

125

An Efficient Combined Meta-Heuristic Algorithm for Solving the Traveling

Salesman Problem

Majid Yousefikhoshbakht

Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran,
Tel. +98 81 38380595

 khoshbakht@basu.ac.ir

Azam Dolatnejad

Young Researchers & Elite Club, Tehran North Branch,

 Islamic Azad University, Tehran, Iran

Abstract

The traveling salesman problem (TSP) is one of the most important NP-hard Problems and

probably the most famous and extensively studied problem in the field of combinatorial

optimization. In this problem, a salesman is required to visit each of n given nodes once and only

once, starting from any node and returning to the original place of departure. This paper presents an

efficient evolutionary optimization algorithm developed through combining imperialist competitive

algorithm and lin-kernighan algorithm called (MICALK) in order to solve the TSP. The MICALK

is tested on 44 TSP instances involving from 24 to 1655 nodes from the literature so that 26 best

known solutions of the benchmark problem are also found by our algorithm. Furthermore, the

performance of MICALK is compared with several metaheuristic algorithms, including GA, BA,

IBA, ICA, GSAP, ABO, PSO and BCO on 32 instances from TSPLIB. The results indicate that the

MICALK performs well and is quite competitive with the above algorithms.

Keywords: Imperialist Competitive Algorithm; NP-hard Problems; Lin-Kernighan

Algorithm; Traveling Salesman Problem.

1. Introduction

There are a lot of research studies in the field of logistics, ranging from the assignment

problems to complex dynamic routing problems. Among the prominent problems in the field of

distribution and logistics, the traveling salesman problem (TSP) has arguably been one of the most

widely investigated problems of combinatorial optimization in recent years and there have been

many research studies to provide a better solution for this problem (Lawler et al., 1985). A large

number of problems like the TSP with pickup and delivery, time windows TSP, multi-depot TSP,

multiple TSP, vehicle routing problem and so on have arisen from this problem

(YousefiKhoshbakht, Didehvar, & Rahmati, 2014). Besides, it has many applications in dealing

with other problems, including the Print press scheduling (Rathinam & Sengupta, 2006), School bus

routing problem (Svestka & Huckfeldt, 1973), Interview scheduling (Angel et al., 1972), Hot rolling

scheduling (Brummit & Stentz, 1998), Design of global navigation satellite system surveying

networks (Tang et al., 2000), etc.

The TSP can be represented by a complete graph G= (N, A) where N is the set of nodes, and

A is the set of arcs fully connecting the nodes. Let
ijc be the length of the arc (i,j), which is the

distance between nodes i and j. The TSP is the problem of finding a minimal length Hamiltonian

circuit, where a Hamiltonian circuit of a graph G is a closed tour visiting once and only once all n =

|N | nodes of G, and its length is the sum of the lengths of all the arcs of which it is composed.

There have been important advances in developing exact and heuristic algorithms for

solving the TSP. There are several exact algorithms of the TSP such as Cutting Planes algorithm

(Laporte & Nobert, 1980), branch-and-cut method (Cordeau, Dell’Amico, & Iori, 2010) and

lagrangean relaxation and branch-and-bound algorithm (Mak & Boland, 2007). Since the TSP

belongs to the class of NP-complete problems, its solution grows exponentially with the increase in

BRAIN. Broad Research in Artificial Intelligence and Neuroscience

Volume 7, Issue 3, August 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print)

 126

distribution points. Thus, exact algorithms are not capable of solving problems with large

dimensions. On the other hand, heuristics are thought to be more efficient for a complex TSP and

have become very popular with researchers. A lot of algorithms have been performed on the TSP

including heuristic approaches such as the k-opt approach (Potvin, Lapalme, & Rousseau, 1989),

minimum spanning tree (Malik, Rathinam, & Darbha, 2007), self-organizing NN approach

(Vakhutinsky & Golden, 1994) and the partitioning approach (Karp, 1977).

Although heuristic methods solve NP-complete problems, they become trapped in local

optima and cannot obtain optimum solution. As a result a new kind of algorithm called

metaheuristics has been proposed in recent years (Ahmadvand, YousefiKhoshbakht, & Mahmoodi

Darani, 2012). These algorithms try to seek high quality solutions while attempting to reduce the

computational time. Furthermore, in comparison with heuristic algorithms, because metaheuristics

use the randomization concept in search for a solution, this group is more effective in escaping from

local optimum and can produce solutions of higher quality. Some of the well-known metaheuristics

are the particle swarm optimization (Anantathanavit & Munlin, 2015), neural network (Tarkov,

2015), ant colony optimization (Sedighpour et al., 2013), simulated annealing (Jeong, Kim, & Lee,

2009), neural networks (Jolai & Ghanbari, 2010) and Genetic Reactive Bone Route Algorithm whit

Ant Colony System (Yousefikhoshbakht, Malekzadeh, & Sedighpour, 2016).

The ICA is a global search strategy which uses the socio-political competition among

empires as a source of inspiration. Like many evolutionary algorithms, the primary ICA may fall

into local minimum trap during the search process and it might get far from the global optimum. For

this reason, we try to propose an effective two-phase ICA called MICALK by adopting a behavior

between rigid regularity and randomness based on pure chance. At the first stage, the TSP is solved

by a modified ICA, and at the second stage, Since the Lin-Kernighan algorithm is one of the most

effective local search algorithms for solving the TSP, this algorithm is used for improving solutions.

In more details, to enhance the global exploration capability, the 2-opt local search with a high

probability of α and 0-1 and 1-1 exchanges with low probability β and µ respectively are used.

This probability of movement has changed during the search process. The main contributions of the

paper are as follows:

ICA to enhance the ability of escaping from a local optimum

(i) Presenting an effective ICA algorithm for discrete problems

(ii) Combining the ICA algorithm with a Lin-Kernighan algorithm called MICALK

(iii) Presenting a new algorithm which is equipped with diversification and

intensification mechanisms for solving the TSP.

The rest of this paper is organized as follows: in Section 2 we present the basic principle of

ICA, Lin-Kernighan (LK) algorithm and then explain the details of the process of the proposed

algorithm. In Section 3, the proposed algorithm will be compared with some of the other algorithms

on standard problems which are included in the TSP library. The conclusions and the future works

are presented in section 4.

2. Solution Method

In this section at first, the classic ICA and LK are explained and then the hybrid of ICA and

LK as the proposed algorithm is explained in more detail. Finally, because the MICALK is

metaheuristic, parameter setting is presented.

2.1. The basic principle of ICA

During the last three decades, evolutionary optimization methods inspired by natural

processes have shown good performance in solving combinatorial optimization problems. These

algorithms have become increasingly popular through the development and utilization of intelligent

paradigms in the design of advanced information systems. When the task is optimized within

complex domains of data or information, nature-inspired approaches such as swarm or flocking

M. Yousefikhoshbakht, A. Dolatnejad - An Efficient Combined Meta-Heuristic Algorithm for Solving the Traveling

Salesman Problem

127

intelligence (bird flocks or fish schools inspired particle swarm optimization), artificial immune

systems which mimic the biological ones, ant colonies (ants’ foraging behaviors gave rise to ant

colony optimization), or optimized performance of bees and so on are widely used to solve

engineering optimization problems.

ICA, which proved to be capable of obtaining acceptable performance of some of benchmark

cost functions is one of the newest algorithms created in the recent decades. This new optimization

algorithm was first used by Atashpaz Gargari et al to solve the combinational optimization

problems in 2007 (Atashpaz Gargari & Lucas, 2007). In recent years, the ICA has been successfully

applied to several NP-hard combinatorial optimization problems, namely, TSP (YousefiKhoshbakht

& Sedighpour, 2013), recommender systems (Sepehri Rad & Lucas, 2008), designing skeletal

structures (Kaveh & Talatahari, 2010), and many other optimization problems such as the

characterization of elasto-plastic properties of materials, designing optimal layout for factories,

adaptive antenna arrays, intelligent recommender systems, and optimal controller for industrial and

chemical processes (Shokrollahpour, Zandieh, & Dorri, 2010). This evolutionary optimization

strategy has shown great performance in both convergence rate and better global optimum

achievement. Furthermore, the proposed evolutionary optimization algorithms are generally

inspired by modeling the natural processes and other aspects of species evolution, especially human

evolution, which have not been considered up to now. The method proposed in this work uses

socio-political evolution of human as a source of inspiration for developing a powerful optimization

strategy. What is more important, the ICA considers the imperialism as a level of human social

evolution and by mathematically modeling this complicated political and historical process

harnesses it as a tool for evolutionary optimization.

The ICA is a novel global search strategy which uses imperialism and imperialistic

competition process as a source of inspiration. This algorithm is based on the fact that in a real

world, countries try to extend their power over other countries in order to use their resources and

bolster their own government. The first step in ICA is to generate an initial population like other

evolutionary algorithms. The population set includes a number of feasible solutions called a

‘country’, which corresponds to the term ‘chromosome’ in the GA method. These countries are of

two types: colonies and imperialists that altogether form some empires. As it is shown in Figure 1

(Atashpaz Gargari & Lucas, 2007), bigger and stronger empires have more colonies than smaller

and weaker ones.

Figure 1. The Initial Empires

BRAIN. Broad Research in Artificial Intelligence and Neuroscience

Volume 7, Issue 3, August 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print)

 128

After initial empires are formed, their colonies start moving toward their relevant imperialist

country. This movement is a simple model of assimilation policy which was pursued by some of the

imperialist states. If one of the colonies possesses more power than its relevant imperialist after this

movement, they will exchange their positions. To begin the competition between empires, the total

objective function of each empire should be calculated. It depends on the objective function of both

an imperialist and its colonies. Imperialistic competition among these empires forms the basis of the

proposed evolutionary algorithm. During this competition, weak empires collapse and powerful

ones take the possession of their colonies - Figure 2 (Atashpaz Gargari & Lucas, 2007). The empire,

which has lost all its colonies, will collapse. At last, the most powerful empire will take the

possession of other empires and will win the competition. In other words, imperialistic competition

hopefully converges to a state in which there exists only one empire and its colonies are in the same

position and have the same cost as the imperialist. Figure 3 shows the flowchart of the basic ICA.
1

Figure 2. Eliminate the weakest colony of the weakest empire

Figure 3. Flowchart of the ICA

1
 https://en.wikipedia.org/wiki/File:Imperialist-competitive-algorithm-flowchart.jpg

M. Yousefikhoshbakht, A. Dolatnejad - An Efficient Combined Meta-Heuristic Algorithm for Solving the Traveling

Salesman Problem

129

2.2. Lin-Kernighan Algorithm

The enormous literature on meta-heuristics indicates that a promising approach for obtaining

high-quality solutions is to couple a local search algorithm with a mechanism to generate initial

solutions. A simple example of this type of algorithm is the 2-opt algorithm. This algorithm starts

with a feasible tour and continues by omitting two arcs of the tour, which are not adjacent and then

connects them again by another method in such a way that the new tour length is shorter. It can be

noted that there are several routes for connecting nodes and producing the tour again, but a state that

satisfies the problem’s constraints is acceptable. Omitting and reconnecting two arcs are repeated

until no improving 2-opt is found. Besides, the 2-opt algorithm is a unique case of the ω-opt

algorithm, where in each step ω links of the current tour are replaced by ω links in such a way that a

shorter tour is achieved. The number of operations to test all ω-exchanges increases quickly as the

number of nodes increases. The time complexity of testing ω–exchange is equal to O(n
ω
) in which

there is no nontrivial upper bound of the number of ω–exchanges.

However, since there are weaknesses, the value of ω and what ω to use to achieve the best

compromise between running time and quality of the solution must be specified in advance. The

Lin-Kernighan algorithm is a generalization of this simple principle form and is one the most

effective algorithms for solving the TSP. This algorithm removed this disadvantage by introducing

a powerful variable ω-opt algorithm in which the value of ω is changed during its execution. At

each iteration the algorithm considers a growing set of potential exchanges which start with r = 2.

These exchanges are chosen in such a way that a feasible tour may be formed at any stage of the

process. Then, the problem is examined for ascending values of ω and the algorithm decides what

the value of ω should be. If an interchange of ω links succeeds in finding a new shorter tour, then

the actual tour is replaced with the new tour. This continues until some stopping conditions are

satisfied.

2.3. Our approach

In order to apply the proposed algorithm on the TSP, at the first stage, feasible solutions or

primitive countries should be introduced in a way which is compatible with the construction of the

mentioned problem. Therefore, a bisection array shown in Figure 4 is used. In this array, the visited

nodes are ordered from left to right in the first section and the value of the objective function is

shown in the second section.

Figure 4. A Country in ICA

Therefore, a defined number of primitive solutions (r) must be randomly generated and the

values of the objective function if for each i=1,…,r must be obtained. Then, these solutions and

their values are imported to matrix D in which every row shows a primitive solution and its value of

the objective function. It should be noted that using a random construction at this level leads to

obtaining solutions which have an irregular construction in feasible space. Then, m countries which

have better objective function are selected and are called empire countries. Furthermore, the

number of colonies devoted to each empire j is calculated by the formula (1).

1

int[(1) ()]
j

j m

ii

f
k r m

f
=

= − × −
∑

 (1)

This formula leads that more colonies are allocated to empires with fewer objective

functions and as a result a bigger empire is formed. The Int function used in the formula is the floor

26 8 7 14 6 13 4 12 5 11 3 10 2 9 1

BRAIN. Broad Research in Artificial Intelligence and Neuroscience

Volume 7, Issue 3, August 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print)

 130

function which causes the allocation of an integer number of colonies to each empire. It should be

noted that allocating colonies to empires is conducted randomly and if some countries might not

belong to any empire due to the property of the Int function, these countries are allocated to the

most powerful empire. After the empires are formed, each empire increases its quality, using the

imperialist countries which play local optima role. What is worthy of note is the fact that since a lot

of possible points are combined with local optima, we must use an absorption function which

includes a randomization concept so that the results of combinations will not yield a very similar

response. To achieve this goal, we have utilized a novel and innovative method. As an example,

first, two possible responses [5 2 9 4 8 3 1 6 7] and [9 2 7 6 5 3 1 8 4] are considered as imperialist

and colony respectively. Then, a random number between 2 and n-1 is selected (n is the number

nodes of instance and is 9 here). After that, some nodes equal to the selected number are chosen

from the colonies and are arranged according to the order of the imperialist countries. If the selected

random number between 1 and 8 is 4, then 4 nodes are randomly chosen from the colonies like 2, 6,

5, and 3. Then, their order in imperialist country which is 5, 2, 3, and 6 in the example is found.

Therefore, the new result for the colony will be [9 5 7 2 3 6 1 8 4]. The absorption function is

performed for all colonies in comparison to imperialist countries and the results and the values are

replaced with the best results and the values obtained in the current iteration provided that the new

results are better.

 At the next stage, p percent of countries experience a revolution. This causes variations in

colonies in each empire and if possible their quality increases at each stage. The proposed methods

for this stage are the 0–1 Exchange move. In this move, a candidate node is removed from its

original route and is inserted in the best position. The replacement is done if the new results are

better than the previous ones.

 Most successful meta-heuristic methods have paid attention to global search and search in

the whole solution space as far as possible. As the algorithm proceeds, it moves to better solutions

and the global search switches to a local search. We have factored in this issue too, and have

represented the probability of 0-1, 1-1- and 2-opt move with , andα β µ respectively so that

1α β µ+ + = . In the 1-1-Exchange, two nodes are randomly selected and exchanged with each

other. Finally, in the 2-Opt move, two non-adjacent edges are replaced by two other edges. It should

be noted that there are several routes for connecting nodes and producing the tour again, but a state

which satisfies the problem’s constraints is acceptable. Note that although 2-opt local search as a

powerful global search algorithm is more used at the beginning of algorithm for global search, 0-1

and 1-1 exchanges are more applied at the end of the algorithm because these algorithms might lead

to premature convergence to suboptimal regions. In other words, before the algorithm finishes a

complete global search, it tends to adopt a local search and consequently relatively weak results are

attained. Therefore, whenever the algorithm continues the probability of α decreases and the

probability of β and µ increases. Adding this behavior to the imperialist algorithm revolution

policy leads to creating the proper conditions for the algorithm to escape from local peaks. Thus, as

mentioned before, the probability of using the 2-opt, 0-1 and 1-1 exchanges at the first step of the

proposed algorithm is considered 0.50, 0.25 and 0.25 and then during the other steps of the

proposed algorithm, they are gradually converted to 0.20, 0.40 and 0.40.

After the results and the values are calculated for all colonies, these countries might have a

better objective value compared to their respective imperialists. Therefore, a colony with the best

value in each empire is chosen and if it possesses a better objective value, it replaces an imperialist

country. If there are a few colonies with the same objective value, one of them is chosen randomly

and is compared with an imperialist country in the empire. From this stage up to the end of the

algorithm, there will not be any change in objective functions of feasible values. Therefore, the best

results and values of the objective function must be saved. For this purpose, two variables are

chosen in order to save the best results and values until the current iteration. In each iteration, after

the imperialist countries are replaced, the best results and values for the imperialist countries are

M. Yousefikhoshbakht, A. Dolatnejad - An Efficient Combined Meta-Heuristic Algorithm for Solving the Traveling

Salesman Problem

131

chosen as the best current results. If the new attained value is better than the value of the previous

iteration, local search is conducted and the previous results and values are replaced with the new

results and values. Up to this stage in the algorithm, the purpose is conducting a general search to

locate important areas for algorithm convergence. Now, important areas must be identified and the

population must be converged toward them. After this stage, part of the initial population moves

toward these areas. The power of empires is assessed at this stage. In imperialist competitions, more

powerful empires must expand their territory through occupying other countries. In order to achieve

this goal, the power of the empire is calculated using formula 2.

() 1, ...,j j jh f s j mλ= + =

 (2)

 In this formula
jh ,

js , and λ represent empire’s total power, the average objective function

of the colonies in each empire, and the [0 1] impact coefficient, which determines the relative power

of a colony compared to an empire, respectively. A weaker empire loses its power by losing its

weakest colony to the strongest empire. At this stage, the final condition is checked and if it is met,

the algorithm ends. Otherwise, the algorithm is iterated by returning to the absorption function step.

To end the proposed algorithm, one of the two conditions must be met: the iteration of algorithm n

times or the survival of just one empire. These conditions are checked at the end of each algorithm

iteration. If any one of the conditions is met, the algorithm ends and the obtained results and values

up to now are considered as the best values and results of the algorithm.

Moreover, in order to prevent the ICA from getting trapped in stagnation, we used a local

searching algorithm when the algorithm attained a better solution compared to previous iterations.

In fact, the probability of finding better solutions near a good solution is relatively high. There exist

many algorithms for the local search and they have of course their pros and cons. Since Lin-

Kernighan algorithm is simple and it is one of the most successful methods for generating optimal

or near optimal solutions for the TSP, we have used it in this study. The main steps of MICALK are

summarized in the pseudo-code given in Figure 5.

Step 1: Generate r random solutions of the TSP and initialize the empires.

Step 2: Move the colonies toward their relevant imperialist by the proposed absorption function.

Step 3: Change p percent of colonies as revolution by the 0-1 Exchange move.

Step 4: If there is a colony in an empire which has better cost than the imperialist, exchange the

positions of that colony and the imperialist.

Step 5: Compute the total cost of all empires by formula (2).

Step 6: Pick the weakest colony from the weakest empires and give it to the best empire

(Imperialistic competition).

Step 7: Eliminate the powerless empires.

Step 8: If the quality of the best solution is increased in this iteration, apply lin-kernighan

algorithm to s and save the best so far solution.

Step 9: If the iteration of algorithm reaches to n times or the just one empire is reminded, stop, if

not go to 2.

Figure 5. The process of MICALK for solving the TSP

BRAIN. Broad Research in Artificial Intelligence and Neuroscience

Volume 7, Issue 3, August 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print)

 132

2.4 Parameter settings

The proposed MICALK algorithm contains several parameters like other metaheuristics for

solving the optimization problems. The quality solutions produced by the MICALK have been

dependent on the different values of the user-controlled parameters of the algorithm. In this

algorithm, three important parameters exist and their values directly or indirectly affect the

performance of the algorithm. For each of the benchmark instances, ten different runs with the

selected parameters were performed after the selection of the final parameters. In general, it is not

easy to obtain the best combination of algorithm parameters, but a parameter setting procedure is

necessary to reach the best balance between the quality of the obtained solutions. These parameters

are selected in this paper after thorough testing. All of the parameter values have been determined

on the Eil101by the numerical experiments so that several alternative values for each parameter

were tested while all the other values were held constant. It should be noted that only parameters

which gave the best computational results concerning the quality of the solution were selected. The

details regarding the settings of the parameters and their values are explained in Table 1.

Table 1: Parameter setting for the MICALK

Best

Value
Candidate Value Description Parameter

400 100, 200, 300, 400, 500 Number of primitive countries p

Int [r/4] Int [r/2, r/3, r/4. r/5, r/6] Number of Imperialist countries m

0.2 0.1, 0.2, 0.3, 0.4, 0.5

The impact coefficient, which determines the

relative power of a colony compared to an

empire
λ

3. Computational experiments

 In this section, first, the algorithms tested on 33 classic benchmark problems for the TSP are

presented and then some numerical results of the comparison between the proposed algorithm and

some metaheuristic algorithms are given. These algorithms are applied and tested on several

Euclidean sample instances of TSPLIB with sizes ranging from 24 to 318 nodes. Because the

proposed approach is a metaheuristic algorithm, the results are reported for ten independent runs in

which the algorithm was executed until the best solution was iterated 10 times.

The algorithms are coded by Matlab language and implemented on a Pentium 4 PC at 3GHZ

(1GB RAM). The parameters of the proposed algorithm are selected after thorough testing. A

number of different alternative values were tested and the ones selected are those which yielded the

best computational results concerning both the quality of the solution and the computational time

needed to achieve this solution. Thus, the selected parameters are:

• Number of countries equal to p

• Number of empires equal to N/5

• λ is equal to 0.3.

Table 2 shows the results of the proposed algorithm for the TSP benchmark problem

instances. In this table, columns 2-6 show the problem size n, the best value result of MICALK

(BVR), the worst value result of MICALK (WVR), the average value of MICALK (AV) over the

ten runs for each problem, and the best known solutions (BKS), respectively. The seventh column

contains the CPU time for each problem (Opt), and the eighth for the relative deviation (RD) where

the relative deviation is calculated as (MICALK− Opt)/Opt ×100%, where MICALK denotes the

cost of the optimum found by the proposed algorithm, and Opt is the cost of the optimal solution.

M. Yousefikhoshbakht, A. Dolatnejad - An Efficient Combined Meta-Heuristic Algorithm for Solving the Traveling

Salesman Problem

133

Table 2. Results of MICALK for the TSP

Instance N BVR WVR AV BKS
CPU

Time (min)
RD

Eil51 51 426 456 432 426 1.45 0

Berlin52 52 7542 7589 7565 7542 1.43 0

Eil76 76 538 567 543 538 2.22 0

Pr76 76 108363 108925 108553 108159 2.34 0.19

Rat99 99 1211 1308 1262 1211 3.45 0

KroA100 100 21282 21451 21378 21282 3.57 0

KroB100 100 22141 22468 22326 22141 3.52 0

KroC100 100 20749 20989 20890 20749 3.75 0

KroD100 100 21389 21654 21540 21294 3.78 0.47

KroE100 100 22068 22245 22164 22068 3.23 0

Rd100 100 7910 7998 7976 7910 3.02 0

Eil101 101 629 712 699 629 3.52 0

Lin105 105 14379 14599 14556 14379 4.12 0

Pr107 107 44303 44467 44398 44303 4.54 0

Pr124 124 59124 59567 59213 59030 4.67 0.16

Bier127 127 118589 118857 118736 118282 4.62 0.26

Ch130 130 6110 6245 6186 6110 4.75 0

Pr136 136 96772 97546 97290 96772 4.72 0

Pr144 144 58537 58987 58812 58537 4.85 0

Ch150 150 6528 6654 6595 6528 4.61 0

KroA150 150 26524 26989 26734 26524 4.85 0

Pr152 152 73710 73923 73859 73682 5.01 0.04

Rat195 195 2325 2485 2417 2323 7.72 0.09

D198 198 15785 16758 16331 15780 7.95 0.03

KroA200 200 29368 29983 29694 29368 8.32 0.05

KroB200 200 29437 29876 29645 29437 8.94 0

Ts225 225 126940 127435 127293 126643 10.63 0.23

Pr226 226 80745 82879 81598 80369 10.99 0.47

Gil262 262 2393 2578 2467 2378 11.25 0.63

Pr264 264 49842 50156 49989 49135 11.73 1.42

A280 280 2601 2895 2797 2579 12.63 0.85

Pr299 299 48349 48980 48739 48191 13.56 0.33

Rd400 400 15521 16870 16324 15281 32.84 1.57

This table shows that the MICALK can be used to solve the TSP effectively. As table 2

indicates, the maximum relative error and average relative error for 33 test problems are 1.57% and

0.21%, respectively.

Figure 6 shows some of the best solutions searched by the proposed method. In this figure,

the horizontal axis represents the x-axis with increasing positive values to the right and the vertical

axis represents the y-axis with increasing positive values upward.

BRAIN. Broad Research in Artificial Intelligence and Neuroscience

Volume 7, Issue 3, August 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print)

 134

 Bayg29 Att48 Eil51

 Berlin52 St70 Eil76

 KroA100 KroC100 Lin 105

Figure 6. Some best routes found by the proposed algorithm

Table 3 shows the results obtained for the second problem instances and presents the

comparison of the best results of our algorithm with other published research studies, including

genetic algorithm (GA) (Ray, Bandyopadhyay, & Pal, 2004), particle swarm optimization (PSO)

(Zhong, Zhang, & Chen, 2007), bee colony optimization (BCO) (Wong, Low, & Chong, 2008), african

buffalo optimization (ABO) (Odili & Mohmad Kahar, 2016), genetic simulated annealing ant colony

system with particle swarm optimization (GSAP) (Chen & Chien, 2011), ICA (YousefiKhoshbakht &

Sedighpour, 2013), bat algorithm (BA) (Osaba et al., 2016) and improved bat algorithm (IBA) (Osaba

et al., 2016) in terms of the optimal solution found. The results of this comparison show that the

proposed algorithm gains equal solutions with the GA in GR24, Bayg29 and GR48which are not

large scale problems and it gains better solutions than the GA in scale problems such as St70 and

KroA100. Furthermore, the results indicate that although the ICA provides a better solution and

equal solutions compared with MICALK for seventeen instances, this algorithm obtains worse

solutions than MICA for fourteen solutions.

M
.

Y
o

u
se

fi
k

h
o

sh
b

a
k

h
t,

 A
.

D
o

la
tn

e
ja

d
 -

 A
n

 E
ff

ic
ie

n
t

C
o

m
b

in
e

d
 M

e
ta

-H
e

u
ri

st
ic

 A
lg

o
ri

th
m

 f
o

r
S

o
lv

in
g

 t
h

e
 T

ra
v

e
li

n
g

 S
a

le
sm

a
n

 P
ro

b
le

m

1
3

5

T
a
b
le

 3
.
C

o
m

p
a
ri

so
n
 b

et
w

ee
n
 M

IC
A

L
K

 a
n
d
 o

th
er

 m
et

a
h
e
u
ri

st
ic

 a
lg

o
ri

th
m

s

In
st

a
n
ce

S

iz
e

IB
A

 [
3

3
]

B
A

 [
3

3
]

G
A

 [
2

8
]

IC
A

 [
2

3
]

G
S

A
P

 [
3

2
]

A
B

O
 [

3
1

]
P

S
O

 [
2

9
]

B
C

O
 [

3
0

]
M

IC
A

L
K

O

p
ti

m
u

m

G
R

2
4

2

4

-
-

1
2

7
2

1
2

7
2

-
-

-
-

1
2

7
2

1
2

7
2

B
ay

g
2

9

2
9

-
-

1
6

1
0

1
6

1
0

-
-

-
-

1
6

1
0

1
6

1
0

G
R

4
8

4

8

-
-

5
0

4
6

5
0

4
6

-
-

-
-

5
0

4
6

5
0

4
6

A
T

T
4
8

4
8

-
-

-
1

0
6

2
8

-
-

-
1

0
6

6
1

1
0

6
2
8

1
0

6
2
8

E
il

5
1

5

1

4
2

6

4
3

0

-
4

2
6

4
2

7

4
2

6

4
2

7

4
2

8

4
2

6

4
2

6

B
er

li
n
5

2

5
2

7
5

4
2

7
6

7
6

-
7

5
4

2

7
5

4
2

-
7

5
4

2

-
7

5
4

2

7
5

4
2

S
T

7
0

7
0

6
7

5

6
9

6

6
8

5

6

7
7

-
-

-
-

6
7

5

6
7

5

E
il

7
6

7

6

5
3

9

5
5

9

-
5

3
8

5
3

8

5
3

8

5
4

0

5
3

9

5
3

8

5
3

8

K
ro

A
1

0
0

1

0
0

2
1

2
8
2

2
1

8
8
4

2
1

5
0
4

2
1

2
8
2

2
1

2
8
2

2
1

3
1
1

2
1

2
9
6

2
1

7
6
3

2
1

2
8
2

2
1

2
8
2

K
ro

B
1

0
0

1
0

0

2
2

1
4
1

2
2

8
4
3

-
2

2
1

4
1

2
2

1
4
1

2
2

1
6
0

-
2

2
6

3
7

2
2

1
4
1

2
2

1
4
1

K
ro

C
1

0
0

1
0

0

2
0

7
4
9

2
0

8
0
2

-
2

0
7

4
9

2
0

7
4
9

2
0

7
5
5

-
2

0
8

5
3

2
0

7
4
9

2
0

7
4
9

K
ro

D
1

0
0

1
0

0

2
1

2
9
4

2
1

7
2
7

-
2

1
2

9
4

2
1

3
0
9

2
1

3
4
7

-
2

1
6

4
3

2
1

3
8
9

2
1

2
9
4

K
ro

E
1

0
0

1
0

0

2
2

0
6
8

2
2

3
2
3

-
2

2
0

6
8

2
2

0
6
8

2
2

0
8
8

-
2

2
4

5
0

2
2

0
6
8

2
2

0
6
8

E
il

1
0

1

1
0

1

6
4

6

6
6

7

-
6

2
9

6
3

0

-
-

6
3

5

6
2

9

6
2

9

L
in

1
0

5

1
0

5

-
-

-
1

4
3

7
9

1
4

3
7
9

-
-

1
5

2
8
8

1
4

3
7
9

1
4

3
7
9

K
ro

A
1

5
0

1

5
0

-
-

-
2

6
5

2
4

2
6

5
2
4

2
6

5
2
6

-
2

7
8

5
8

2
6

5
2
4

2
6

5
2
4

K
ro

B
1

5
0

1
5

0

-
-

-
2

6
1

5
4

2
6

1
3
0

2
6

1
6
9

-
2

6
5

3
5

2
6

1
3
0

2
6

1
3
0

K
ro

A
2

0
0

2

0
0

-
-

-
2

9
3

7
9

2
9

3
8
3

2
9

3
7
0

2
9

5
6
3

2
9

9
6
1

2
9

3
6
8

2
9

3
6
8

K
ro

B
2

0
0

2
0

0

-
-

-
2

9
4

3
7

2
9

5
4
1

2
9

4
8
7

-
3

0
3

5
0

2
9

4
8
7

2
9

4
3
7

P
r1

0
7

1
0

7

4
4

7
9
4

4
4

6
1
8

-
4

4
3

0
3

-
-

-
-

4
4

3
0
3

4
4

3
0
3

P
r1

2
4

1
2

4

5
9

4
1
2

5
9

6
2
7

-
5

9
0

8
7

-
-

-
-

5
9

0
7
6

5
9

0
3
0

P
r1

3
6

1
3

6

9
9

3
5
1

1
0

1
6
3

1

-
9

6
8

4
5

-
-

-
-

9
3

8
1
2

9
6

7
7
2

P
r1

4
4

1
4

4

5
8

5
3
7

5
8

5
8
8

-
5

8
5

3
7

-
-

-
-

5
8

5
3
7

5
8

5
3
7

P
r1

5
2

1
5

2

7
3

9
2
1

7
4

1
7
2

-
7

3
6

8
2

-

7
3

7
3
0

-
-

7
3

6
8
2

7
3

6
8
2

P
r2

6
4

2
6

4

4
9

7
5
6

5
0

2
5
6

-
5

0
1

1
1

-
-

-
-

4
9

7
6
5

4
9

1
3
5

P
r2

9
9

2
9

9

4
8

3
1
0

4
9

1
4
2

-
4

9
8

7
9

-
-

-
-

4
8

2
9
9

4
8

1
9
1

L
i3

1
8

3

1
8

-
-

-
4

2
4

8
7

4
2

4
8
7

-
-

4
4

6
8
5

4
2

3
8
3

4
2

0
2
9

R
at

5
7

5

5
7

5

-
-

-
6

8
2

3

6
8

9
1

6
7

7
4

-
-

6
7

7
3

6
7

7
3

R
at

7
8

3

7
8

3

-
-

-
8

9
0

5

8
9

8
8

8
8

1
1

-
-

8
8

1
1

8
8

0
6

R
l1

3
2

3

1
3

2
3

-
-

-
2

7
2

3
4

1

2
7

7
6
4

2

2
7

0
4
8

0

-
-

2
7

0
4
5

6

2
7

0
1
9

9

F
l1

4
0

0

1
4

0
0

-
-

-
2

0
4

5
3

2
0

5
9
3

2
0

1
3
4

-
-

2
0

1
3
2

2
0

1
2
7

D
1

6
5

5

1
6

5
5

-
-

-
6

4
5

2
1

6
4

1
5
1

6
2

1
2
8

-
-

6
2

1
2
8

6
2

1
2
8

BRAIN. Broad Research in Artificial Intelligence and Neuroscience

Volume 7, Issue 3, August 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print)

136

From the comparison between IBA and the proposed algorithm, it can be seen that IBA in

nine examples has been able to find the optimum and in eight examples can yield to find solutions

with gap of less than 1 percent. However, the proposed MICALK has found better solutions than

IBA for larger size of instances. The last powerful algorithm compared to the proposed is IBA. This

algorithm can obtain nine out of twenty best solutions, but the MICALK can yield better solutions

than IBA in the remaining 11 examples. It should be noted that three reminded algorithms have had

a weak performance in general and have not been able to produce the best solutions in most of the

examples. In more details, the computational experiments confirm that in general the proposed

algorithm provides better results compared to PSO, BA and BCO algorithms in terms of the quality

of the solutions and is able to find the best solutions for twenty three out of thirty two in this table.

The evolution of the best solution found by the proposed algorithm is plotted in Figure 7

during a typical execution when solving instance Eil51 and KroB100. In this figure, the horizontal

and vertical axes show the number of iterations and gained values of the proposed algorithm

respectively. Besides, there is a fast convergence toward the BKS at the beginning of the execution

while in the rest of the search the evolution of the BKS is not that fast.

Figure 7. Execution plot, for instance Eil51 (left figure) and KroB100 (right figure)

 4. Conclusion

In this paper, a hybrid algorithm called MICALK which combines ICA and Lin-

Kernighanalgorithm was proposed for solving the TSP. We have also done experiments using two

different data sets of TSP instances, including 44 problems with 24–1655 nodes from the TSPLIB.

The experimental results indicate that the gap of the proposed algorithm stays on average below

1.6% of the execution time and the MICALK uniformly produces higher performance solutions

compared with other competing metaheuristics including GA, BA, IBA, GSAP, ABO, PSO, ICA

and BCO on the TSP. It seems that the combination of the proposed algorithm with ant colony

system or tabu search will yield better results for large problems of TSP. Applying this method in

other combinational optimization problems, including the multiple traveling salesmen problem,

vehicle routing problem, School bus routing problem and the sequencing of jobs is suggested for

future research studies.

References

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., & Shmoys, D.B. (1985). The Traveling

Salesman Problem. John Wiley & Sons, New York.

YousefiKhoshbakht, M., Didehvar, F., & Rahmati, F. (2014). A Combination of Modified Tabu

Search and Elite Ant System to Solve the Vehicle Routing Problem with Simultaneous Pickup

and Delivery, Journal of Industrial and Production Engineering, 31 (2), 65-75.

M. Yousefikhoshbakht, A. Dolatnejad - An Efficient Combined Meta-Heuristic Algorithm for Solving the Traveling

Salesman Problem

137

Rathinam, S. & Sengupta, R. (2006). Lower and upper bounds for a symmetric Multiple Depot,

Multiple Travelling Salesman Problem, Research Report, UCB-ITSRR- 2006-2, Institute of

Transportation Studies.

Svestka, J. A. & Huckfeldt, V. E. (1973). “Computational experience with an m-salesman traveling

salesman algorithm,” Management Science 19(7): 790–799.

Angel, R. D., Caudle, W.L., Noonan, R., & Whinston, A. (1972). “Computer assisted school bus

scheduling,” Management Science 18: 279–288.

Brummit, B. & Stentz, A. (1998). GRAMMPS: a generalized mission planner for multiple mobile

robots. Proceedings of the IEEE international conference on robotics and automation.

Tang, L., Liu, J., Rong, A., & Yang, Z. (2000). “A multiple traveling salesman problem model for

hot rolling scheduling in Shangai Baoshan Iron & Steel Complex,” European Journal of

Operational Research 124: 267–282.

Laporte, G. & Nobert, Y. A. (1980). “Cutting planes algorithm for the m-salesmen problem,”

Journal of the Operational Research Society 31: 1017–1023.

Cordeau, J. F., Dell’Amico, M., & Iori, M. (2010). “Branch-and-cut for the pickup and delivery

traveling salesman problem with FIFO loading,” Computers & Operations Research 37(5):

970-980.

Mak, V. & Boland, N. (2007). “Polyhedral results and exact algorithms for the asymmetric

travelling salesman problem with replenishment arcs,” Discrete Applied Mathematics 155(16):

2093-2110.

Potvin, J., Lapalme, G., & Rousseau, J. (1989). “A generalized k-opt exchange procedure for the

MTSP,” Information Systems and Operations Research 27(4): 474–481.

Malik, W., Rathinam, S., & Darbha, S. (2007). “An approximation algorithm for a symmetric

Generalized Multiple Depot,” Multiple Travelling Salesman Problem. Operations Research

Letters 35(6): 747-753,

Vakhutinsky, I. A. & Golden, L. B. (1994). Solving vehicle routing problems using elastic net,

Proceedings of the IEEE international conference on neural network, 4535–4540,

Karp, R. M. (1977). “Probabilistic analysis of partitioning algorithms for the traveling salesman

problem in the plane,” Mathematics of Operations Research 2: 209-224.

Ahmadvand, M., YousefiKhoshbakht, M., & Mahmoodi Darani, N. (2012). Solving the Traveling

Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm, Journal of Advances in

Computer Research, 3 (3), 75-84.

Anantathanavit, M., & Munlin, M. (2015). Using K-means Radius Particle Swarm Optimization for

the Travelling Salesman Problem. IETE Technical Review, 1-9.

Tarkov, M. S. (2015). Solving the traveling salesman problem using a recurrent neural

network. Numerical Analysis and Applications, 8(3), 275-283.

Sedighpour, M., Ahmadi, V., YousefiKhoshbakht, M., Didehvar, F., & Rahmati, F. (2013). Solving

the Open Vehicle Routing Problem by a Hybrid Ant Colony Optimization, Kuwait Journal of

Science, 41 (3), 139-162

Jeong, S. J., Kim, K. S., & Lee, Y. H. (2009). “The efficient search method of simulated annealing

using fuzzy logic controller,” Expert Systems with Applications 36(3), 7099-7103.

Jolai, F. & Ghanbari, A. (2010). “Integrating data transformation techniques with Hopfield neural

networks for solving travelling salesman problem,” Expert Systems with Applications 37(7),

5331-5335.

Yousefikhoshbakht, M., Malekzadeh, N., & Sedighpour, M. (2016). Solving the Traveling

Salesman Problem Based on The Genetic Reactive Bone Route Algorithm whit Ant Colony

System, International Journal of Production Management and Engineering, 4 (2), 65-73.

Atashpaz Gargari, E. & Lucas, C. (2007). Imperialist Competitive Algorithm: An Algorithm for

Optimization Inspired by Imperialistic Competition, IEEE Congress on Evolutionary

Computation (CEC 2007), 4661 – 4667.

BRAIN. Broad Research in Artificial Intelligence and Neuroscience

Volume 7, Issue 3, August 2016, ISSN 2067-3957 (online), ISSN 2068 - 0473 (print)

 138

YousefiKhoshbakht, M. & Sedighpour, M. (2013). New Imperialist Competitive Algorithm to

Solve the Traveling Salesman Problem, International Journal of Computer Mathematics, 90

(7), 1495-1505.

Sepehri Rad, H. & Lucas, C. (2008). Application of imperialistic competition algorithm in

recommender systems. In 13th international CSI computer conference (CSICC’08), Kish

Island, Iran.

Kaveh, A. & Talatahari, S. (2010). “Optimum design of skeletal structures using imperialist

competitive algorithm”, Computers and Structures 88, 1220–1229.

Shokrollahpour, E., Zandieh, M., & Dorri, B. (2010). “A novel imperialist competitive algorithm

for bi-criteria scheduling of the assembly flowshop problem,” International Journal of

Production Research 1–17.

Ray, S.S., Bandyopadhyay, S., & Pal, S.K. (2004). “New operators of genetic algorithms for

traveling salesman problem,” Proceedings of the 17th International Conference on Pattern

Recognition 2: 497–500,

Zhong, W., Zhang, J., & Chen, W. (2007). “A novel discrete particle swarm optimization to solve

traveling salesman problem,” Evolutionary Computation 3283–3287.

Wong, L. P., Low, M. Y. H., & Chong, C. S. (2008). “A bee colony optimization algorithm for

traveling salesman problem,” AICMS, 818–823.

Odili, J. B. & Mohmad Kahar, M. N. (2016). “Solving the Traveling Salesman’s Problem Using the

African Buffalo Optimization,” Computational Intelligence and Neuroscience.

Chen, S. M. & Chien, C. Y. (2011). Solving the traveling salesman problem based on the genetic

simulated annealing ant colony system with particle swarm optimization techniques, Expert

Systems with Applications, 38 (12), 14439–14450.

Osaba, E., Yang, X.S., Diaz, F., Lopez-Garcia, P., & Carballedo, R. (2016). “An improved discrete

bat algorithm for symmetric and asymmetric Traveling Salesman Problems”, Engineering

Applications of Artificial Intelligence, 48, pp.59-71.

File:Imperialist-competitive-algorithm-flowchart.jpg. From Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/File:Imperialist-competitive-algorithm-flowchart.jpg

