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Abstract 
Assembler Encoding is a neuro-evolutionary method in which a neural network is 

represented in the form of a simple program called Assembler Encoding Program. The task of 
the program is to create the so-called Network Definition Matrix which maintains all the 
information necessary to construct the network. To generate Assembler Encoding Programs 
and the subsequent neural networks evolutionary techniques are used.  

The performance of Assembler Encoding strongly depends on operations used in 
Assembler Encoding Programs. To select the most effective operations, experiments in the 
optimization and  the predator-prey problem were carried out. In the experiments, Assembler 
Encoding Programs equipped with different types of operations were tested. The results of the 
tests are presented at the end of the paper. 
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1. Introduction 
Using evolutionary techniques to generate Artificial Neural Networks (ANNs) is 

usually connected with encoding the latter. There are many ANN encoding methods, e.g. 
connectivity matrix proposed by Miller, Todd and Hedge [9], Kitano’s matrix rewriting 
encoding scheme [7], Gruau’s cellular encoding [5], edge encoding proposed by Luke and 
Spector [8], Symbiotic Adaptive NeuroEvolution devised by Moriarty and Miikkulainen [10], 
the schemes proposed by Nolfi and Parisi [11] and Cangelosi, Parisi and Nolfi [2] or 
Cooperative Synapse Neuroevolution proposed by Gomez et al. [4]. Assembler Encoding 
(AE) [15-18] is one of such methods. It originates from the cellular and edge encoding but it 
also has features common with Linear Genetic Programming presented, among other things, 
in [12].  AE represents ANN in the form of Assembler Encoding Program (AEP) whose 
structure is similar to the structure of a simple assembler program. The task of AEP is to 
create Network Definition Matrix (NDM) containing all the information necessary to produce 
ANN. The process of ANN construction consists of three stages. First, Genetic Algorithm 
(GA) is used to produce AEPs. Next, each AEP creates and fills up NDM. Finally, NDM is 
transformed into ANN (Fig. 1).   

 
Figure 1. Diagram of AE 
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To date, AE has been tested in three different testing problems, i.e. in an optimization 

problem, in a predator-prey problem and in an inverted pendulum problem. In addition to 
simple testing problems, the method was also applied in a real problem in which a task was to 
generate a neuro-controller for a team of autonomous underwater vehicles (results of the 
experiments with the vehicles will be presented in another paper). In all the tests, the method 
demonstrated fairly good effectiveness. Noteworthy is the fact that it successfully competed 
with different direct neuro-evolutionary and reinforcement learning methods in problems 
which rather prefer the latter of them [18]. However, all the tests also showed that 
effectiveness of AE strongly depends on operations used in AEPs. There were situations when 
it was not able to produce any ANN in satisfactory time. But, it was enough to replace one or 
two operations with other ones or to add additional operations to a set of operations available 
to AEPs to improve the situation.  

In AE, many different variants of operations can be used.  The operations can be 
simple and represented in the form of short chromosomes. Another solution is to use 
operations with complex behavior and with a longer genotypic representation. AEPs can be 
built based on many different operations or based on a few the most effective ones. To form 
AEPs four parameter operations or three-parameter ones (both types of operations are 
described further) can be used. To test all the possibilities specified above, experiments in the 
optimization and in the predator-prey problem were carried out. The main goal of the 
experiments was to select the most effective operations for AE. In the experiments, different 
types of operations with different behavior and with different form of genotypic 
representation were tested.  

The paper is organized as follows: section 2 is a short introduction to AE; section 3 is 
the report on the experiments, and section 4 is the summary. 
 

2. Fundamentals of AE 
In AE, ANN is represented in the form of AEP. AEP is composed of two parts, i.e. a 

part including operations and a part including data. The task of AEP is to create and fill in 
NDM with values. To this end, AEP uses the operations. The operations are run in turn. When 
working the operations can use data located at the end of AEP (Fig. 1). Once the last 
operation stops working the process of creating NDM is completed. NDM is then transformed 
into ANN. 

NDM determines architecture of ANN. Each element of the matrix determines 
synaptic weight between corresponding neurons. For example, componenti,j defines the link 
from neuron i to neuron j. Elements of NDM that are unimportant from the point of view of 
the process of ANN construction, for example because of the assumed feed-forward topology 
of ANN, are neglected during ANN building. Apart from the basic part, NDM also possesses 
additional columns that describe parameters of neurons, e.g. type of neuron (sigmoid, radial), 
bias etc. 
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Figure 2. Example AEP and its NDM (AEP presented on the right includes four operations and four memory 
cells. Operation 0 updates a single entry in NDM. To this end, it uses three consecutive memory cells. The first 
two cells store an address to the element in NDM being updated. To determine the final address of the element 
mentioned, values of registers are also used. The third memory cell used by Operation 0 stores a new value for 

the element. The value is scaled before NDM is updated.  A pointer to the memory part of AEP where three cells 
used by Operation 0 are located is included in Operation itself.) 

 
2.1. Operations 
AEPs can use various operations. The main task of most operations is to modify 

NDM. The modification can involve a single element of NDM or group of elements. In AE, 
we deal with two types of operations, i.e. with the four-parameter and three parameter 
operations. The four-parameter operations can have maximum four parameters. Their 
characteristic is that they always change elements of NDM that constitute some tight integrity. 
Each operation works in a similar way, i.e. the first element to change is chosen at the 
beginning, then the neighbor of the chosen element is altered, then the neighbor of the chosen 
element neighbor is updated and so on. Fig. 3 and Fig. 4 present two example four-parameter 
operations. The task of CHG presented in Fig. 3 is to change a single element in NDM. The 
new value for the element, stored in parameter p0, is scaled to <-1,1>. An address of the 
element depends on both parameters p1, p2 and registers R1, R2. A role of the registers is 
detailed in the further part of the paper.  

 

 

CHG(p0,p1,p2,*) 
{ 
row=(abs(p1)+R1)mod NDM.width; 
column=(abs(p2)+R2)mod NDM.height; 
NDM[row,column]=p0/Max_value; 
} 

 
Figure 3. CHG operation 

 
CHGC0 presented in Fig. 4 modifies elements of NDM located in the column indicated 

by the parameter p0 and the register R2. The number of elements updated by the operation is 
stored in the parameter p2. An index of the first updated element is located in the register R1. 
To update elements of NDM, CHGC0 uses data from AEP. An index to a memory cell 
including the first data used by CHGC0 is stored in p1. 
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CHGC0(p0,p1,p2,*) 
{ 
column=(abs(p0)+R2)mod NDM.height; 
numberOfIterations=abs(p2)mod NDM.width; 
for(i=0;i<=numberOfIterations;i++) 
 { 
 row=(i+R1)mod NDM.width; 
 NDM[row,column]=D[(abs(p1)+i)mod D.length]/Max_value; 
 } 
}  

Figure 4. CHGC0 operation changing part of column in NDM 
 

The characteristic of operations presented above is that they always change a block of 
neighboring elements in NDM. It is impossible for the altered elements to be located in 
different remote fragments of the matrix. The three-parameter operations which always have 
three parameters, can perform their task in the way the four-parameter ones are unable to 
perform, i.e. they can modify separate areas of NDM (a genotypic representation is another 
difference between the three and four-parameter operations). CHG_MEMORY presented in Fig. 
5 is the example of three-parameter operation. It modifies elements of NDM indicated in 
list1 and list2. The lists mentioned include numbers of columns and rows of NDM 
which, in turn, indicate elements of the matrix updated by the operation. All possible 
combinations of columns and rows considered in both lists determine a set of elements that 
are modified by the operation. The parameter p0 indicates a place in the memory part of AEP 
where new values for updated elements can be found. 

 
CHG_MEMORY(p0,list1,list2) 
{ 
for(i=0;i<list1.length;i++) 
 for(j=0;j<list2.length;j++) 
  { 
  row=(list1[i]+R1)mod NDM.width; 
  column=(list2[j]+R2)mod NDM.height; 
  NDM[row,column]= 

D[(abs(p0)+i*list2.length+j)mod D.length]/Max_value; 
  } 
 } 

 
Figure 5. CHG_MEMORY operation changing elements of NDM indicated in list1 and list2 

 
In addition to the operations whose task is to modify a content of NDM, AE also uses 

a jump operation denoted as JMP. The jump makes it possible to repeatedly use the same code 
of AEP in different places of NDM. It is possible thanks to changing values of the registers 
once the jump is run. An example use of the jump is demonstrated in Fig 6. The program 
presented in the figure proceeds as follows. First, both registers are initiated to 0. Then, the 
first two operations are carried out, the result of which is visible in the top left corner of 
NDM. In the next step, the jump, denoted in the figure as JMP(0,2,0,*), is run. It first 
updates values of the registers and then control goes back to the first operation of AEP. R1 is 
set to 0 (Memory cell 0) whereas R2 to 2 (Memory cell 1). At this point, the two operations 
preceding the jump are carried out once again. This time, however, both operations update a 
different fragment of NDM. Since the jump is run twice, each time with different values of 
the registers, the first two operations of AEP are executed in three different areas of NDM. 
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Figure 6. JMP operation 

 
An additional group of operations, used in AE, are operations whose task is to change 

the size of NDM. In AE, the initial size of NDM is encoded in the chromosome with data 
(Fig. 7). Then, each AEP has a potential to modify the size of NDM through using operations 
ADDN and DELN. ADDN adds new rows and columns to NDM. This procedure corresponds to 
adding new neurons to ANN, neurons unconnected with the rest of ANN. The addition of new 
neurons does not destroy connections established in ANN. The task of DELN is to remove a 
single neuron from ANN. The elimination of the neuron practically takes place through 
removing a corresponding row and column from NDM.  
 

 
Figure 7. Using ADDN and DELN by AEP 

 
2.2. Evolution in AE 
In AE, AEPs, and in consequence ANNs are created by means of GAs. The evolution 

of AEPs proceeds according the scheme which is an adaptation of the idea of evolving co-
adapted subcomponents proposed by Potter and De Jong [13,14]. To create AEP, the scheme 
mentioned combines operations and data from various populations. Each population including 
chromosomes-operations (Each chromosome-operation encodes the type of operation, e.g. 
CHGC0, and parameters of operation. Implementations of operations do not evolve) has a 
number assigned, determining the position of the operation from the population in AEP. In 
this approach, the number of operations corresponds to the number of populations including 
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chromosomes-operations. Each population delegates exactly one representative to each AEP. 
In the beginning, AEPs have only one operation and a sequence of data. Both the operation 
and data come from two different populations. Further populations including operations are 
successively added if AEPs cannot accomplish progress in performance over the assumed 
number of co-evolutionary cycles (we use term “co-evolutionary cycle” to differ it from the 
evolutionary generation that takes place inside a single population with operations and data).   

 

 
Figure 8. AEP encoding scheme 

 
In AE, the operations can be encoded in two ways. The four-parameter operations are 

encoded in the form of binary strings. For example, CHG presented in Fig. 3 is encoded in the 
form of binary string including five blocks of genes. The first block determines a code of the 
operation (e.g. binary 00000 indicates that we deal with CHG) while the remaining blocks 
contain a binary representation of four parameters of the operation. 

 

 
Figure 9.  Encoding CHG_MEMORY 

 
The three-parameter operations are represented in a somewhat different way. Their 

encoded form resembles classifiers from Learning Classifier Systems [1,3,6]. Similarity 
between classifiers and the three-parameter operations results from the use of the so-called 
don’t care symbol “#” in both cases. Each encoded operation consists of four blocks of genes. 
The first single-bit block determines one of two possible variants of the operation (see 
Appendix 1). The second and third block indicate location of changes performed by the 
operation (don’t care symbol is used for this purpose). The last block specifies the value of an 
integer parameter of the operation. The example use of don’t care symbol to locate changes in 
NDM is illustrated in Fig 9. 
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3. Experiments 
The main goal of the experiments was to give the answer to the following questions: 

1. Should AEPs be created based on large set of different operations whether a better 
solution is to create them based on a small set including exclusively the most effective 
operations?  

2. Should AEPs use simple operations with a short genotypic representation whether a 
better solution is to use more complex and flexible operations but with a longer 
genotypic representation? 

3. Should AEPs use the three-parameter operations whether a better solution is to use the 
four-parameter ones?  
The tests presented in this section were carried out both in the optimization problem 

and in the so-called predator-prey problem. 
   

3.1. Experiments in the optimization problem 
In AE, ANNs are generated by means of AEPs whose task is to create NDMs. Such 

course of action makes it possible to take advantage of AE in the optimization problem, in 
which a solution can be presented in the form of a matrix. Even though searching for optimal 
matrices is not the target use of AE, experiments in this field should provide useful 
information about differences in performance between AEPs using various types of 
operations. This knowledge can be employed in further experiments to reduce the number of 
tested variants of AE only to those which have produced satisfactory results in the 
optimization problem.    
 
 

3.1.1 Objective functions 
Three different objective functions were used in the experiments. All the functions 

were constructed so as to test how AEPs are able to repeatedly use the information included in 
themselves. To create optimal matrices for the functions, AEPs could use two methods. The 
first method uses the so-called “brute force”, i.e. creates matrices by means of a large number 
of operations. The other method intelligently uses jumps. All the objective functions are 
presented below. 
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In all the cases presented above, the task of AEPs was to find 10x10 matrix 
maximizing a selected objective function. The global maximum for all the test functions was 
zero. Optimal matrices for each test function are presented in Fig. 10.  
 

3.1.2 Experimental results 
In the experiments, the following sets of operations were tested (a description of all 

the operations specified below is presented in Appendix 1): 
• Set 1 (all four-parameter operations used during the research reported in [15,17]): 

CHG, CHGC0, CHGC1, CHGC2, CHGC3, CHGC4, CHGR0, CHGR1, 
CHGR2, CHGR3, CHGR4, CHGM0, CHGM1, CHGM2, JMP; 

• Set 2 (the most effective four-parameter operations used in the previous research): 
CHGC0, CHGC3, CHGR0, CHGR3, CHGM0, CHGM2, JMP;  

• Set 3: simpler variants of operations included in Set 1, the simpler operations, unlike 
their more complex counterparts, always changed either the whole column or the 
whole row or the whole matrix, operations from this set had maximally three 
parameters; 

• Set 4 (the three-parameter operations and jumps): CHG_VALUE, CHG_MEMORY, 
JMP. 
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Figure 10 Optimal matrices for functions f1 (a), f2 (b), and f3 (c) 

 
CHGC0(p0,p1,*) 
{ 
column=(abs(p0)+R2)mod NDM.height; 
for(i=0;i<= NDM.width;i++) 
 NDM[i,column]=D[(abs(p1)+i)mod D.length]/Max_value; 
}  

 
Figure 11 Simpler variant of CHGC0 presented in Fig. 4 

 
Table 1 shows the results of the tests. Each cell in the table includes the following: the 

average result obtained for 30 evolutionary runs (top value), the result of the best AEP 
(middle value), and the sum of the number of operations and data in the best AEP (number of 
operations + number of data; bottom value). 
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Table 1. Using AEPs with different operations in the optimization problem 
 

 Set 1 Set 2 Set 3 Set 4 

F1 -0.2 
0 
5+8 

-0.42 
0 
6+8 

-7.86 
0 
7+12 

-0.04 
0 
6+7 

F2 0 
0 
7+3 

0 
0 
6+5 

-0.19 
0 
5+3 

0 
0 
2+2 

F3 -0.66 
-0.6 
12+6 

-0.94 
-0.73 
12+7 

-2.04 
-1.9 
12+7 

-0.6 
0 
12+6 

 

The tests revealed that the best matrices are produced by means of the three-parameter 
operations (Set 4). In all the cases, AEPs with the three-parameter operations were able to 
generate the optimal matrices. AEPs including operations from Set 1 and Set 2 achieved 
somewhat worse results. Using operations from Set 3 turned out to be the worst solution of 
all. AEPs including operations from this set were considerably worse than the remaining 
AEPs.   

 

a)  

b)  
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c)  
 

Figure 12 Using AEPs with different operations to solve problem f1 (a), f2 (b), and f3 (c) (all curves are generated 
from average of 30 evolutionary runs) 

 

3.2. Experiments with ANNs 
In the experiments, the task of AE was to produce a single ANN controlling a set of 

cooperating predators whose common goal was to capture a fast moving prey behaving by a 
simple, deterministic strategy. The main goal of the experiments reported in this section was 
to test how AEPs with different operations cope with creating simple ANNs. To find out true 
capabilities of AE to create ANNs of more advanced architecture, further experiments are 
required.  

In this stage of the experiments, two types of AEPs were used, i.e. AEPs-four and 
AEPs-three. AEPs-four are programs including operations from Set 1 (the second position in 
the previous experiments) while AEPs-three are programs composed of three-parameter 
operations from Set 4 (the first position in the previous experiments).    
 

3.2.1. Environment 
The predators and the prey used in the experiments lived in a common environment. 

20x20 square without obstacles but with two barriers located on the left and on the right side 
of the square was used to represent the environment. Both barriers caused the predators as 
well as the prey to move right or left only to the point at which they reached one of the 
barriers. Moving further in the barrier direction caused no effect. In order to ensure infinite 
space for the predators and the prey and for their struggles, the environment was open at the 
bottom and at the top. This means that every attempt to move beyond upper or lower border 
of the square caused the object making such attempt to move to the opposite side of the 
environment. As a result, the simple strategy of the predators consisting in chasing the prey 
did not work. In such situation, the prey in order to evade predators, could simply escape up 
or down.    
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Figure 13. Artificial world in which task of predators was to capture prey 

 
3.2.2. Residents of the artificial world 
In the experiments, two predators and one prey coexisted in the artificial environment. 

The predators were controlled by ANN produced by AEP (because in the experiments a single 
ANN controlled the set of predators, the problem solved by ANNs can also be viewed as the 
problem of capturing the prey by one predator with several “arms”). They could select five 
actions: to move in North, South, West, East direction or to stand still. The length of step of 
every predator was 1 unlike the step of the prey that amounted to 2. In order to capture the 
prey the predators had to cooperate. Their speed was twice lower than speed of the escaping 
prey so they could not simply chase it to grasp it. The prey was captured if the distance 
between it and the nearest predator was lower than 2. 

In the experiments, the predators could see the whole environment. The predators 
based the decision which action to select on the prey’s relative location with reference to each 
of them. In order to perform the task, ANN controlling the predators had to possess four 
inputs and two outputs. The outputs provided decisions to the predators whereas inputs 
informed them about prey’s location in relation to each of them. 

The prey was controlled by a simple algorithm which forced him to move directly 
away from the nearest predator but solely in the situation when distance between it and the 
nearest predator was lower or equal 5. In the remaining cases, i.e. when neither predator was 
closer to the prey than the assumed distance, the prey did not move. In the situation when 
selected prey’s action would cause hitting the barrier, another move was chosen. The 
alternative move prevented from hitting the wall, and at the same time, it maximally increased 
the distance between the prey and the nearest predator. The prey when was running away 
could select four actions: to move in North, South, West or East direction. The strategy of the 
prey is presented below. 
 

( )
( )

( )⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

>∀
=

∈∈

∈

otherwise,minarg,,maxarg

5,ifStandStill
simple spdasD

spd
s

PpAa

Pp
π      (5) 

where 
P – set of predators 
A – set of actions of prey (A={StandStill, North, South, West, East}) 
d(p,s) – distance between prey and predator p in state of environment s   
D(s,a,p) – distance between prey and predator p in state of environment which is direct 
consequence of action a performed by prey in state s 
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 3.2.3. Neural controllers 
NDMs generated by AEPs usually represented recurrent ANNs. However, in the 

experiments, the decision was made to use exclusively controllers with feed-forward 
architecture. In order to obtain such ANNs, elements of NDMs localized in their upper parts 
were only used. The remaining elements were neglected while constructing ANNs. 
ANNs contained three types of neurons, i.e. radial, sigmoid and linear neurons. The 
information about the type of neuron was located in the additional column of NDM. Each 
matrix included a total of three additional columns. The remaining two columns contained the 
information about bias and value of a parameter of a neuron. 
 

3.2.4. Evaluation process 
To evaluate ANNs, eight different scenarios were built. They differed in an initial 

location of the predators and the prey in the environment:  
 

• Scenario no 1: prey(10,10), predator1(0,0), predator2(20,20); 
• Scenario no 2: prey(10,10), predator1(20,20), predator2(0,0); 
• Scenario no 3: prey(10,10), predator1(0,10), predator2(20,10). 
• Scenario no 4: prey(10,10), predator1(10,0), predator2(10,20); 
• Scenario no 5: prey(10,10), predator1(0,0), predator2(20,0). 
• Scenario no 6: prey(0,20), predator1(10,0), predator2(20,10); 
• Scenario no 7: prey(0,10), predator1(10,1), predator2(10,19); 
• Scenario no 8: prey(0,20), predator1(0,10), predator2(10,20). 
 

The tests proceeded in the following way. At first, each ANN was tested in the 
scenario no. 1. If the predators controlled by ANN could not capture the prey during the 
assumed period, the test was stopped and ANN received appropriate evaluation that depended 
on the distance between the prey and the nearest predator. However, if the predators grasped 
the prey, they were put to the test in the next scenario. In the experiments, the predators could 
perform 100 steps before the scenario was interrupted. To evaluate ANNs, the following 
fitness function was used:      
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where  
if  – reward received in ith scenario; 
( )spd ,  – distance between prey and predator p in state of environment s; 
maxd  –  maximum distance between two points in environment; 
is100  –  end state in ith scenario; 
capturedf  – reward for grasping prey in single scenario (in experiments capturedf  amounted to 

100); 
im  – number of steps to capture prey ( im <100); 

a – this value prevents situation in which partial success would be better than success in all 
scenarios; 
n – number of scenarios. 
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3.2.5. Experimental results 
In order to test different operations, 30 evolutionary runs were performed. As it turned 

out all the runs were successful, i.e. all they produced successful ANNs. The successful 
ANNs are ANNs which resulted in capturing the prey in all tested scenarios. Detailed results 
of the experiments are presented in Table 2. 
The experiments showed that AEPs-three are usually shorter than AEPs-four. During the 
tests, in most cases, AEPs-three included fewer operations and data than AEPs with four-
parameter operations. Moreover, to produce AEPs-three, fewer co-evolutionary cycles were 
necessary than in the case of AEPs-four. Generating effective AEP-four required over three 
times co-evolutionary cycles more, on average, than generating effective AEP-three.   
 
Table 2. Results of tests in the predator-prey problem 
 

type of 
AEP 

average 
fitness 
(best fitness) 

average number of 
neurons in successful 
ANN 
(minimal number of 
neurons) 

average length of successful 
AEP, 
number of orders + number of 
data 
(shortest AEP) 

average number of co-
evolutionary cycles 
necessary to generate 
successful AEP 
(minimal number of co-
evolutionary cycles) 

(AEPs-
four) 

831.09 
(865.34) 

6 
(6) 

4.6 + 15.1 
(4 + 5) 

25670.3 
(17277) 

(AEPs-
three) 

833,12 
(859.65) 

6 
(6) 

2.8 + 13.8 
(2 + 5) 

7081.4 
(413) 

 
4. Summary 
The main goal of the experiments presented in the paper was to select operations for 

AE. Different types of operations were tested in the optimization and in the predator-prey 
problem. The experiments showed that the three-parameter operations outperform their four-
parameter counterparts. Matrices generated by AEPs-three were usually better than matrices 
produced by AEPs-four. In the experiments in the predator-prey problem, using both types of 
operations made it possible to generate successful neural controllers. However, AEPs-three 
required fewer operations than AEPs-four to generate effective ANNs. To represent ANN 
consisting of six neurons, the shortest AEP-three required only two operations and five data 
while the shortest AEP-four, for the same purpose, needed four operations and also five data. 
The experiments also showed that effective AEPs-three are simpler to generate than effective 
AEPs-four. Using the three-parameter operations made it possible to generate effective AEPs 
after seven thousand of co-evolutionary cycles, on average. In the case of the four-parameter 
operations, almost twenty thousand cycles more were required. 
 

 
Figure 14. (a) Example AEP-four produced in this stage of experiments, (b) encoded form of AEP, (c) NDM 

generated by AEP presented in point (a) and (b) (The matrix depicted in point (c) corresponds to ANN consisting 
of six neurons: four input neurons and two output neurons. Extra three columns determine: types of individual 

neurons, their bias and values of parameters of neurons, e.g. a shape of radial transfer function) 
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Even though the experiments showed that four-parameter operations are worse 

solution than three-parameter ones the decision was made to use both types of operations in 
the future research to investigate the capability of AE to create more advanced neural 
architectures. In the research mentioned, we plan to apply three types of AEPs, i.e. AEPs-
four, AEPs-three and additionally AEPs-mixed. The latter programs are a mixture of four-
parameter and three-parameter operations. When applied in a single AEP, operations of 
different type may complement each other and as a result, programs better than their 
homogenous counterparts composed of one-type operations can be produced. 
 

a) b)  
Figure 15 Example behavior of predators and prey in scenarios no. 1 (a) and no. 2 (b). Circles determine 

initial positions of predators and prey (black circle – prey, circle with vertical stripes – predator no. 1,  circle 
with horizontal stripes – predator no. 2) while arrowed lines indicate their direction of movements (solid line – 
prey, dashed line – predator no. 1, dotted line – predator no. 2) 
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Appendix 1 – List of operations used in the experiments 
 
The four-parameter operations: 
 
CHG – Update of an element. Both the new value and address of the element are located in 
parameters of the operation. 
 
CHGC0 – Update of a certain number of elements in a column. Index of the column, index of 
the first element in the column that will be changed, the number of changed elements and a 
pointer to data where new values of elements are memorized are located in parameters of the 
operation.  
 
CHGC1 – Update of a certain number of elements in a column. Index of the column, index of 
the first element in the column that will be changed, the number of changed elements and a 
new value for the column elements, the same for all the elements, are located in parameters of 
the operation. 
 
CHGC2 – Update of a certain number of elements in a column. A new value of every 
element is a sum of an operation parameter and the current value of this element. The second 
parameter of the operation is an index of the column. The third and fourth parameter of the 
operation determine the number of changed elements and index of the first element in the 
column that will be changed, respectively.   
 
CHGC3 –A number of elements from one column are transferred to another column. Both 
columns are indicated by parameters of the operation. The number of transferred elements and 
index to the first element in the column that will be transferred are also included in parameters 
of the operation. 
 
CHGC4 – Update of a certain number of elements in a column. A new value of every 
element is a sum of the current value of this element and a value from memory of a program. 
An index of the column, an index of the first element in the column that will be changed, the 
number of changed elements, and a pointer to data where ingredients of individual sums are 
memorized, are located in parameters of the operation. 
 
CHGR0 – like CHGC0 but an update refers to the row of matrix. 
CHGR1 – like CHGC1. 
CHGR2 – like CHGC2. 
CHGR3 – like CHGC3. 
CHGR4 – like CHGC4.  
 
CHGM0 – Change of a block of elements. Elements are updated in columns, in turn, one 
after another, starting from an element pointed by parameters of the operation. The number of 
changed elements and place in the memory where new values for the elements are located are 
determined by the parameters of the operation.  
 
CHGM1 – like CHGM0, but a new value of every element is a sum of its current value and a 
parameter of the operation. 
 
CHGM2 – like CHGM0, but a new value of each element is a sum of its current value and a 
value from the memory part of a program. The number of changed elements and a place in the 
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memory where arguments of individual sums are located are determined by parameters of the 
operation. 
 
JMP – Jump operation. The number of jumps, a pointer to a next operation and new values 
for the registers are located in parameters of the jump operation. 
 
The three-parameter operations: 
 
CHG_VALUE – Change of a set of matrix elements indicated by parameters of the 
operation. All the updated elements have the same value.   
 
CHG_MEMORY – Change of a set of matrix elements indicated by parameters of the 
operation. Values for the updated elements are located in the memory. 
 
 


