.  

Two nodes are structurally equivalent, if they have the exact same neighbors.  
While the regular equivalence need that the nodes plays their roles exactly. 
The study of the community connection of a network helps us to understand its global 

structure, but also the distribution of agents and activities. 
Newman [17] says that "the development of methods for finding communities within 

networks is a thriving sub-area of the field, with an enormous number of different techniques under 
development methods for understanding what the communities mean after you find them are by 
contrast still quite primitive". This will be a promising line of advance. 
 

7. Conclusions 
Social Network graphs have patterns that can be useful to characterize them, and may be 

very interesting to accelerate algorithms, in Optimization. They have also an essential clustering 
tendency, jointly with a community structure [18].  

Observe that the Web is a fractal, considered by a graph analysis [8, 9, 15]. In fact, it is 
composed of highly cohesive sub-regions, each one of them showing similar characteristics as the 
complete Web. Such self-similarity may offer the way [7, 9, 19] to construct models about the 
evolution of the WWW.  

Great attention has been focused [10-12, 20] on the problem of making a network of coupled 
dynamical systems synchronize on a common evolution, as on empirical network analysis and 
simulations. Networked Control Systems have been an attractive area. Complex Dynamic Networks 
[4], and Cellular Neural Networks are also studied, with many applications, as solving PDEs, or on 
pattern recognition. The analysis of synchronization problems is other interesting current field of 
research [7, 13].  

So, we conclude this overview on some of the more interesting and subtle tools of the 
current mathematics, very interrelated with many other fields, as may be Artificial Intelligence, 
Sociology, Biocomputing, and so on.   

Because Symmetry connects between different mathematical branches, as may be Geometry 
(Euclidean and non-Euclidean), Algebra, Probability Calculus and the very deep underlying 
concepts, distribution functions and density functions, with many different associated models, 
Mathematical Analysis (for instance, on fuzzy measures [6, 14]), and so on.  

For this purpose, we must recall the claim of Dreyfus and Eisenberg about that the teachers 
need to develop awareness of the importance of symmetry (not only at high school, but also for 
undergraduate and graduate university level) for mathematical problem solving. They support this 
claim by their finding that many teachers (too much) did not recognize symmetry as an essential 
tool that can simplify the way to reach the solutions. The support of graph theoretical examples may 
be surely the better aid to overcome such difficulty. 
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