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Abstract  

We describe a new Computer Assisted Diagnosis (CAD) to automatically detect Alzheimer 

Patients (AD), Mild Cognitive Impairment (MCI) and elderly Controls, based on the segmentation 

and classification of the Hippocampus (H) and Corpus Calosum (CC) from Magnetic Resonance 

Images (MRI). For the segmentation we used a new method based on a deformable model to extract 

the area wishes, and then we computed the geometric and texture features. For the classification we 

proposed a new supervised method. We evaluated the accuracy of our method in a group of 25 

patients with AD (age±standard-deviation (SD) =70±6 years), 25 patients with MCI (age±SD=65±8 

years) and 25 elderly healthy controls (age±SD=60±8 years). For the AD patients we found an 

accuracy of the classification of 92%, for the MCI we found 88% and for the elderly patients we 

found 96%. Overall, we found our method to be 92% accurate. Our method can be a useful tool for 

diagnosing Alzheimer’s Disease in any of these Steps.  

Keywords: Computer Assisted Diagnosis (CAD), Alzheimer disease (AD), Mild Cognitive 

Impairment (MCI), Corpus Calosum (CC), Hippocampus (H), Magnetic Resonance Imaging (MRI), 

Standard Deviation (SD).  

 

1. Introduction  

Alzheimer's disease is the most common form of dementia among the elderly; it represents 

about 65% of dementia cases. Alzheimer's disease is distinguished from other dementias by the fact 

it develops gradually and it mainly affects the short-term memory. However, the diagnosis is not 

always easy and it can be difficult for physicians to differentiate Alzheimer's disease from another 

dementia (Weiner et al., 2015; Brumfield, 2014; Neville et al., 2015; Romero et al., 2014).       

Generally, symptoms appear after 65 years and the prevalence increases sharply with age. 

However, contrary to popular belief, Alzheimer's disease is not a normal consequence of aging. 

Alzheimer’s disease affects about 1% of people between 65 and 69 years old, 20% of those between 

85 and 89 years old, and 40% of those between 90 and 95 years old (Mahad et al., 2015; Geerts et al., 

2015; Kuffner et al., 2015). It is estimated that 1 in 8 men and 1 in 4 women will suffer from it in 
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their lives. Insofar as women live longer, they are more likely to be affected. We found several stages 

of Alzheimer's disease:  

- MCI Mild Cognitive Impairment (memory loss which affects the short-term memory: 

the ability to remember recent information).  

- the advanced stage (psychiatric problems, including hallucinations and paranoid 

delusions, aggravated by severe memory loss and disorientation) or what is called AD 

(Alzheimer’s Disease) (Ruan et al., 2014; Cummings et al., 2014). In susceptible 

individuals the involution of the brain tissue is most pronounced in the hippocampus, 

the Corpus Callosum and anterior frontal cortex. In subjects with moderately severe 

Alzheimer’s disease, the involution key comes in addition to the bottom and side 

portions of the temporal cortex and the posterior part of the limbic convolution. The 

disease is becoming more common. It is estimated that within 20 years, the number of 

sufferers will double (Romero et al., 2015; Panza et al., 2014; Saykin et al., 2015; 

Collins et al., 2015; Hartley et al., 2014).  

 

Hence the need for a computerized diagnostic system to detected Alzheimer's disease. The 

steps of a computer-assisted diagnostic system may be as follows:  

• The preprocessing step which serves to improve the quality of the image before any handling. 

• The segmentation step for detecting the studied lesion.  

• The description step, which is intended to characterize lesions through mathematical 

formulations. 

• The classification step and decision-making by using an appropriate classifier.  

 

Beginning with the segmentation, it discusses the methods based on the deformable model. 

We speak of three class methods: Parametric, Statistical, and Geometric.  

In general, a deformable model can be defined as a curve dipped in the image plane, in a 

particular position, and which successively deforms until it coincides with the boundary of the object 

to be detected (Aljabar et al., 2009; Atif et al., 2006; Ardekani et al., 2009; Delingette et al., 2001;  

Duvernoy et al., 2005).  

Our literature review on deformable models led us to grouping them into three classes, based 

on the above criteria: parametric models (Andreopoulos et al., 2008; Babalola et al., 2009; Bascle et 

al., 1994), geometric (Caselles et al., 1997; Chan et al., 2001; Charmi et al., 2008 ; Chen et al., 2005; 

Chen et al., 2004; Chen et al., 2009) and statistics (Cohen et al., 1991; Cootes, 1994 ; Cootes, 1995; 

Cootes, 2001).   

In our method, the interest is in the geometric model.  

The level set methods (LSM), which are a digital tool to analyze shapes, introduced by Osher 

and Sethian (1988), became a theoretical and numerical structure increasingly used in image 

processing. Compared to the active contours, the LSM has the advantage of avoiding the difficulties 

of topological transformations. Indeed, the approached level set is able to handle complex 

topological changes, e.g. develop a simple outline for two separate contours, or, conversely, combine 

two separate contours to form one. The Level Set Framework has several methods such as:  

- Caselles: geodesic approach (Caselles et al., 1997); 

- Chan & Vese: approach similar regions (Chan et al, 2001);  

- Lankton: approach inhomogeneous regions (Lankton et al, 2008).  

 

Passing the classification stage, the purpose of the classification is to identify the classes that 

the objects from descriptive features (attributes, characteristics, etc.) belong to. There are basically 

two types of classification: supervised and unsupervised. This classification is also called 

"clustering" or "grouping". In this type of classification it is necessary to identify populations of a 

data set. Suppose one has a set of objects denoted by X = {x1, x2, ..., xN}, characterized by a set of 
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descriptors D, and the clustering goal is to find the groups they belong to, each object x being noted 

with C = {C1, C2, ..., Cn}.  

That is to determine a function denoted by YS that associates each element of X to one or 

more of C. It should be able to assign a new observation to a class. Among unsupervised most 

common methods there are two types of approaches: k-means and hierarchical classification.  

In the context of supervised already available examples whose class is known and labeled, 

the data are associated with labeled classes Θ = {q1, q2, ..., qn}. The objective is to learn how to use 

the rules of a learning model that predict a class of new observations which determine a function 

from descriptors (D) of the object qi, that allows you to combines classesand assign a new 

observation to the available classes. At the end, there needs to be found a function that Ys that 

associates each element of X to an element of Q. We then constructed a model to classify new data. 

Among the supervised methods are cited: the k-nearest neighbors (Cover et al., 1967), decision trees 

(Quinlan, 1986), neural networks, support vector machines (SVM) (Cortes et al., 1995) and Bayes 

classifiers. Whatever type of classification, one is faced with different problems. In the supervised 

case, a significant problem may be the lack of data to perform learning or availability of inadequate 

data, such uncertainty and imprecision preventing the construction of a correct model. For 

unsupervised classifications, the demarcation of borders between classes is not always straight 

forward and recognizable. Regardless of the type of classification, multi dimensional data, or the 

dependence of classification methods to the initial settings, such as the number of classes, can 

impose problems. In our case, we are interested in the supervised classifier. 

In this context is our work: performing a diagnostic computer-aided system for detecting 

Alzheimer's disease. Like any diagnostic system, our system contains three parts: preprocessing, 

segmentation and classification. Initially, we will present a new segmentation method to segment the 

Hippocampus and Corpus Callosum regardless of the patient's condition.  

 
Figure 1. Three hippocampus: Normal, MCI, AD 

 

The three figures above present three seahorses relating to three topics: Normal Subject, MCI 

Subject (Mild Cognitive Impairment), Alzheimer Subject.  

 
Figure 2. Three Corpus Calosum: Normal, MCI, AD 

 

The three figures above present the Corpus Callosum relating to three topics: Normal Topic 

by MCI (Mild Cognitive Impairment), Alzheimer’s topic.  

 

Secondly, we will present our clustering method to classify the test subject between 3 classes: 

N (Normal), MCI (Mild Cognitive Impairment), and AD (Alzheimer's disease).  
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2. The proposed method  
The figure below presents our proposed Computer Assisted Diagnosis. Our CAD includes 3 

steps: Preprocessing, Segmentation and Classification.   

For the step of preprocessing, we used the NLMS (Non Local Means) to improve the quality 

of image.  

For the step of segmentation: we have a learning phase to extract the different shapes and to 

determine the average shape. Our proposed automatic method is based on the deformable model. For 

the step of classification, we present a new supervised method to distinguish between Normal, MCI 

and AD. The figure below presents our proposed system.  

 

 

 
 

Figure 3. Proposed Computer Assisted Diagnosis 
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 A. Segmentation  

It seeks to establish a model that describes the shape and typical fluctuations. This requires 

first the preparation of a learning base to reflect the possible variations in shape of the structure.  

 

The preparation of the training set 

Each shape will be modeled by a vector X, built by concatenating the coordinates of the 

characteristic points placed on its outline: 

 

X=(X1, X2,…...Xn)                        (1) 

 

 

The training set can be modeled by a set of vectors:  

 

{Xi} Where  i = 1. . N {N number of sample images} 

 

and {Si} surface, {Vi} standard deviation of the Area. 

 

The principle of this step is be illustrated by the figure below.  

 

 
 

Figure 4. Training 

 

Aligning the forms 

During the previous step the extraction forms is independent on the parameters of size and 

position. They may have shapes which are more or less remote in different directions, and others that 

have relatively different sizes. However, the modeling approach is to study only the essential shape 

variation between the different configurations of the studied structure in order to solve this problem 

of variation of size and position. The N forms of the training set must be aligned with one of them. 

This will place the corresponding vector in a centered position.  

 

Generating the average shape and confidence intervals 

The aligned vectors, resultant of the two previous stages, can be organized in the form of a 

matrix of size (2n, N), called observation matrix. The columns match the shapes and the lines 

correspond to the coordinates of the points features describing each form. 

 

1

1 N

i

i

x x
N =

= ∑        The average shape from the training      (2) 
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We also determine: 

- the confidence interval associated with the area      

              [Sm - 2σ, Sm + 2σ] with (Sm average size, σ variation of the surface). 

 

- the confidence interval associated with the surface                

  [Vm- 2σ, Vm + 2σ] with (Vm average variation, σ std of the variation). 

 

 

The learning algorithm 

Input:      

training set X (xi, ......, Xn) 

Output:  
1. Determine the initial parameters:                                             

- The number of   images of the learning base: N  

- The number of minutiae: n                  
2. Extraction of forms Xi = {Xi1, Xi2, ..., Xin} i = 1... N  

3. Aligning the learning database  

4. Generation of average shape 

5. Generation of confidence intervals associated with the surface and variation. 

- [Sm-2σ, Sm + 2σ] with (Sm average surface variation σ of the surface).  

- [Vm -2σ , V m + 2σ] with (Vm average variation, σ std of the variation). 

 

 

Evolution of the Curve 

The stage in the evolution of the curve (loudness) is divided into two stages:  

- designing a power function whose minimum corresponds to the contours of the object 

to segment;  

- implementing the evolution equation.  

Based on the work of Lankton, the objective is to outline converging towards locally 

homogeneous regions according to grayscale.  

 

Energy minimization 

 

in out( ,U ,U ) ( (x)) (x, y)F( )dydxLANE Bφ δ φ φ
Ω

Ω

= ∫ ∫
r r r uuruur

�   (3) 

where (4) 
2

in out(x,y) (I(y) U (x)) H( (y)) (I(y) U (x))H( (y))F φ φ= − + − −
r r r r r r r r

 

B ( x , y ) 1 w i th x y r= − ≤
r r r ur  

                   
    0 w ith x y r− >

r ur
 

 

( , Uin, Uout) ( (x)) (x, y) F( )dydxE Bφ δ φ φ
Ω

Ω

= ∫ ∫
r r r uuruur

 

Select only the pixels belonging to the contour 

 

( , Uin, Uout) ( (x)) (x, y) F( )dydxE Bφ δ φ φ
Ω

Ω

= ∫ ∫
r r r uuruur

 

 

 

Calculates the data attachment within a neighborhood centered at each point belonging to the contour 
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Equation of evolution outline:  

 

( (x, y) ( (y)) F( (y))d y) ( (x))LANE Bφ δ φ φ φ δ φ
Ω

∇ = ∇∫
r r r r r r

   (5) 

 

In the figures below a constraint of the variation is used in order to show the limits. The 

contour may include more areas surrounding the hippocampus, which are not homogeneous with the 

desired area. Through the confidence interval of variation and priori knowledge can overcome these 

limitations. 

 

           
 

Figure 5. Improvement using variation 

 

In the figures below, a constraint of the surface is used to show the limits. The contour may 

include the hippocampus and more areas surrounding it, which are homogeneous with the desired 

area. Through the surface of the confidence interval and priori knowledge can overcome these 

limitations. 

 

               
 

Figure 6. Improvement using Surface 
 

 

The evolution algorithm 

 

Input:   Training set X (xi, ......, Xn) 

             Picture Test 

Output:  
1. The mean shape is recovered  

2. Retrieves confidence intervals associated with the   surface and variation. 

 - [Sm-2σ, Sm + 2σ] with (Sm average surface variation σ of the surface). 
 - [Vm - 2σ , V m + 2σ] with (Vm average variation, σ std of the variation).  

3. Function of evolution  

       Stop = false  
       While (stop ~ = true) 

{// Check that the surface of the next Fnew form is lower to the upper bound of the confidence 

interval for the same variation.  

If ((surface (Fnew)> Sm + 2σ) || (Variation (Fnew)> V m + 2σ)  

        Stop = true;  

Else  
   // Display the new form 

      Converging towards the contour of the locally  homogeneous regions according to the grayscale.} 
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B. Classification  

The new method is a method of supervised classification. It has a learning database to 

estimate the output associated with a new entry X. The method takes into account the four training 

samples whose entrance is the closest to the new entry X in four distances: Euclidean, Manhattan, 

Hausdorff, AMED (Average Minimum Euclidean Distance). 

 

The Euclidean distance 

Given two vectors X (x1, x2... xn) and Y (y1, y2, ..., yn), different distances are expressed as 

follows:  

Distance euclidienne:     2

i

1

(x y i)
n

i

i=

−∑                     (6)  

 Distance de Manhattan:       
1

n

i i

i

x y
=

−∑                     (7)  

 

The minimum Euclidean distance (MED) from x point xi in X to Y is computed as:  

MED (xi, Y)= min dist (ai, bj)                   (8) 

j {1,…, n} 

 

Then the average minimum Euclidean distance (AMED) (Sahiner et al, 2001) and the 

Hausdorff distance (HD) (Huttenlocher et al, 1993) are defined as:  

 

i i

1 1

1 1
(X,Y) (x ,Y) (y ,X)

2 2

n n

i j

AMED MED MED
n n= =

= +∑ ∑       (9) 

 

and 

 

HD(A,B)=max{max MED(xi,Y) ,  max MED(yj,X)}       (10) 

                  i {1,…, n}                       j{1,…, n} 

 

AMED measures the average distance while HD measures the maximum distance between 

the two vectors. The aim of our method is to classify the test subject in three classes (N, MCI or 

AD), so for each vector element E we look for the four nearest neighbors. 
 

 

 

 

 

 

 

 
 

 

 

Figure 7. Training for classification 

 

By using the four distances (Euclidean, Manhattan, Hausdorff, AMED - Average Minimum 

Euclidean Distance) 4 decisions are eventually obtained: A, B, C, D or A is the result of the test 

vector assignment to one of three classes using the first Euclidean distance. 

To achieve the final result we use Bayes' theorem (Hooper, 2013). 

 



B.R. Amira, B. Faouzi, A. Hamid, M.B. Djebara - New Computer Assisted Diagnostic to Detect Alzheimer Disease 

83 

 

The probabilistic model for a classifier is the conditional model 

 

1 n(C | F ,...., F )p                             (11) 

 

Where C is a dependent class variable or a class whose instances are few, conditioned by 

several characteristic variables F1,…Fn.  

When the number of characteristics is large, or when these features can take a large number 

of values, this model based on probability tables is impossible. Therefore, we derive to be more 

readily soluble. Using the Bayes' theorem, we write 

 

1 n
1 n

1 n

(C) p(F ,..., F | C)
(C | F ,..., F )

(F ,...., F )

p
p

p
=           (12) 

 

3. Results and discussion 
The results show the hippocampus segmentation using both Caselle, Chan&Vese, Lankton 

and our method. 

 

     
 
Figure 8. The results of the segmentation of the hippocampus. The six lines present: image zoom on 

the hippocampus area, manually segmented image, the result of the Caselle method, the result of the 

Chan&Vese method, the result of the Lankton method, the result of our  method. Column 1 shows a healthy 

subject, column 2 shows a MCI (primary stage) and the third column corresponds to an Alzheimer's subject 

(advanced stage)
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In figure 9 we present a comparison between the manual segmentation, Caselle, Chan&vese, 

Lankton and our method.   

Figure 9. A comparison between the results. Each column shows the superposition of the corresponding 
results: Caselle (yellow curve), Chan & Vese (curve blue), Lankton (red curve), our method (purple curve), 

and the ground truth (Green Curve) for a normal subject, MCI and AD 

 

 

We chose the Hausdorff distances, dice, MSSD (Mean Sum Square Distance) and PSNR 

(peak signal-to-noise ratio (PSNR)) as a measure of the quality of the segmentation. These metrics 

are widespread in the medical field and admit multiple applications. In our case, we will use these 

distances to measure the degree of similarity between two Shapes. 

 
2

1010log (Max | EQMP)PSNR =                   (13) 

 

where Max is the maximum peak to peak of the original signal, EQMP is the average of values of 

EQMP (weighted mean square error locally on blocks of 8 x 8 pixels).  

EQMP is given by: 

2

,2
1 1

1ˆ ˆ(I, I) (I(u, v) I(u, v))
N N

p u v

u v

EQM W
N = =

= −∑∑      (14) 

 

I and I represent the original images degraded respectively in the DCT domain. Wu, v (2) 

represents the weight of the weighting in the spatial frequency (u, v). N (equal to 8) represents the 

size of the matrix to which the weighting W is applied. 

 

The dice coefficient is: 

 

Dice = 2*nnz(segCont &grndTruth)/(nnz(segIm) + nnz(grndTruth))   (15) 

 

where segcont: segment contour; grndTruth: ground truth; nnz: size of the contour 

 

 

Normal 

The figure shows the calculation results of the four distances: Dice, PSNR, Hausdorff and 

MSS using the four methods (Caselles Chan & Vese, Lankton, our method), compared with the 

ground truth on three samples.  
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Normal 

 
 

Figure 10. The results of calculating the Hausdorff distances, Dice, PSNR, MSSD between the four methods 

(Caselles, Chan & Vese, Lanktom, and our method) and the ground truth about a subject Normal following 
the segmentation of the hippocampus 

 

 

 

 

MCI 

 
 

Figure 11. Results of calculating the Hausdorff distances, Dice, PSNR, MSSD between the four methods 

(Caselles Chan & Vese, Lanktom, our method) .and the ground truth about a MCI subject following 

segmentation of the hippocampus. 
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AD 

 
 

Figure 12. Results of calculating the Hausdorff distances, Dice, PSNR, MSSD between the four methods 

(Caselles Chan & Vese, Lanktom, our method) .and the ground truth about an AD subject following 
segmentation of the hippocampuss 

 

The result shows the Corpus Calosum segmentation using Caselle, Chan&Vese, Lankton, and 

our method. 

 
 

Figure 13. The results of the Corpus Calosum segmentation. The six lines present in order: image 

zoom on the hippocampus area, manually segmented image, the result of the Caselle method , the result of the 

Chan&Vese method, the result of the Lankton method, the result of our  method. Column 1 shows a healthy 

subject, column 2 MCI (primary stage), and the third column corresponds to an Alzheimer's subject 
(advanced stage). 
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In figure 14, we present in order: the comparison between Caselle, Chan&Vese, Lankton 

manual segmentation and our method.   

       
   

Figure 14.  A comparison between the results. Each column shows the superposition of the corresponding 

results: Caselle (yellow curve), Chan & Vese (curve blue) Lankton (red curve), our method (purple line) and 

the ground truth (Curve Green) for a normal subject, MCI and AD. 

 

 

Normal  

 
 

Figure 15. The results of calculating the Hausdorff distances, Dice, PSNR, MSSD for the four methods 
(Caselles Chan & Vese, Lanktom, our method) and the 

ground truth about a Normal subject following the Corpus Calosum segmentation. 
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MCI  

 
 

Figure 16. Results of calculating the Hausdorff distances, Dice, PSNR, MSSD between the four methods 

(Caselles Chan & Vese, Lanktom, our method) and the ground truth about a subject Normal following 

segmentation of the Corpus Calosum. 

 

 

AD 

 
 

Figure 17. The results of calculating the Hausdorff distances, Dice, PSNR, MSSD for the four methods 
(Caselles Chan & Vese, Lanktom, our method) and the ground truth about a Normal subject following the 

Corpus Calosum segmentation. 

 

By examining six diagrams, we can clearly observe that the Green curve which represents the 

Hausdorff distance has values between 6.34 and 10.16 (mm) for our method of segmentation. On the 
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contrary, for the other methods, the values of the Hausdorff distance often exhibit large variations, 

passing from 10.81 (mm) to reach 25.46 (mm).  

For the Dice coefficient, our method presents the best values. The values of our method are 

between 0.885 and 0.918 mm as opposed to the other three methods, whose dice coefficient values 

vary between 0.681 and 0.873 mm.  

For the PSNR coefficient, our method has values between 16.655 and 19.69 mm as opposed 

to the other methods whose values vary between 14.09 and 18.34 mm. 

Yet for the MSSD distance, our method has values between 6.61 and 13.31 mm, while for the 

other three methods the values are between 9.67 and 47.571 mm. 

Through these measures, although in some cases the method of Casselle & Lankton provides 

acceptable results, we can see that for each sequence our model provides a more stable and 

comprehensive income closer to the manual segmentation. This can learn about the interests of the 

integration of priori knowledge. 

In conclusion, it is clear that the integration of priori knowledge of the form has greatly 

improved the results of the image sequences segmentation. That necessarily increases the reliability 

of the diagnostic parameters which is calculated based on these results.  

 

The classification results  

Our database contains 500 subjects and for the evaluation of our method we worked with 75 

subjects: 25 Normal, 25 MCI, 25 AD.  

 

 Normal MCI AD 

Subject 25 25 25 

 

We present three figures representing the accuracy of the classification using the three 

methods, KNN, SVM and our method for normal, MCI and Alzheimer subjects.  

 
 

Figure 18. Accuracy of classification using the three methods, KNN, SVM and our method, for normal 

subjects 
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Figure 19. Accuracy of classification using the three methods: KNN, SVM and our method for MCI subjects 

 
 

Figure 20. The accuracy of classification using the three methods, KNN, SVM and our method, for AD 

subjects 

 

Whatever the patient condition, Normal, MCI or AD, our method has provided us with better 

results. Advocate Example precision for Normal Patients was found 96% as opposed to 88% for the 

SVM method and 84% for KNN. For MCI patients was found 88% as opposed to 80% for the SVM 

method and 72% for KNN. Also for AD patients were found 92% as opposed to 88% for the SVM 

method and 80% for KNN. Our classification method gave us the best results, finding overall 

accuracy of 92% as opposed to 84% for the SVM method and 78.66% for KNN. 

 

4. Conculsion   

We managed to achieve a Computer Assisted Diagnosis system by analyzing the 

Hippocampus and Corpus Callosum. Our first contribution consisted in presenting a new method of 

segmentation based on a deformable model and priori knowledge. For the second contribution, we 

proposed a classification method based on the use of the four known metric distances, and the 

decision was achieved by using Bayes. We found a good precision of 92% for detecting Alzheimer's 

disease at any stage. The success of such a system is due to two phases: segmentation and 

classification. We proposed it as a future work, adding another part to establish the longitudinal 

monitoring for this disease: the analysis of two MRI of the same patient in two different times for 

determining the changes in the hippocampus texture descriptors.  
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