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Abstract 

The traveling salesman problem (TSP) is one of the most important NP-hard Problems and 

probably the most famous and extensively studied problem in the field of combinatorial 

optimization. In this problem, a salesman is required to visit each of n given nodes once and only 

once, starting from any node and returning to the original place of departure. This paper presents an 

efficient evolutionary optimization algorithm developed through combining imperialist competitive 

algorithm and lin-kernighan algorithm called (MICALK) in order to solve the TSP. The MICALK 

is tested on 44 TSP instances involving from 24 to 1655 nodes from the literature so that 26 best 

known solutions of the benchmark problem are also found by our algorithm. Furthermore, the 

performance of MICALK is compared with several metaheuristic algorithms, including GA, BA, 

IBA, ICA, GSAP, ABO, PSO and BCO on 32 instances from TSPLIB. The results indicate that the 

MICALK performs well and is quite competitive with the above algorithms. 

Keywords: Imperialist Competitive Algorithm; NP-hard Problems; Lin-Kernighan 

Algorithm; Traveling Salesman Problem. 

 

1. Introduction 

There are a lot of research studies in the field of logistics, ranging from the assignment 

problems to complex dynamic routing problems. Among the prominent problems in the field of 

distribution and logistics, the traveling salesman problem (TSP) has arguably been one of the most 

widely investigated problems of combinatorial optimization in recent years and there have been 

many research studies to provide a better solution for this problem (Lawler et al., 1985). A large 

number of problems like the TSP with pickup and delivery, time windows TSP, multi-depot TSP, 

multiple TSP, vehicle routing problem and so on have arisen from this problem 

(YousefiKhoshbakht, Didehvar, & Rahmati, 2014). Besides, it has many applications in dealing 

with other problems, including the Print press scheduling (Rathinam & Sengupta, 2006), School bus 

routing problem (Svestka & Huckfeldt, 1973), Interview scheduling (Angel et al., 1972), Hot rolling 

scheduling (Brummit & Stentz, 1998), Design of global navigation satellite system surveying 

networks (Tang et al., 2000), etc.  

The TSP can be represented by a complete graph G= (N, A) where N is the set of nodes, and 

A is the set of arcs fully connecting the nodes. Let 
ijc be the length of the arc (i,j), which is the 

distance between nodes i and j. The TSP is the problem of finding a minimal length Hamiltonian 

circuit, where a Hamiltonian circuit of a graph G is a closed tour visiting once and only once all n = 

|N | nodes of G, and its length is the sum of the lengths of all the arcs of which it is composed. 

There have been important advances in developing exact and heuristic algorithms for 

solving the TSP. There are several exact algorithms of the TSP such as Cutting Planes algorithm 

(Laporte & Nobert, 1980), branch-and-cut method (Cordeau, Dell’Amico, & Iori, 2010) and 

lagrangean relaxation and branch-and-bound algorithm (Mak & Boland, 2007). Since the TSP 

belongs to the class of NP-complete problems, its solution grows exponentially with the increase in 
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distribution points. Thus, exact algorithms are not capable of solving problems with large 

dimensions. On the other hand, heuristics are thought to be more efficient for a complex TSP and 

have become very popular with researchers. A lot of algorithms have been performed on the TSP 

including heuristic approaches such as the k-opt approach (Potvin, Lapalme, & Rousseau, 1989), 

minimum spanning tree (Malik, Rathinam, & Darbha, 2007), self-organizing NN approach 

(Vakhutinsky & Golden, 1994) and the partitioning approach (Karp, 1977). 

Although heuristic methods solve NP-complete problems, they become trapped in local 

optima and cannot obtain optimum solution. As a result a new kind of algorithm called 

metaheuristics has been proposed in recent years (Ahmadvand, YousefiKhoshbakht, & Mahmoodi 

Darani, 2012). These algorithms try to seek high quality solutions while attempting to reduce the 

computational time. Furthermore, in comparison with heuristic algorithms, because metaheuristics 

use the randomization concept in search for a solution, this group is more effective in escaping from 

local optimum and can produce solutions of higher quality. Some of the well-known metaheuristics 

are the particle swarm optimization (Anantathanavit & Munlin, 2015), neural network (Tarkov, 

2015), ant colony optimization (Sedighpour et al., 2013), simulated annealing (Jeong, Kim, & Lee, 

2009), neural networks (Jolai & Ghanbari, 2010) and Genetic Reactive Bone Route Algorithm whit 

Ant Colony System (Yousefikhoshbakht, Malekzadeh, & Sedighpour, 2016).  

The ICA is a global search strategy which uses the socio-political competition among 

empires as a source of inspiration. Like many evolutionary algorithms, the primary ICA may fall 

into local minimum trap during the search process and it might get far from the global optimum. For 

this reason, we try to propose an effective two-phase ICA called MICALK by adopting a behavior 

between rigid regularity and randomness based on pure chance. At the first stage, the TSP is solved 

by a modified ICA, and at the second stage, Since the Lin-Kernighan algorithm is one of the most 

effective local search algorithms for solving the TSP, this algorithm is used for improving solutions. 

In more details, to enhance the global exploration capability, the 2-opt local search with a high 

probability of α  and 0-1 and 1-1 exchanges with low probability β  and µ  respectively are used. 

This probability of movement has changed during the search process. The main contributions of the 

paper are as follows: 

ICA to enhance the ability of escaping from a local optimum 

(i) Presenting an effective ICA algorithm for discrete problems 

(ii) Combining the ICA algorithm with a Lin-Kernighan algorithm called MICALK 

(iii)  Presenting a new algorithm which is equipped with diversification and 

intensification mechanisms for solving the TSP. 

 

The rest of this paper is organized as follows: in Section 2 we present the basic principle of 

ICA, Lin-Kernighan (LK) algorithm and then explain the details of the process of the proposed 

algorithm. In Section 3, the proposed algorithm will be compared with some of the other algorithms 

on standard problems which are included in the TSP library. The conclusions and the future works 

are presented in section 4. 

 

2. Solution Method 

In this section at first, the classic ICA and LK are explained and then the hybrid of ICA and 

LK as the proposed algorithm is explained in more detail. Finally, because the MICALK is 

metaheuristic, parameter setting is presented. 

 

2.1. The basic principle of ICA 

During the last three decades, evolutionary optimization methods inspired by natural 

processes have shown good performance in solving combinatorial optimization problems. These 

algorithms have become increasingly popular through the development and utilization of intelligent 

paradigms in the design of advanced information systems. When the task is optimized within 

complex domains of data or information, nature-inspired approaches such as swarm or flocking 
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intelligence (bird flocks or fish schools inspired particle swarm optimization), artificial immune 

systems which mimic the biological ones, ant colonies (ants’ foraging behaviors gave rise to ant 

colony optimization), or optimized performance of bees and so on are widely used to solve 

engineering optimization problems. 

ICA, which proved to be capable of obtaining acceptable performance of some of benchmark 

cost functions is one of the newest algorithms created in the recent decades. This new optimization 

algorithm was first used by Atashpaz Gargari et al to solve the combinational optimization 

problems in 2007 (Atashpaz Gargari & Lucas, 2007). In recent years, the ICA has been successfully 

applied to several NP-hard combinatorial optimization problems, namely, TSP (YousefiKhoshbakht 

& Sedighpour, 2013), recommender systems (Sepehri Rad & Lucas, 2008), designing skeletal 

structures (Kaveh & Talatahari, 2010), and many other optimization problems such as the 

characterization of elasto-plastic properties of materials, designing  optimal layout for factories, 

adaptive antenna arrays, intelligent recommender systems, and optimal controller for industrial and 

chemical processes (Shokrollahpour, Zandieh, & Dorri, 2010). This evolutionary optimization 

strategy has shown great performance in both convergence rate and better global optimum 

achievement. Furthermore, the proposed evolutionary optimization algorithms are generally 

inspired by modeling the natural processes and other aspects of species evolution, especially human 

evolution, which have not been considered up to now. The method proposed in this work uses 

socio-political evolution of human as a source of inspiration for developing a powerful optimization 

strategy. What is more important, the ICA considers the imperialism as a level of human social 

evolution and by mathematically modeling this complicated political and historical process 

harnesses it as a tool for evolutionary optimization.  

The ICA is a novel global search strategy which uses imperialism and imperialistic 

competition process as a source of inspiration. This algorithm is based on the fact that in a real 

world, countries try to extend their power over other countries in order to use their resources and 

bolster their own government. The first step in ICA is to generate an initial population like other 

evolutionary algorithms. The population set includes a number of feasible solutions called a 

‘country’, which corresponds to the term ‘chromosome’ in the GA method. These countries are of 

two types: colonies and imperialists that altogether form some empires. As it is shown in Figure 1 

(Atashpaz Gargari & Lucas, 2007), bigger and stronger empires have more colonies than smaller 

and weaker ones. 

 

 
 

Figure 1. The Initial Empires 
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After initial empires are formed, their colonies start moving toward their relevant imperialist 

country. This movement is a simple model of assimilation policy which was pursued by some of the 

imperialist states. If one of the colonies possesses more power than its relevant imperialist after this 

movement, they will exchange their positions. To begin the competition between empires, the total 

objective function of each empire should be calculated. It depends on the objective function of both 

an imperialist and its colonies. Imperialistic competition among these empires forms the basis of the 

proposed evolutionary algorithm. During this competition, weak empires collapse and powerful 

ones take the possession of their colonies - Figure 2 (Atashpaz Gargari & Lucas, 2007). The empire, 

which has lost all its colonies, will collapse. At last, the most powerful empire will take the 

possession of other empires and will win the competition. In other words, imperialistic competition 

hopefully converges to a state in which there exists only one empire and its colonies are in the same 

position and have the same cost as the imperialist. Figure 3 shows the flowchart of the basic ICA.
1
 

 

 

 
 
 

Figure 2. Eliminate the weakest colony of the weakest empire 

 

 

 

 
 

Figure 3. Flowchart of the ICA 

                                                
1
 https://en.wikipedia.org/wiki/File:Imperialist-competitive-algorithm-flowchart.jpg 
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2.2. Lin-Kernighan Algorithm  

The enormous literature on meta-heuristics indicates that a promising approach for obtaining 

high-quality solutions is to couple a local search algorithm with a mechanism to generate initial 

solutions. A simple example of this type of algorithm is the 2-opt algorithm. This algorithm starts 

with a feasible tour and continues by omitting two arcs of the tour, which are not adjacent and then 

connects them again by another method in such a way that the new tour length is shorter. It can be 

noted that there are several routes for connecting nodes and producing the tour again, but a state that 

satisfies the problem’s constraints is acceptable. Omitting and reconnecting two arcs are repeated 

until no improving 2-opt is found. Besides, the 2-opt algorithm is a unique case of the ω-opt 

algorithm, where in each step ω links of the current tour are replaced by ω links in such a way that a 

shorter tour is achieved. The number of operations to test all ω-exchanges increases quickly as the 

number of nodes increases. The time complexity of testing ω–exchange is equal to O(n
ω
) in which 

there is no nontrivial upper bound of the number of ω–exchanges.  

However, since there are weaknesses, the value of ω and what ω to use to achieve the best 

compromise between running time and quality of the solution must be specified in advance. The 

Lin-Kernighan algorithm is a generalization of this simple principle form and is one the most 

effective algorithms for solving the TSP. This algorithm removed this disadvantage by introducing 

a powerful variable ω-opt algorithm in which the value of ω  is changed during its execution. At 

each iteration the algorithm considers a growing set of potential exchanges which start with r = 2. 

These exchanges are chosen in such a way that a feasible tour may be formed at any stage of the 

process. Then, the problem is examined for ascending values of ω  and the algorithm decides what 

the value of ω should be. If an interchange of ω links succeeds in finding a new shorter tour, then 

the actual tour is replaced with the new tour. This continues until some stopping conditions are 

satisfied. 

 

2.3. Our approach 

In order to apply the proposed algorithm on the TSP, at the first stage, feasible solutions or 

primitive countries should be introduced in a way which is compatible with the construction of the 

mentioned problem. Therefore, a bisection array shown in Figure 4 is used. In this array, the visited 

nodes are ordered from left to right in the first section and the value of the objective function is 

shown in the second section.  

 

 
 

Figure 4. A Country in ICA 

 

Therefore, a defined number of primitive solutions (r) must be randomly generated and the 

values of the objective function  if  for each i=1,…,r  must be obtained. Then, these solutions and 

their values are imported to matrix D in which every row shows a primitive solution and its value of 

the objective function. It should be noted that using a random construction at this level leads to 

obtaining solutions which have an irregular construction in feasible space. Then, m countries which 

have better objective function are selected and are called empire countries.  Furthermore, the 

number of colonies devoted to each empire j is calculated by the formula (1).  

 

1

int[(1 ) ( )]
j

j m

ii

f
k r m

f
=

= − × −
∑

    (1) 

 

This formula leads that more colonies are allocated to empires with fewer objective 

functions and as a result a bigger empire is formed. The Int function used in the formula is the floor 

26 8 7 14 6 13 4 12 5 11 3 10 2 9 1 
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function which causes the allocation of an integer number of colonies to each empire. It should be 

noted that allocating colonies to empires is conducted randomly and if some countries might not 

belong to any empire due to the property of the Int function, these countries are allocated to the 

most powerful empire. After the empires are formed, each empire increases its quality, using the 

imperialist countries which play local optima role. What is worthy of note is the fact that since a lot 

of possible points are combined with local optima, we must use an absorption function which 

includes a randomization concept so that the results of combinations will not yield a very similar 

response. To achieve this goal, we have utilized a novel and innovative method. As an example, 

first, two possible responses [5 2 9 4 8 3 1 6 7] and [9 2 7 6 5 3 1 8 4] are considered as imperialist 

and colony respectively. Then, a random number between 2 and n-1 is selected (n is the number 

nodes of instance and is 9 here). After that, some nodes equal to the selected number are chosen 

from the colonies and are arranged according to the order of the imperialist countries. If the selected 

random number between 1 and 8 is 4, then 4 nodes are randomly chosen from the colonies like 2, 6, 

5, and 3. Then, their order in imperialist country which is 5, 2, 3, and 6 in the example is found. 

Therefore, the new result for the colony will be [9 5 7 2 3 6 1 8 4]. The absorption function is 

performed for all colonies in comparison to imperialist countries and the results and the values are 

replaced with the best results and the values obtained in the current iteration provided that the new 

results are better. 

 At the next stage, p percent of countries experience a revolution. This causes variations in 

colonies in each empire and if possible their quality increases at each stage. The proposed methods 

for this stage are the 0–1 Exchange move. In this move, a candidate node is removed from its 

original route and is inserted in the best position. The replacement is done if the new results are 

better than the previous ones.  

 Most successful meta-heuristic methods have paid attention to global search and search in 

the whole solution space as far as possible. As the algorithm proceeds, it moves to better solutions 

and the global search switches to a local search. We have factored in this issue too, and have 

represented the probability of 0-1, 1-1- and 2-opt move with , andα β µ  respectively so that 

1α β µ+ + = . In the 1-1-Exchange, two nodes are randomly selected and exchanged with each 

other. Finally, in the 2-Opt move, two non-adjacent edges are replaced by two other edges. It should 

be noted that there are several routes for connecting nodes and producing the tour again, but a state 

which satisfies the problem’s constraints is acceptable. Note that although 2-opt local search as a 

powerful global search algorithm is more used at the beginning of algorithm for global search, 0-1 

and 1-1 exchanges are more applied at the end of the algorithm because these algorithms might lead 

to premature convergence to suboptimal regions. In other words, before the algorithm finishes a 

complete global search, it tends to adopt a local search and consequently relatively weak results are 

attained. Therefore, whenever the algorithm continues the probability of α  decreases and the 

probability of β  and µ  increases. Adding this behavior to the imperialist algorithm revolution 

policy leads to creating the proper conditions for the algorithm to escape from local peaks. Thus, as 

mentioned before, the probability of using the 2-opt, 0-1 and 1-1 exchanges at the first step of the 

proposed algorithm is considered 0.50, 0.25 and 0.25 and then during the other steps of the 

proposed algorithm, they are gradually converted to 0.20, 0.40 and 0.40.    

After the results and the values are calculated for all colonies, these countries might have a 

better objective value compared to their respective imperialists. Therefore, a colony with the best 

value in each empire is chosen and if it possesses a better objective value, it replaces an imperialist 

country. If there are a few colonies with the same objective value, one of them is chosen randomly 

and is compared with an imperialist country in the empire. From this stage up to the end of the 

algorithm, there will not be any change in objective functions of feasible values. Therefore, the best 

results and values of the objective function must be saved. For this purpose, two variables are 

chosen in order to save the best results and values until the current iteration. In each iteration, after 

the imperialist countries are replaced, the best results and values for the imperialist countries are 
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chosen as the best current results. If the new attained value is better than the value of the previous 

iteration, local search is conducted and the previous results and values are replaced with the new 

results and values. Up to this stage in the algorithm, the purpose is conducting a general search to 

locate important areas for algorithm convergence. Now, important areas must be identified and the 

population must be converged toward them. After this stage, part of the initial population moves 

toward these areas. The power of empires is assessed at this stage. In imperialist competitions, more 

powerful empires must expand their territory through occupying other countries. In order to achieve 

this goal, the power of the empire is calculated using formula 2.  

 

( ) 1, ...,j j jh f s j mλ= + =  
  

             (2) 

 

 In this formula
jh ,

js , and λ  represent empire’s total power, the average objective function 

of the colonies in each empire, and the [0 1] impact coefficient, which determines the relative power 

of a colony compared to an empire, respectively. A weaker empire loses its power by losing its 

weakest colony to the strongest empire. At this stage, the final condition is checked and if it is met, 

the algorithm ends. Otherwise, the algorithm is iterated by returning to the absorption function step. 

To end the proposed algorithm, one of the two conditions must be met: the iteration of algorithm n 

times or the survival of just one empire. These conditions are checked at the end of each algorithm 

iteration. If any one of the conditions is met, the algorithm ends and the obtained results and values 

up to now are considered as the best values and results of the algorithm. 

Moreover, in order to prevent the ICA from getting trapped in stagnation, we used a local 

searching algorithm when the algorithm attained a better solution compared to previous iterations. 

In fact, the probability of finding better solutions near a good solution is relatively high. There exist 

many algorithms for the local search and they have of course their pros and cons. Since Lin-

Kernighan algorithm is simple and it is one of the most successful methods for generating optimal 

or near optimal solutions for the TSP, we have used it in this study. The main steps of MICALK are 

summarized in the pseudo-code given in Figure 5. 

 

Step 1: Generate r random solutions of the TSP and initialize the empires. 

Step 2: Move the colonies toward their relevant imperialist by the proposed absorption function. 

Step 3: Change p percent of colonies as revolution by the 0-1 Exchange move. 

Step 4: If there is a colony in an empire which has better cost than the imperialist, exchange the 

positions of that colony and the imperialist. 

Step 5: Compute the total cost of all empires by formula (2). 

Step 6: Pick the weakest colony from the weakest empires and give it to the best empire 

(Imperialistic competition). 

Step 7: Eliminate the powerless empires. 

Step 8: If the quality of the best solution is increased in this iteration, apply lin-kernighan 

algorithm to s and save the best so far solution.  

Step 9: If the iteration of algorithm reaches to n times or the just one empire is reminded, stop, if 

not go to 2. 

 

Figure 5. The process of MICALK for solving the TSP 
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2.4 Parameter settings 

The proposed MICALK algorithm contains several parameters like other metaheuristics for 

solving the optimization problems. The quality solutions produced by the MICALK have been 

dependent on the different values of the user-controlled parameters of the algorithm. In this 

algorithm, three important parameters exist and their values directly or indirectly affect the 

performance of the algorithm. For each of the benchmark instances, ten different runs with the 

selected parameters were performed after the selection of the final parameters. In general, it is not 

easy to obtain the best combination of algorithm parameters, but a parameter setting procedure is 

necessary to reach the best balance between the quality of the obtained solutions. These parameters 

are selected in this paper after thorough testing. All of the parameter values have been determined 

on the Eil101by the numerical experiments so that several alternative values for each parameter 

were tested while all the other values were held constant. It should be noted that only parameters 

which gave the best computational results concerning the quality of the solution were selected. The 

details regarding the settings of the parameters and their values are explained in Table 1.  

 

Table 1: Parameter setting for the MICALK 

Best 

Value 
Candidate Value Description Parameter 

400 100, 200, 300, 400, 500 Number of primitive countries p 

Int [r/4] Int [r/2, r/3, r/4. r/5, r/6] Number of Imperialist countries m 

0.2 0.1, 0.2, 0.3, 0.4, 0.5 

The impact coefficient, which determines the 

relative power of a colony compared to an 

empire 
λ  

 

3. Computational experiments 

 In this section, first, the algorithms tested on 33 classic benchmark problems for the TSP are 

presented and then some numerical results of the comparison between the proposed algorithm and 

some metaheuristic algorithms are given. These algorithms are applied and tested on several 

Euclidean sample instances of TSPLIB with sizes ranging from 24 to 318 nodes. Because the 

proposed approach is a metaheuristic algorithm, the results are reported for ten independent runs in 

which the algorithm was executed until the best solution was iterated 10 times. 

The algorithms are coded by Matlab language and implemented on a Pentium 4 PC at 3GHZ 

(1GB RAM). The parameters of the proposed algorithm are selected after thorough testing. A 

number of different alternative values were tested and the ones selected are those which yielded the 

best computational results concerning both the quality of the solution and the computational time 

needed to achieve this solution. Thus, the selected parameters are:  

• Number of countries equal to p 

• Number of empires equal to N/5  

• λ  is equal to 0.3.  

 

Table 2 shows the results of the proposed algorithm for the TSP benchmark problem 

instances. In this table, columns 2-6 show the problem size n, the best value result of MICALK 

(BVR), the worst value result of MICALK (WVR), the average value of MICALK (AV) over the 

ten runs for each problem, and the best known solutions (BKS), respectively. The seventh column 

contains the CPU time for each problem (Opt), and the eighth for the relative deviation (RD) where 

the relative deviation is calculated as (MICALK− Opt)/Opt ×100%, where MICALK denotes the 

cost of the optimum found by the proposed algorithm, and Opt is the cost of the optimal solution.  
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Table 2. Results of  MICALK for the TSP 

Instance N BVR WVR AV BKS 
CPU 

Time (min) 
RD 

Eil51 51 426 456 432 426 1.45 0 

Berlin52 52 7542 7589 7565 7542 1.43 0 

Eil76 76 538 567 543 538 2.22 0 

Pr76 76 108363 108925 108553 108159 2.34 0.19 

Rat99 99 1211 1308 1262 1211 3.45 0 

KroA100 100 21282 21451 21378 21282 3.57 0 

KroB100 100 22141 22468 22326 22141 3.52 0 

KroC100 100 20749 20989 20890 20749 3.75 0 

KroD100 100 21389 21654 21540 21294 3.78 0.47 

KroE100 100 22068 22245 22164 22068 3.23 0 

Rd100 100 7910 7998 7976 7910 3.02 0 

Eil101 101 629 712 699 629 3.52 0 

Lin105 105 14379 14599 14556 14379 4.12 0 

Pr107 107 44303 44467 44398 44303 4.54 0 

Pr124 124 59124 59567 59213 59030 4.67 0.16 

Bier127 127 118589 118857 118736 118282 4.62 0.26 

Ch130 130 6110 6245 6186 6110 4.75 0 

Pr136 136 96772 97546 97290 96772 4.72 0 

Pr144 144 58537 58987 58812 58537 4.85 0 

Ch150 150 6528 6654 6595 6528 4.61 0 

KroA150 150 26524 26989 26734 26524 4.85 0 

Pr152 152 73710 73923 73859 73682 5.01 0.04 

Rat195 195 2325 2485 2417 2323 7.72 0.09 

D198 198 15785 16758 16331 15780 7.95 0.03 

KroA200 200 29368 29983 29694 29368 8.32 0.05 

KroB200 200 29437 29876 29645 29437 8.94 0 

Ts225 225 126940 127435 127293 126643 10.63 0.23 

Pr226 226 80745 82879 81598 80369 10.99 0.47 

Gil262 262 2393 2578 2467 2378 11.25 0.63 

Pr264 264 49842 50156 49989 49135 11.73 1.42 

A280 280 2601 2895 2797 2579 12.63 0.85 

Pr299 299 48349 48980 48739 48191 13.56 0.33 

Rd400 400 15521 16870 16324 15281 32.84 1.57 

 

 

This table shows that the MICALK can be used to solve the TSP effectively. As table 2 

indicates, the maximum relative error and average relative error for 33 test problems are 1.57% and 

0.21%, respectively.  

Figure 6 shows some of the best solutions searched by the proposed method. In this figure, 

the horizontal axis represents the x-axis with increasing positive values to the right and the vertical 

axis represents the y-axis with increasing positive values upward. 
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                              Bayg29                                           Att48                                            Eil51                                       

 
                         Berlin52                                         St70                                            Eil76 

 
                      KroA100                           KroC100                                        Lin 105 

 
Figure 6. Some best routes found by the proposed algorithm 

 

Table 3 shows the results obtained for the second problem instances and presents the 

comparison of the best results of our algorithm with other published research studies, including 

genetic algorithm (GA) (Ray, Bandyopadhyay, & Pal, 2004), particle swarm optimization (PSO) 

(Zhong, Zhang, & Chen, 2007), bee colony optimization (BCO) (Wong, Low, & Chong, 2008), african 

buffalo optimization (ABO) (Odili & Mohmad Kahar, 2016), genetic simulated annealing ant colony 

system with particle swarm optimization (GSAP) (Chen & Chien, 2011), ICA (YousefiKhoshbakht & 

Sedighpour, 2013), bat algorithm (BA) (Osaba et al., 2016) and improved bat algorithm (IBA) (Osaba 

et al., 2016) in terms of the optimal solution found. The results of this comparison show that the 

proposed algorithm gains equal solutions with the GA in GR24, Bayg29 and GR48which are not 

large scale problems and it gains better solutions than the GA in scale problems such as St70 and 

KroA100. Furthermore, the results indicate that although the ICA provides a better solution and 

equal solutions compared with MICALK for seventeen instances, this algorithm obtains worse 

solutions than MICA for fourteen solutions.  
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From the comparison between IBA and the proposed algorithm, it can be seen that IBA in 

nine examples has been able to find the optimum and in eight examples can yield to find solutions 

with gap of less than 1 percent. However, the proposed MICALK has found better solutions than 

IBA for larger size of instances. The last powerful algorithm compared to the proposed is IBA. This 

algorithm can obtain nine out of twenty best solutions, but the MICALK can yield better solutions 

than IBA in the remaining 11 examples. It should be noted that three reminded algorithms have had 

a weak performance in general and have not been able to produce the best solutions in most of the 

examples. In more details, the computational experiments confirm that in general the proposed 

algorithm provides better results compared to PSO, BA and BCO algorithms in terms of the quality 

of the solutions and is able to find the best solutions for twenty three out of thirty two in this table.  

The evolution of the best solution found by the proposed algorithm is plotted in Figure 7 

during a typical execution when solving instance Eil51 and KroB100. In this figure, the horizontal 

and vertical axes show the number of iterations and gained values of the proposed algorithm 

respectively. Besides, there is a fast convergence toward the BKS at the beginning of the execution 

while in the rest of the search the evolution of the BKS is not that fast.  

 

 

Figure 7. Execution plot, for instance Eil51 (left figure) and KroB100 (right figure) 

 4. Conclusion 

In this paper, a hybrid algorithm called MICALK which combines ICA and Lin-

Kernighanalgorithm was proposed for solving the TSP. We have also done experiments using two 

different data sets of TSP instances, including 44 problems with 24–1655 nodes from the TSPLIB. 

The experimental results indicate that the gap of the proposed algorithm stays on average below 

1.6% of the execution time and the MICALK uniformly produces higher performance solutions 

compared with other competing metaheuristics including GA, BA, IBA, GSAP, ABO, PSO, ICA 

and BCO on the TSP. It seems that the combination of the proposed algorithm with ant colony 

system or tabu search will yield better results for large problems of TSP. Applying this method in 

other combinational optimization problems, including the multiple traveling salesmen problem, 

vehicle routing problem, School bus routing problem and the sequencing of jobs is suggested for 

future research studies. 
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