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Abstract 
 In this paper, a forecasting of the heat/cold waves is discussed as a subsystem of the smart 

city concept using the non-anticipative analog method. The prediction algorithm is described by two 
paradigms. First one (short range) uses quantum computing formalism. D-Wave adiabatic quantum 
computing Ising model is employed and evaluated for the forecasting of positive extremes of daily 
mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 
4-, and 5-day historical data, respectively. Ising model’s real-valued weights and dimensionless 
coefficients are calculated using daily mean air temperatures from 119 places around the world as 
well as sea level (Aburatsu, Japan).The proposed forecast quantum computing algorithm is 
simulated based on traditional computer architecture and combinatorial optimization of Ising model 
parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on 
learning sample 1975-2010 yr. Analysis of the forecast accuracy (ratio of successful predictions to 
total number of predictions) on the validation sample 2011-2014 yr shows that Ising model with 
three qubits has 100% accuracy, which is significant as compared to other methods. However, 
number of identified heat waves is small (only one out of nineteen in this case). Second paradigm 
(long range) uses classical computation in the Microsoft Azure public cloud. Here, the forecast 
method identifies the dependencies between the current values of two meteorological variables and 
the future state of another variable. The method is applied to the prediction of heat/cold waves at 
Ronald Reagan Washington National Airport. The data include standard meteorological variables 
from 119 places around the world, as well as sea level (Aburatsu, Japan), average monthly Darwin 
and Tahiti sea level pressures, SOI, equatorial SOI, sea surface temperature, and multivariate ENSO 
index (131 datasets in total). Every dataset is split into two samples, for learning and validation, 
respectively. Initially, the sum of the values at two different locations (minus corresponding 
expectation values) is calculated with lead-time from 14 to 365 days on summation interval of 
length from 1 to 365 days. Objective function defines the distribution based on two input datasets 
with appropriate lead-time and summation interval, which have maximum (or minimum) sum 
compared with the rest of data four times at least (with a minimum time difference of at least 30 
days), when a later extreme event occurs in the learning sample. Specific extreme events at Ronald 
Reagan Washington National Airport were thus predicted on the validation sample, based on rules 
referring to events in earlier years. Some extremes are specifically predicted (up to 26.3% of all 
extremes). The methodology has 100% forecast accuracy with respect to the sign of predicted and 
actual values. Nowadays, the smart city project is developed at School of Engineering and Sciences 
(San Luis Potosi), Tecnológico de Monterrey. The early warning of heat/cold waves as well as 
technical aspect (remote control with Arduino Ethernet Shield and virtual power plant with solar 
energy are emphasized) are the main focuses of the Internet of Things project. 

 

1. Introduction 
 We are living a time of Internet of Things’(IoT) intensive growth when ubiquitous 
computing connects different objects (e.g. cars, computers, fridges, lighting, industrial electronic 
machines) among each other and to people(Dirk Slama et al., 2015; Charalampos Doukas, 2012). 
IoT smart city (Luis Hernández et al., 2012; Hafedh Chourabi et al., 2012) is the main approach to 
enhance quality and performance of urban services, to reduce costs and resource consumption, and 
to increase the usage of renewable resources. Lightweight hardware (e.g. Arduino Ethernet 
Shield;https://www.arduino.cc/en/Main/Arduino Ethernet Shield) and software (e.g. MQTT IoT 

protocol; Valerie Lampkin et al. 2012) create a basis of smart city concept. 
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Success factor of smart city depends considerably on the structure and elements of its 
framework. The eight basic components include the following (Hafedh Chourabi et al., 2012): 
(1) management and organization, (2) technology, (3) governance, (4) policy, (5) people and 
communities, (6) the economy,(7) built infrastructure, and (8) the natural environment. Core to the 
concept of a smart city is the use of the weather forecasting in the natural environment component 
to increase sustainability and to better manage natural resources (Hafedh Chourabi et al., 2012; 
Smart Weather Solutions, 2013).The weather forecasting can be classified into five main groups 
based on lead-time: now casting (a period of 0 to 2 hours ahead), a very short range (up to 12 
hours), a short range(12 to 72 hours), a medium range (72 to 240 hours), an extended range (beyond 
10 days and up to 30 days description of weather parameters, usually averaged and expressed as a 
departure from climate values for that period), and a long range for the period from 30 days up to 
two years (http://www.wmo.int/pages/prog/www/DPS/GDPS-Supplement5-AppI-4.html). 

Nowadays, the numerical forecast models show high accuracy for lead-times up to two 
weeks. However, the power grids (e.g. to reserve a gas for the peaksof the energy consuming), the 
agriculture (e.g. to predict the best period for the planting), the medicine (e.g. to do the appropriate 
preventives for the period of heat wave when the number of cardiologic problems is increased 
dramatically), and some other branches need accurate predictions for the longer period (more than 
two weeks usually). 

Nowadays, a large set of meteorological variables (air temperature, precipitation, wind, 
pressure, visibility, snow depth, etc.) is used for the forecasting at different locations (Kattsov, 
2010). They interact constantly, and some variables may be evaluated using the others in 
accordance with known teleconnection patterns (Nada Pavlovic Berdon, 2013). Thus, the reasoning 
of forecast models must involve the full set of meteorological variables. However, temperature and 
precipitation are the targets of long-range forecasting mainly because of practical needs. 
Precipitation has a close relationship to air temperature and vice versa (Van Den Dool& Nap, 
1985). Correlation analysis shows that precipitation forecasting is effective within two weeks, but 
air temperature over a much longer period (greater than a year; Zubov &Vlasov, 2004). The impact 
is increased further because extremes can be used for the correction of forecasted averages. 

A wide spectrum of forecast models has now been developed (Vilfand, Tishenko, &Khan, 
2003). They are usually classified into synoptic (Vorobiov, 1991), numerical (Belov, Borisenkov, & 
Panin, 1989), and statistical (Onwubolu et al., 2007) groups. The first two are used mainly for short- 

and medium-range forecasting mainly because they produce significant errors at long range and use 
highly complex equations. Heterogeneous algorithms are applied for the weather forecasting – 
seasonal time series (Qiang Song, 2011), neural networks (Gyanesh Shrivastava, 2012), probability 
theory (Sadokov, Kozelcova, & Kuznecova, 2011), ensemble forecasting (Astahova & Alferov, 
2008), distinct scenarios of anthropogenic forcing (Bardin, 2011), dependency on ENSO cycle 
(Higgins, Kim,& Unger, 2004), self-organizing systems based on inductive modelling (Madala & 
Ivakhnenko, 2004), D-Wave adiabatic quantum computing Ising models (Amin, Neil G. Dickson, 
&Peter Smith, 2013),etc. The nonlinearity and sensitivity of existing forecast models, possible small 
errors in initial conditions (dust, sand, pollution, etc.), random observation errors, background 
states, and lack of data combine to reduce the forecast accuracy and complicate the design of 
models (Douglas & Phillip J. Englehart, 2007; Fathalla A. Rihan & Chris G. Collier, 2010; Tyndall 
et al., 2010). 

Inductive self-organizing models show good results when enough of the right data is 
fundamentally not obtainable. In Zubov, 2013 was shown that robust highly accurate long-range 
forecasting of average daily air temperatures might be achieved using inductive modeling. The 
principle used in that work to predict high-impact weather events substantiates the interaction of 
different climate system components centered in different places. The first stage of the forecast  
reasoning model is the selection of three most data-related places using the Pearson product-
moment correlation coefficient, which has to be greater than 0.8 in absolute value. The second stage  
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is finding weights of the forecast model to use with the inductive modeling objective function 
“minimum of regularity plus maximum of conjunctions” with a combinatorial algorithm. This 
approach corresponds to the teleconnections (Glantz, Katz, & Nicholls, 1991; Nada Pavlovic 
Berdon, 2013) because of a linkage between weather changes occurring in widely separated regions 
of the globe. 

Public cloud Software-as-a-Service is a high-performance tool for NP-complex algorithms 
(Collier & Shahan, 2015). In particular, Windows Azure virtual machines (VMs) may host the NP-
complex apps. If forecast software is developed using Windows Forms, VMs can use standard 
operating systems Windows Server 2008/2012 R2 to start executable files. However, reasoning of 
forecast models takes a lot of time – two weeks for one location approx. Hence, new concept using 
the adiabatic quantum computing is proposed for the computational process speed-up (Dahl, 2015; 
Smelyanskiy et al., 2012; McGeoch & Wang, 2013). Nowadays, different quantum computer types 
are discussed (e.g. quantum logic gates, one-way quantum computer, quantum cellular automata, 
topological quantum computer, adiabatic quantum computer), but only adiabatic quantum computer 
was built by D-Wave Systems Company. D-Wave One has its roots in a 16-qubit processor built in 
2006. It led to the firm’s 28-qubit processor in 2007, and then its 128-qubit processor in 2010. D-
Wave Two with 512-qubit processor was completed in 2013 (Dahl, 2015). 

Hence, the main goal of this paper is to investigate the heat/cold waves’ early warning 
subsystem of smart city framework. A long-range forecasting non-anticipative analog methodology 
is the basic approach as well as cloud/quantum computation and lightweight IoT protocols. This 
project is a subpart of the intelligent algorithms’ development for the smart city at School of 
Engineering and Sciences, campus San Luis Potosi, Tecnológico de Monterrey. The work focuses 
the remote control with Arduino Ethernet Shield and virtual power plant with solar energy. 

This paper is organized as follows: In Section 2, the principle of non-anticipative analog 
long-range forecasting of heat/cold waves based on the self-organizing approach is shown; 
Microsoft Azure cloud classical computation of the forecast models is discussed as well. In 
Section 3, D-Wave adiabatic quantum computing using Ising model is presented for the short-range 
forecasting of heat waves. In Section 4, the experiment with IoT MQTT lightweight protocol is 
described using heterogeneous hard- (Arduino Ethernet Shield and HP ProBook 650 G1 laptop) and 
software (Mosquitto MQTT broker, C# console and Arduino apps). Conclusions are summarized in 
Section 5. 
 

2. Principle of the non-anticipative analog long-range forecasting of heat/cold waves 
using Microsoft Azure cloud high-performance computing 

It is assumed that some event (or group of events) A(j) has an impact on another event B(j’), 
where B(j’) – extreme air temperature (defined as two standard deviations away from the 

climatologic baseline), j, j’ – event dates and (j’-j)>0. The correlation analysis (Zubov, 2013) shows 
that enough of the right data for the average daily air temperatures is not obtainable in principle. In 
this case, four-fold repetitions of extreme air temperatures for a give lead time (j’-j) after the same 
A(j) on the learning sample is taken to establish the validity of A(j) as a predictor. The dependency 

thus discovered is used as objective function for prediction. A non-anticipative long-range forecast 
methodology will be illustrated bythe Ronald Reagan Washington National Airport air temperature 
extremes.  

NOAA Satellite and Information Service (http://www7.ncdc.noaa.gov/CDO/cdo) is used as a 
main free data source from 1973 to 2014, providing 119 average daily air temperature datasets from 
around the world, Ronald Reagan Washington National Airport’s mean visibility in miles, mean 
wind speed in knots, mean dew point in Fahrenheit, maximum and minimum temperatures in 

Fahrenheit reported during the day, Darwin and Tahiti sea level pressures, southern oscillation index 
(SOI), equatorial SOI, sea surface temperature, multivariate ENSO index (average monthly). In 
addition, sea level data (Aburatsu, Japan; http://ilikai.soest.hawaii.edu/woce/wocesta.html; average 

daily) is used. Hence, 131 datasets are taken into consideration – Xi={xi1, xi2, …, xij, …}, 131,1=i , 

15340,1=j  (j=1 corresponds to Jan 1, 1973, j=15340 – to Dec 31, 2014; some stations are presented 
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in Table 1). These datasets and resources were selected because of free public access, air 
temperature daily averages, and data archives since 1973 at least. Nowadays, the statistic of extreme 
temperature anomalies is incomplete, which does not allow to use the detailed weather data 
generators (Adelard et al., 2000).Preprocessing standardizes the data using climatological values 

(baseline) ijx  calculated as expectations for the appropriate date from Jan 1, 1973 to Dec 31, 2013 

(e.g. x114,4=39.30F, 4,114x =37.50F, *

4,114x =-1.80F): 

ijijij xxx −=* .      (1) 

A value is considered extreme if the difference between this value and its expectation is greater 
than two standard deviations (SD) in absolute units. Considering the Ronald Reagan Washington 

National Airport dataset, positive +

+j
x ,114

 ( 364,1=+j ) and negative −

−j
x ,114

 ( 309,1=−j ) air temperature 

extremes are studied on the learning sample ( ∈−+

−+ jj xx ,114,114 , E, E – set of extremes). Data are split into 

learning (from 1975 to 2010: 13879,731=j ; years 1973 and 1974 are reserved because of lead-time 

l  and summation interval of length n which are up to one year each) and validation (from 2011 to 

2014: 15340,13880=j ) samples. 

Table 1. Some stations (i.e. number of datasets) around the world, which are used for the forecast 
models’ design. 

i Country or region Station (named by NOAA)  i Country or 
region 

Station (named by NOAA) 

1 Algeria Annaba  113 United 
Kingdom 

Heathrow Airport 

2 American Samoa Tafuna-Pago International AP  114 USA Ronald Reagan Washington 
National Airport 

3 Antigua And 
Barbuda 

V C Bird INTL  115 Uruguay Carrasco INTL 

4 Argentina MinistroPistarini INTL  116 Uzbekistan Yuzhniy 

5 Aruba Reina Beatrix INTL  117 Vanuatu Aneityum 

6 Australia Canberra Airport  118 Venezuela Simon Bolivar INTL 

... ... ...  119 Vietnam Danang INTL 

 
Considering the Ronald Reagan Washington National Airport dataset, the objective function that 

defines an event A(j) as a precursor to an extreme event B(j’) is based on situations on the learning 
sample where 

( )
[ ]

lnii

Nn
Ll

j

Ex

Iii

n

k

lkjilkji Maxxx
j ,,

13879,731'

,

1

0

*

)'(,

*

)'(,
21

*
',114

21

21
>+

∈
∈
=

∈
∈

−

=
−−−−∑ ∨ ( )

[ ] lnii

Nn
Ll

j

Ex

Iii
n

k

lkjilkji Minxx
j ,,

13879,731'

,
1

0

*

)'(,

*

)'(,
21

*
',114

21

21
<+

∈
∈
=

∈
∈

−

=
−−−−∑ , (2) 

[ ]
( ) [ ]

[ ]
[ ]
[ ]365,1

365,14
131,

131,1

1

0

*

)(,

*

)(,
13879,731,,

12

121

*
,114

21

max

=
=
=
=

−

=
−−−−

∉
=

∑ +≡

n
l

ii
i

n

k

lkjilkji

Ex

jlnii
xxMax

j

,
[ ]

( ) [ ]
[ ]
[ ]
[ ]365,1

365,14
131,

131,1

1

0

*

)(,

*

)(,
13879,731,,

12

121

*
,114

21

min

=
=
=
=

−

=
−−−−

∉
=

∑ +≡

n
l

ii
i

n

k

lkjilkji

Ex

jlnii
xxMin

j

 

(k – temporal summation index (days); n – length of summation interval (days); jjl −= '  – lead-time 

(days); Iii ∈21 , , Nn∈ , Ll∈  for interrelated sets I ⊂ [1,131], N ⊂ [1,365], L ⊂ [14,365] 

ofmeteorological variables, possible lengths of summation intervals, and lead-times,respectively). 
Cardinality of a set I equals two because of high computational complexity of the proposed non-
anticipative analog algorithm. The sets I, N, and Lencompass the precursor events A(j) for a given 
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extreme event B(j’), for ljj −= ' . A given event is defined by a unique tuple (i1, i2, n, l ) together 

with Min and Max. Then, input datasets i1 and i2 with appropriate lead-time l  and summation 
interval of length n are selected to define a prediction rule if the sum of meteorological variables 
from datasets i1 and i2 is greater than maximum Max (or less than minimum Min) four times at least 

(with a time difference greater than 30 days) on the learning sample, for cases where Ex j ∈
*

',114
 only, 

i.e. where there is an extreme event B(j’) at day j’. Hence, every extreme selection rule includes six 

parameters – the indices of two datasets i1 and i2, the lead-time l , the summation interval of length 
n, maximum Max, and minimum Min. Max and Min are computed as the maximum and minimum 

values of the sums over the datasets i1 and i2, with the same summation interval n and lead-time l , 

where an extreme event does not occur on the learning sample (i=114 is the index of the Ronald 
Reagan Washington National Airport dataset, and has to be altered for prediction of extreme events 
in other locations). 

A non-anticipative analog method consists of four main steps: 
1. Generation of the prediction rules. 
2. Analysis of the prediction rules. The rules with time slots, which are not concentrated at 

the same frame, are excluded. 
3. Generation of possible extremes. 
4. Analysis of the generated possible extremes. The extremes with time slots, which do not 

correspond to the time slots of the appropriate rules, are excluded. 
The results of the heat/cold waves’ prediction from 2011 to 2014 at different locations 

(places are selected randomly) are presented in Table 2. 

Table 2. Forecast accuracy of the heat/cold waves’ predictions from 2011 to 2014 at different 
locations. 

i Country or region Station (named by NOAA) Forecast accuracy for 
the heat waves, % 

Forecast accuracy for 
the cold waves, % 

1 Algeria Annaba 36.4 0 

22 China Beijing 0 28.6 

70 Macedonia Skopje 0 7.1 

96 Russia Dolgoprudnyj 0 7.7 

112 Ukraine Zhulyani 0 33.3 

114 USA Ronald Reagan Washington National Airport 26.3 0 

 
 Analysis of the presented in Table 2 results shows that heat waves can be predicted with 
accuracy up to 36.4%, cold waves – up to 33.3%. In addition, this methodology has 100% accuracy 
with respect to the sign of predicted and actual values (Zubov, 2015). 

The forecast software was developed using Windows Forms and Delphi integrated 
development environment. Hence, VMs can use standard operating systems Windows Server 
2008/2012 R2 to execute files. In Jul 2014, presented methodology got the Microsoft Research 
Climate Data Award, which allowed to design the Microsoft Azure public cloud with 32 processors 

Intel(R) Xeon(R) E5-2660 2.20 GHz. The six D-series VMs from Climate Data Award as well as 
one A-series standard tier VM from Windows Azure Educator grant (two Intel(R) Xeon(R) E5-

2673 2.4 GHz) have been designing the forecast models. Azure management portal and screen shot 
of the VM are shown in Fig. 1. 
 Visualization of the forecasted data is based on Google Earth virtual globe (Kelly L. 
Murdock, 2009). Here, KMZ file represents the geographic placemarks in Google Earth. KMZ 
loads web-site faster because it is a compressed form of KML file. Prototype was developed using 

ASP.NET technology and hosted in Windows Azure public cloud against 
http://gearth.azurewebsites.net. Screenshot is shown in Fig. 2. 
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3. D-Wave quantum computing Ising model: a case study for the short-range 
forecasting of heat waves 

 Nowadays, only D-Wave Systems Company produces commercially the 2nd generation 
adiabatic quantum computer with up to 512 flux qubits (project code name ″Vesuvius″). They are 
microscopic loops of niobium metal that are capable of quantum behavior at low temperatures. 
Hence, electrical currents in the loops can flow in clockwise (+1) or counterclockwise (-1) 
direction, or both, when in quantum superposition. Qubits are connected to neighbors according to 
the topology of quantum processor. The hardware is controlled by a framework of Josephson 
junctions that allow individual qubit values to be stored and read, and to influence the states of 
neighboring qubits. D-Wave computer uses quantum annealing to minimize the dimensionless 
energy of an Ising model 

M(s|h,J)= ∑∑
∈∈

+
)(),(

,

)( GEnm

nmnm

GVm

mm ssJsh ,    (3) 

 

Figure 1. Azure management portal and VM with two Delphi desktop apps 

 

 

 

Figure 2. Screenshot of the Google Earth web-site’s prototype on the visualization of heat/cold waves 
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where sm∈{-1,+1} – spin variables indexed by the vertices V(G) of graph G with allowed pairwise 
interactions given by the edges E(G) of G; G – graph which represents the topology of quantum 

processor; hm∈[-2,2], Jm,n∈[-1,1] – real-valued weights and dimensionless coefficients, respectively. 
 Because of hm and Jm,n ranges, the preprocessing standardizes the data using climatological 

values ijx  calculated as expectations for the appropriate date from Jan 1, 1973 to Dec 31, 2013: 

.1
max

1 * ≤
−

−
=≤−

ijij

ijij

ij

xx

xx
x      (4) 

 For the Ronald Reagan Washington National Airport (i=114), x114,4=39.30F, 4,114x =37.50F, 

ijij xx −max =23.7
0
F, and hence 

*

4,114x =0.076. 

 Data (daily mean air temperatures from 119 places around the world as well as sea level at 

Aburatsu, Japan) are split into learning (from 1975 to 2010: 13879,731=j , 364 extremes for 

i=114) and validation (from 2011 to 2014: 15340,13880=j , 42 extremes for i=114) samples. 

Considering the Ronald Reagan Washington National Airport dataset, positive extremes +

+j
x ,114

∈E 

( 364,1=+j , E – set of extremes) are studied on the learning sample. 

 Model (3) with three qubits is as follows: 

M(s|h,J)= ( ) +++++ −−−−− 21

*

)2(
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where 
*

)1(1 2 −= jixh ; 
*

)2(2 2 −= jixh ; 
*

)3(3 2 −= jixh ; ( )*

)2(

*

)1(2,1 5.0 −− += jiji xxJ ; ( )*

)3(

*

)1(3,1 5.0 −− += jiji xxJ ; 

( )*

)3(

*

)2(3,2 5.0 −− += jiji xxJ ; Exij ∈
*

. 

 Kets=| s1, s2, s3 >represents a 3-day history. 
  

In the forecast algorithm, kets*= *

3

*

2

*

1 ,, sss  together with selected dataset i* minimize Ising model 

(3) given min{M(s*|h,J)| Exij ∈
*

} less than M(s*|h,J)| Exij ∉
*

. D-Wave One/Two quantum 

computers may execute the forecast algorithm using one eight-qubit cell only. Several cells can 
process several data blocks in parallel. 

 The different number of qubits (from 2 to 5) represent 2-, 3-, 4-, and 5-day historical data, 

respectively. It was found that qubit individual (e.g. three-qubit individual s*= *

3

*

2

*

1 ,, sss ) together 

with selected dataset i* minimize Ising model (3) givenM(s*|h,J)| Exij ∈
*

 less than M(s*|h,J)| Exij ∉
*

. 

The proposed forecast quantum computing algorithm is simulated using the traditional computer 
architecture and combinatorial optimization of Ising model parameters. 

 A case study for prediction of the heat waves at Ronald Reagan Washington National 

Airport shows the operability of the forecast quantum computing algorithm – three-qubit model 

with ten prediction rules shows 100% forecast accuracy on validation sample. However, the number 

of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 

5 qubits have 20% (5 prediction rules), 3.8% (41 prediction rules), and 3.8% (84 prediction rules) 

accuracy, respectively. 

The presented three-qubit forecast model is applied for the prediction of the heat waves at 
other five locations:AurelVlaicu, Romania – accuracy is 28.6%; Bratislava, Slovakia – accuracy is 



BRAIN. Broad Research in Artificial Intelligence and Neuroscience 

Volume 6, Issues 1-2, September 2015, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print) 

 

 50 

21.7%; Brussels, Belgium – accuracy is 33.3%; Sofia, Bulgaria – accuracy is 50%; Akhisar, Turkey 
– accuracy is 21.4%. These predictions are not ideal, but not zeros. They can be used independently 
or together with other predictions generated by different method(s). 

 
4. Connecting Arduino Ethernet Shield and C# console app MQTT subscribers using 

Mosquitto message broker and publisher 
 As it was mentioned above, IoT needs the appropriate lightweight protocols to transmit the 
info because web-protocols (e.g. TCP) generate several times more traffic usually for IoT (e.g. 
remote connection to the Arduino weather station). MQTT (Message Queuing Telemetry Transport) 
and CoAP (Constrained Application Protocol) IoT protocols are mainly in use nowadays 
(http://postscapes.com/internet-of-things-protocols). In this activity,Arduino Ethernet Shield and C# 
console app are connected by MQTT Mosquitto open source software (http://mosquitto.org).Similar 
work presented against https://iotguys.wordpress.com/2014/11/13/arduino-with-mqtt/.The activity 
consists of the following steps: 
 1. Download and installation of Mosquitto software gainst http://mosquitto.org/download/. 
 2. Download and installation of the latest Arduino software against 
http://arduino.cc/en/main/software. 
 3. Development of the MQTT subscriber based on C programming language in Arduino 
IDE. 
 3. Development of the MQTT subscriber based on C# console app (laptop HP ProBook 650 
G1 and Windows 10 are used) in Visual Studio. 
 Screen shot of the software is shown in Fig. 3. 
 

 

Figure 3. Screenshot of the MQTT broker, publisher, and two subscribers. 
 

 
5. Conclusions 

 In this paper, a retrospective study of the non-anticipative analog methodology is presented 
for the early warning of heat/cold waves. The natural environment subsystem of smart city 
framework uses this approach to enhance quality of the power grids, the agriculture, the medicine, 
and other branches. 

An Ising model is employed and evaluated for the short-range forecasting of heat waves. 
The different number of qubits (from 2 to 5) represent 2-, 3-, 4-, and 5-day historical data, 
respectively. Qubit individual together with selected dataset i

* minimize Ising model (3) given 

M(s*|h,J)| Exij ∈
*

 less than M(s*|h,J)| Exij ∉
*

. The proposed forecast quantum computing algorithm 

is simulated using the traditional computer architecture and combinatorial optimization of Ising 
model parameters. The presented three-qubit forecast model is applied for the prediction of the heat 
waves at six locations: Ronald Reagan Washington National Airport, USA – accuracy is 100%; 
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AurelVlaicu, Romania – accuracy is 28.6%; Bratislava, Slovakia – accuracy is 21.7%; Brussels, 
Belgium – accuracy is 33.3%; Sofia, Bulgaria – accuracy is 50%; Akhisar, Turkey – accuracy is 
21.4%. However, the number of identified heat waves is small (e.g. only one out of nineteen for the 
Ronald Reagan Washington National Airport). 
 The classical cloud computation by Windows Azure VMs and data visualization by Google 
Earth virtual globe are discussed for the non-anticipative long-range forecasting of heat/cold waves. 
Simulation results show that heat waves can be predicted with accuracy up to 36.4%, cold waves – 
up to 33.3%. Six high-performance D-series VMs and one A-series standard tier VM with Windows 
Server 2012 R2 operating system have been used for the reasoning of the forecast models. VMs 
were hosted in the Windows Azure public cloud. Visualization of the forecasted data is based on 
Google Earth virtual globe and ASP.NET web-site hosted in Windows Azure public cloud against 
http://gearth.azurewebsites.net. The short- and long-range forecast methods have 100% accuracy 
with respect to the sign of predicted and actual values. 
 The experiment with IoT MQTT lightweight protocol using heterogeneous hard- (Arduino 
Ethernet Shield and HP ProBook 650 G1 laptop) and software (Mosquitto MQTT broker, C# 
console and Arduino apps) shows the real time operation of the presented approach. 
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