
BRAIN. Broad Research in Artificial Intelligence and Neuroscience,
ISSN 2067-3957, Volume 1, October 2010,
Special Issue on Advances in Applied Sciences,
Eds Barna Iantovics, Marius Mǎruşteri, Rodica-M. Ion, Roumen Kountchev

UNDERSTANDING SERVICE COMPOSITION WITH
NON-FUNCTIONAL PROPERTIES USING DECLARATIVE

MODEL-TO-MODEL TRANSFORMATIONS

Andreas Petter, Stephan Borgert, Erwin Aitenbichler,
Alexander Behring and Max Mühlhäuser

Abstract. Developing applications comprising service composition is a
complex task. Therefore, to lower the skill barrier for developers, it is im-
portant to describe the problem at hand on an abstract level and not to fo-
cus on implementation details. This can be done using declarative program-
ming which allows to describe only the result of the problem (which is what
the developer wants) rather than the description of the implementation. We
therefore use purely declarative model-to-model transformations written in a
universal model transformation language which is capable of handling even
non functional properties using optimization and mathematical programming.
This makes it easier to understand and describe service composition and non-
functional properties for the developer.

Keywords: declarativity, business processes, model-to-model transforma-
tion

2000 Mathematics Subject Classification: 68R10, 90C35.

130



A. Petter - Service Composition and Declarative Model-Transformation

1. Introduction

Developing applications that perform service composition is complex. To
reduce the complexity of application development, model driven development
has been investigated in the past. Even though model transformation has also
been used for service composition (e.g., [4]) approaches do not use optimiza-
tion and a declarative universal transformation language. However, both are
needed to perform rapid prototyping and application development of service
compositions with non-functional properties in a declarative way:

Optimization must be performed to calculate an optimal combination of
services which leads to a service composition which is either maximal or min-
imal to some set of non-functional properties.

If a proprietary model transformation language is used (e.g., [4]) instead
of a universal transformation language, developers will need to learn a new
language for developing their service composition. Therefore, the speedup in
the development phase is reduced because of the time which is needed to learn
the new language. In contrast, our approach is based on a language, called
“Solverational”. This language is based on QVT Relations which is a standard
model-to-model transformation language. Developers do not need to learn a
new language, but only minimal changes.

A declarative language is needed to focus the way a developer understands
his service composition problem at hand on the outcome rather on the way
how to implement it. We believe that this helps developers to focus more
on an understanding of the problem itself and prevents slipping into imple-
mentation details. This is especially important if trade-offs need to be taken
into consideration. In Section 3 we present a objective function to select ser-
vices according to a set of non-functional properties. It was our goal that this
objective function could just be copied over into the implementation of the
model-to-model transformation with only very minor changes (only the names
of the variables). Developers can then focus on the definition of the target
function, and do not have to worry about its implementation.

1.1 Definitions and Contributions

We use classical definitions of service composition, processes and services.
However, for clarification we repeat the definitions in an informal way. An
application model is a model which describes temporal relationships between

131



A. Petter - Service Composition and Declarative Model-Transformation

a set of processes. A process is a procedure or a function that can be called
either local or remote and has at least one distinct and well-defined functional
interpretation which is known by all entities performing service composition.

Usually a single service composition is not sufficient and a developer wants
service compositions to be computed for various application models.

Definition 1. A composition program is a program that computes service
compositions for a set of application models.

A composition program may also take into account non-functional proper-
ties, which describe aspects of services which have no direct impact on their
interpretation. Three examples, which are considered in this paper are:

• the costs to execute a service – if it is a premium service which needs to
be payed for

• the runtime to execute the service call

• and a measure how reliable the service is, e.g., the uptime of the hosting
machine.

This paper focuses on the creation of composition programs using a uni-
versal and declarative model-to-model transformation language in combination
with optimization. In this paper we make the following contributions:

• Presenting a purely declarative way to develop composition programs

• using a declarative universal model-to-model transformation language
with constraint solving and optimization to perform service composition
and

• by doing that, we present a fast way to develop service composition
programs.

2. Scenario

In this work, we chose an Eco Calculator as a running example. Here,
a government agency establishes a new “eco label” for cars meeting certain
ecological requirements. One of the requirements is a concept for disassem-
bling and recycling and the restricted use of certain environmentally harmful
materials. The service provides a compliance check and cost simulation.

132



A. Petter - Service Composition and Declarative Model-Transformation

In our scenario engineers may discover one or multiple such services (Eco
Calculators) on the Internet and send construction details of, e.g., a car seat to
this service. The service then calculates the ecological impact of production,
recycling, etc. of the product and automatically issues compliance certificates
accordingly. The behavior of the Eco Calculator service is described by a
formal business process. Because the process involves knowledge of various
disciplines, we assume that the provider of the Eco Calculator service is willing
to outsource certain parts of the process.

Hence, we used three different types of services for demonstration purposes:
the Eco Calculator service itself, a chemical database service, and a chemical
laboratory service. All services are described by formal business processes.

The whole process model is now formed by a service composition that
integrates all three different types of services. For each service type, we have
modeled five different variants, which all differ a bit in their behavior to come
as close to practical situations. In practice, there are also services which show
an equivalent behavior on an abstract level, but differ in small details. For
example, every Eco Calculator service can receive construction details and
issue certificates, but it can be different in its administrative processes such as
delivery or payment.

It is important to note that this is just a running example and our approach
is not limited to this scenario in any way. Also, the result of the service is not
important at development time. E.g., concepts like “ecological impact” are
entirely domain-specific and completely independent from the generic model-
to-model transformation.

3. Optimization and Non-Functional Properties

In a composition program, services need to be assigned to processes. For
each process there must be at least one service that implements it, other-
wise the application model will not be executable. Therefore, there has to
be a mapping from processes to services. This mapping is performed in the
composition program, therefore the mapping either needs to be done in the
model-to-model transformation itself or in a separate model that describes the
mapping. For simplicity we present the first version, while the second is just
a simple extension of the concept (which can be implemented by either gen-
erating the transformation or by inserting another level of abstraction within
the transformation itself). In our case the mapping will be implemented in
relations which map a process to a set of possible target services.

133



A. Petter - Service Composition and Declarative Model-Transformation

Each member of the set of possible target services has a number of non-
functional properties, which can easily be extended by changing the models.
The problem we want to solve is, what set of services is an optimal set according
to the properties presented in the introduction (execution costs, runtime and
reliability). For simplicity, we assume that all properties are specified as integer
values and that lower values are better (for reliability this is anti-proportional
to the uptime of the service). Then we can easily sum up all properties of the
same type (e.g., all execution costs called rentingCosts in our scenario) of all
services S currently used in our composition:

Ri =
∑
s∈S

rentingCosts (1)

If this is done for all compositions i = 1..n, we can compare all Ri and
calculate the minimum Ri:

min({Ri|∀i ∈ {1..n}}) (2)

This can easily be implemented using Solverational by just copying most
of the formula into the transformation code.

4. Meta-Models of Composition Programs and Services

From the perspective of model-driven engineering, a composition program
is a model-transformation: either model-to-model or model-to-code. While
both types of transformations are possible, we focus on the model-to-model
transformation process only. In that case the concrete models produced by
the transformation can be changed more easily and can be better understood
than pure code. The concrete models can then be transformed into code by a
relatively simple model-to-code transformation.

In our case a service composition is a model-to-model transformation from
an application model to a service model. The application model, called abstract
model, uses the business processes that should be performed by the application
as model elements. It is the source model for the model-to-model transforma-
tion. In our case it is comprised of an EcoCalculator investigator process, a
chemical lab process and a chemical database process.

To define the model we first defined the abstract meta-model which con-
tains all the processes which can be used in the application model. These are
used to model the behaviour of the application (see Figure 1). The abstract

134



A. Petter - Service Composition and Declarative Model-Transformation

Figure 1: Abstract Meta-Model

model is an instance of the abstract meta-model. To model the behaviour,
the model elements of the abstract model (which represent processes), we in-
stantiate sub-classes of AbstractTask and use the after association to define a
temporal relationship between other processes. Basically, the after associa-
tion models that a message is being sent over the network and the process
which is the target of the association is being triggered. All processes sub-
class the domain specific EcoCalculatorAbstractTask which is perfectly modelled
after our scenario. Any new domains will introduce new meta-model elements
sub-classing AbstractTask specific to their domain.

The abstract model is transformed into a concrete one, which replaces the
processes from the abstract model with concrete service implementations. This
model can be defined using the concrete meta-model shown in Figure 2. In

135



A. Petter - Service Composition and Declarative Model-Transformation

this meta-model we defined all possible services for the EcoCalculator scenario.
These are implemented as subclasses of the EcoCalculatorTask.

All possible services must subclass Task which defines the after and before

associations, which have the same meanings as in the abstract model (the
before association is an opposite association for after). Each service then
has three cost values (these are just examples; any other cost values can be
implemented by adding a additional cost properties to Task).

5. Model-to-Model Transformation with Solverational

We assumed that the Solverational model-to-model transformation language
can be used for prototyping service compositions in a purely declarative way.
We developed a transformation performing service composition comprising
non-functional properties using Solverational as a proof of concept.

Solverational [6] is based on QVT Relations [5], which is an OMG standard.
QVT Relations is a declarative model-to-model transformation language. It
uses a relational programming approach to declarative programming. Thereby,
a QVT Relations transformation uses any number of relations to relate source
and target meta-model elements. If a relation is applied on a source model
(in our case the abstract model), the transformation selects a set of model
elements to be transformed into a set of target model elements. This set may
be constrained by so called PropertyTemplateItems which allow for the definition
of expressions which must be satisfied by property values of model elements.
Relations can again be related to each other by defining dependencies (e.g.,
when a relation holds for a model then another relation must hold, too).

Developers of transformations do not explicitly state the creation of new
model elements. Only the transformation engine is in charge of creating new
model elements. Thereby QVT Relations is known to be very declarative and
abstract [3], which is good for focusing on the definition of the problem at
hand and not its implementation.

Solverational extends this approach by allowing inequalities for Proper-

tyTemplateItems. Thereby the whole transformation can be viewed as a means
to define constraint solving problems [6]. Relational transformation languages
comprising constraint solving on attributes are called constraint relational
transformation languages [6].

In Solverational relations can have several target domains. These target
domains represent the sets of model elements which need to be created in the
transformation process. They must be marked as being “alternative” domains,

136



A. Petter - Service Composition and Declarative Model-Transformation

and the transformation engine needs to choose an alternative domain during
the transformation process. This will usually be done by providing the ob-
jective function (see Section 5.1). If several alternatives exist, an objective
function will “guide” the transformation engine in selecting the optimal do-
main and therefore force it to create the optimal model element for the case
at hand. An example is given in Section 6.

5.1 Optimization in Solverational

Optimization can be applied to model-to-model transformations. This
allows to select “optimal” target models. Solverational is the first declara-
tive model-to-model-transformation language which supports the declaration
of target functions making optimization an integral part of transformations.
Its grammar can be found in [7]. Here we derive some general results obtained
by including this feature into any model-to-model-transformation language.
As noted above this eases especially the understanding and implementation of
service composition programs.

Starting from the definition of constraint satisfaction problems over models
which has been studied in [2] we define constraint optimization problems for
model-to-model transformations.

A constraint satisfaction problem over models is a set of constraints C and a
set of models. The variables, which are used in the constraints either represent
attribute values, associations or model elements (or sets of one of these types).
A model will be a valid solution for C, if it satisfies all constraints in C.

Definition 2. A constraint satisfaction problem over models can either be

• over-constraint, i.e. there is no solution to the problem (also called “in-
feasible”)

• under-constraint, i.e. there are many solutions to the problem

• well-defined, i.e. there is exactly one solution to the problem

This notion can be extended towards a notion of constraint satisfaction
problems in connection with model-to-model transformations: in [6] we defined
constraint relational transformations. We generalize our notion:

137



A. Petter - Service Composition and Declarative Model-Transformation

Definition 3. Let Ms be a set of source meta-models, Mt be a set of target
meta-models, C a set of constraints on the target model and T (Ms, Mt, C) be a
transformation definition which contains a set of constraints C over the set of
model elements, attributes or associations. Then T (Ms,Mt, C) is a constraint
model-to-model transformation problem.

When T is applied to a set of concrete source models conforming to Mt

each result of a constraint model-to-model transformation problem is a set of
constraint satisfaction problem over models, because after the transformation
process the constraints out of C apply to the target models Mt. Therefore, we
can apply Definition 2: every result of any constraint model-to-model transfor-
mation problem is also either over-constraint, under-constraint or well-defined.

Based on this notion we define a notion for optimizing constraint relational
transformations.

Optimization problems are comprised of a domain D and an objective func-
tion $, which is to be minimized or maximized, depending on the problem at
hand. If ‖D‖ > 0 (‖X‖ counts the number of elements in X), then the prob-
lem has a solution: a set of domain values for the maximum and minimum
values of $(D).

For constraint optimization problems D is given by a set of variables V
and constraints C, which restrict the possible values for the domains of the
variables. Combining constraint optimization problems and model-to-model
transformations requires that D contains models. Then $ also applies to mod-
els.

Definition 4. A constraint model-to-model transformation optimization prob-
lem T$(Ms,Mt, C, $) is a constraint model-to-model transformation problem
enhanced by an objective function $. $ can be a set of objective functions, one
for each meta-model in Mt.

Proposition 5. Introducing an objective function $ for a transformation T (
Ms,Mt, C), such that the transformation signature is T$(Ms,Mt, C, $) may
only reduce the number of possible solutions for T (Ms, Mt, C), but an objective
function does not affect the number of problems of T (Ms, Mt, C) which are
over-constrained.

This proposition means that introducing an objective function may only
reduce the number of solutions, but never will “destroy” any transformations
by reducing the number of solutions to zero. As a result we derive that, from

138



A. Petter - Service Composition and Declarative Model-Transformation

a theoretical point of view, when trying to reduce the number of possible
solutions, introducing objective functions into a transformation definition is
always at least as good as sticking without one.

Proof. (Recall that ‖X‖ counts the number of elements in set X - X may
either be a set, a set of models or a number of solutions to a constraint solving
problem over models - and therefore may also be applied to transformations)
Assume a given input instance model Ms and a transformation T (Ms,Mt, C),
abbreviated T . T is enhanced to T$(Ms,Mt, C, $), abbreviated T$, by intro-
ducing $. By definition of optimization problem, if there exists at least one
solution, i.e. the transformation is well-defined or under-constraint, then $ will
select a set Mt$ of best solutions from Mt. So, we prove part 1 of Proposition
1:

• T is over-constraint ⇔ ‖Mt‖ = 0. Then $ cannot select any solution and
therefore ‖Mt$‖ = 0 ⇔ T$ is over-constraint.

• T is well-defined ⇔ ‖Mt‖ = 1. Then $ selects the only possible solution
as the optimal solution and therefore ‖Mt$‖ = 1 ⇔ T$ is well-defined.

• T is under-constraint ⇔ ‖Mt‖ > 1 ⇔ ‖Mt‖ ≥ 2. Then there are three
cases:

1. $ does not influence Mt. Therefore Mt = Mt$ ⇒ ‖Mt‖ = ‖Mt$‖ ⇔
T$ is under-constraint.

2. $ selects a single, optimal model from Mt. Therefore Mt ⊃ Mt$ ⇔
‖Mt‖ ≥ 2 > 1 = ‖Mt$‖ ⇔ T$ is well-defined.

3. $ selects a set of optimal models from Mt, but more than one.
Therefore Mt ⊆ Mt$ ∧ ‖Mt$‖ > 1 ⇔ T$ is under-constraint.

Since case two is well-defined (but may also be under-constraint) for T$

and under-constrained for T , we proved, that the number of possible
solutions may be reduced for T$.

Part 2: Assume T$ under-constraint or well-defined. Then ‖Mt$‖ ≥ 1. Then,
by definition of optimization problem ‖D‖ > 0 ⇒ ‖Mt‖ > 0. So, in case T$

under-constraint or well-defined, there are no cases which are over-constraint.
Therefore, introducing an objective function does not affect the number of
transformations which are over-constraint.

139



A. Petter - Service Composition and Declarative Model-Transformation

←−
As case two of part one of the proof is of special interest, we derive a new

definition:

Definition 6. An appropriate objective function is an objective function that
transfers a given under-constraint transformation and set of input models into
a well-defined transformation for that set of source models.

In summary, introducing an objective function may transfer under-const-
raint transformations into well-defined transformations.

If the transformation is under-constraints several solutions (i.e. interpreta-
tions) exist and may be returned by model transformation engines. This will be
confusing for developers who will expect that a transformation is interpreted
alike using different interpreters. Achieving well defined transformations is
therefore highly desirable and should be considered for the case of service
composition.

6. Implementation

We implemented the transformation using the Solverational model-to-model
transformation language.

Thereby, the transformation can be executed using the Solverational trans-
formation engine. The transformation engine in fact is a compiler which com-
piles Solverational transformations into ECLiPSe (Eclipse Constraint Logic
Programming System [1]; not to be confused with the Eclipse JAVA IDE) code
which is then executed using ECLiPSe. Models are represented in ECLiPSe
terms while being executed and re-transformed into EMOF models to provide
output to the Eclipse JAVA IDE.

Figure 3 presents some details of the transformation. The alternative do-
mains known from section 5 are prominent. Here the relation which transforms
the ChemicalLab into the concrete services uses one alternative domain for each
concrete service. The transformation engine chooses the “best” alternative by
means of mathematical optimization.

As presented in Section 3, the transformation uses an optimization function
which has just been copied over from the formulas presented in Section 3.

Using the results derived in Section 5.1 we derive if the transformation will
have an appropriate objective function, which is highly desirable, because the
results will be unambiguous. In fact we cannot tell by the objective function

140



A. Petter - Service Composition and Declarative Model-Transformation

alone whether it is appropriate: if two services will add an identical amount of
costs to the result of the objective function there might be ambiguous output
models. We therefore must make sure by pairwise comparisons (of the alter-
native domains given in the transformation) that such two types of services
do not exist in our transformation. Using the example below we calculate
an upper bound for the number of model elements for which we can be sure
that ambiguous results do not exists. We do this by calculating all smallest
common multiples of all pairs of costs of types of services. If we know that
number, we can calculate the upper bound (by deviding by the largest cost
involved in that pair), which is 1850 model elements in our case. We now know
that ambiguous results will not be possible below the barrier of 1850 services
in a composition. If we will constrain our results to less model elements our
objective function can be assumed to be an appropriate objective function.

As Solverational provides a universal transformation language, applications
developed in Solverational are usually not as fast as special solutions which use,
e.g., low level languages. There are still comparatively few services available
on the Internet, which can be used for our service composition. The approach
is probably fast enough under these circumstances.

While Solverational might not have the same runtime efficiency as man-
ually coded low-level approaches, it provides a very fast and simple way for
developers to generate an implementation at all.

7. State of the Art

The most promising approach was performed by Montanari and Rossi who
used a graph rewriting system in combination with constraint solving to de-
scribe systems and services [4]. However, no universal model-to-model trans-
formation language is used and no optimizations of non-functional properties
are made.

Zhu et al. present an approach using UML to describe semantic aspects of
web services in OWL-S [10]. They use a model-driven approach to generate
Promela descriptions which allow for verification of the composition using the
SPIN tool. However, their approach is very complex and the transformation is
not done declaratively. Our approach could learn from the complex verification
process that is applied in this work.

Quintero and Vincente present conceptional models which can be used in
an MDA approach to model the mappings of processes to services [8]. In
further work these models could be used as an abstraction layer to factor out

141



A. Petter - Service Composition and Declarative Model-Transformation

the mapping from the transformations. However, as Quintero’s and Vincente’s
mappings require a specific tool called OOWS this approach is not solely based
on a declarative approach to model transformation.

Using model weaving, White et al. present an approach which is most
similar to our own [9]. They developed the Java Pet store application using
model weaving and implement the weaving process using a constraint solving
problem. They use model weaving and do not use a declarative model-to-model
transformation which is based on a standard transformation language.

To sum up, Solverational is the only universal declarative model-to-model
transformation language which is able to perform optimization and therefore
our approach has not been investigated before.

8. Conclusions and Future Work

We presented a model-to-model transformation which is able to perform ser-
vice composition while taking into account non-functional properties. The
transformation is purely declarative, which enables developers to focus more
on the problem itself and the understanding of the problem domain. The rela-
tively complex task of developing a composition program is reduced to stating
facts about it. This allows for faster development, as was the case with the
implementation of our scenario, which was developed in 45 minutes, only.

References

[1] Krzysztof R. Apt and Mark Wallace. Constraint Logic Programming using
ECLiPSe. Cambridge University Press, New York, NY, USA, 2007.

[2] Jordi Cabot, Robert Clarisó, and Daniel Riera. Verification of UML/OCL
Class Diagrams using Constraint Programming. In Model Driven Engi-
neering, Verification, And Validation: Integrating Verification And Vali-
dation in MDE (MoDeVVA 2008), 2008.

[3] Fréderic Jouault and Ivan Kurtev. On the Architectural Alignment of
ATL and QVT. In SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing, pages 1188–1195, New York, NY, USA, 2006. ACM
Press.

[4] Ugo Montanari and Francesca Rossi. Graph rewriting, constraint solving
and tiles for coordinating distributed systems. applied categorical struc-
tures. Applied Categorical Structures, 7:7–333, 1999.

142



A. Petter - Service Composition and Declarative Model-Transformation

[5] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. OMG, July 2007. ptc/07-07-07.

[6] Andreas Petter, Alexander Behring, and Max Mühlhäuser. Solving con-
straints in model transformations. In Richard F. Paige, editor, Theory and
Practice of Model Transformations, volume 5563/2009 of Lecture Notes
in Computer Science, pages 132–147. Springer Berlin / Heidelberg, June
2009.

[7] Andreas Petter, Miroslav Zlatkov, and Alexander Behring. The solvera-
tional grammar and a set of evaluation results. Technical report, Tech-
nische Universität Darmstadt, Hochschulstr. 10, 64289 Darmstadt, Jan
2010.

[8] Ricardo Quintero and Vicente Pelechano. Conceptual modeling of service
composition using aggregation and specialization relationships. In ACM-
SE 44: Proceedings of the 44th annual Southeast regional conference, pages
452–457, New York, NY, USA, 2006. ACM.

[9] Jules White, Jeff Gray, and Douglas C. Schmidt. Constraint-based
model weaving. Transactions on Aspect-Oriented Software Development,
open:open, 2009. to appear.

[10] Zhengdong Zhu, Yanping Chen, Ronggui Lan, and Zengzhi Li. Study of
MDA Based Semantic Web Service Composition. Information Technology
Journal, 8:903–909, 2009.

143



A. Petter - Service Composition and Declarative Model-Transformation

Andreas Petter,
Technische Universität Darmstadt,
Hochschulstr. 10, 64289 Darmstadt, Germany,
email: andreaspetter@tk.informatik.tu-darmstadt.de

Stephan Borgert,
Technische Universität Darmstadt,
Hochschulstr. 10, 64289 Darmstadt, Germany,
email: stephan@tk.informatik.tu-darmstadt.de

Erwin Aitenbichler,
Technische Universität Darmstadt,
Hochschulstr. 10, 64289 Darmstadt, Germany,
email: erwin@tk.informatik.tu-darmstadt.de

Alexander Behring,
Technische Universität Darmstadt,
Hochschulstr. 10, 64289 Darmstadt, Germany,
email: behring@tk.informatik.tu-darmstadt.de

Max Mühlhäuser,
Technische Universität Darmstadt,
Hochschulstr. 10, 64289 Darmstadt, Germany,
email: max@tk.informatik.tu-darmstadt.de

144



A. Petter - Service Composition and Declarative Model-Transformation

Figure 2: Concrete Meta-Model

145



A. Petter - Service Composition and Declarative Model-Transformation

. . .

minimize

5*sum(concreteTaskMM::Task.allInstances()->rentingCosts) +

2*sum(concreteTaskMM::Task.allInstances()->executionTime) +

3*sum(concreteTaskMM::Task.allInstances()->reliability);

. . .

top relation ChemicalLabToLabService {

domain s i:abstractTaskMM::ChemicalLab { };

alternative domain t o:concreteTaskMM::AdelphiChemicalLab {

rentingCosts=1500,

executionTime=200,

reliability=301

};

alternative domain t o:concreteTaskMM::BiblisChemicalLab {

rentingCosts=150,

executionTime=2000,

reliability=300

};

alternative domain t

o:concreteTaskMM::BushmillsMaltChemicalLab {

rentingCosts=500,

executionTime=350,

reliability=301

};

. . .

}

. . .

Figure 3: Transformation details

146


