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Abstract 
This paper presents a hybrid self-adaptive global best harmony search algorithm (HSGHSA) 

to improve the performance of harmony search algorithm (HSA) for solving vehicle routing 
problems with time windows (VRPTW). To explore the search space more efficiently, the proposed 
HSGHSA couples an improved variant of HSA called global best harmony search algorithm with a 
self-adaptive mechanism for tuning its control parameters. Moreover, the HSGHSA adopts six local 
search (LS) neighborhood structures to enhance its exploitation capability. The effectiveness of 
HSGHSA is evaluated against Solomon’s VRPTW benchmark and its performance is compared 
with HSA and several state-of-the-art algorithms. The obtained results confirm that the HSGHSA 
produces very competitive results compared to the other algorithms. 

 
Keywords: Harmony search algorithm, Global best harmony search algorithm, Vehicle 
routing problem, Time windows, Metaheuristic algorithms. 

 
1. Introduction  
Transportation is an important domain of human activity that supports and makes possible 

most other social and economic activities. Transportation by vehicle is one of the most common 
approach to accomplish such a process. However, finding an optimum transportation route is a 
complex problem that has been widely investigated for the distribution systems. The problem 
known as the vehicle routing problem (VRP) is a combinatorial optimization problem and belongs 
to the family of NP-hard problems (Fu, Aloulou, & Triki, 2017). There are various types of VRPs. 
For example, the VRP which comes with the time window constraints is called VRP with Time 
Windows (VRPTW). The problem is considered closer to real life situations due to its time window 
constraints in comparison to capacitated VRP in which only vehicle capacity constraint is 
considered. In VRPTW, we have the task to provide goods of a specified quantity to a set of 
geographically scattered customers. Each customer has a specified time window within which they 
can be served. We have set of vehicles having limited capacity at our disposal to provide service. 
The aim is designing a least cost routing plan to deliver the goods from the depot to the customers 
under the following conditions: 

- Each vehicle must start its route from the depot and end it at the depot. 
- The total demands of all customers in each route should not exceed the capacity of the 

vehicle. 
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- If a vehicle arrives earlier than the start time window of a customer, it must wait to serve the 
customer during its time window. 

- If the vehicle arrives after the end time window of that customer, then it cannot serve the 
customer. 

- Each customer must be served only once during his/her time window. 
So far, many researchers from various fields have tried to solve the VRPTW using exact, 

heuristic, and metaheuristic methods. Exact methods are able to find optimal solutions for VRPTW 
but they are only recommended for problems with small size VRPTW. In contrast, heuristic, and 
metaheuristic algorithms are able to tackle large-sized VRPTW problems but these methods do not 
guarantee to obtain the optimal solutions (Bräysy & Gendreau, 2005a).  

Azi et al. introduced an exact algorithm for a VRPTW (Azi, Gendreau, & Potvin, 2010), but 
Yassen et al. (Yassen et.al., 2015a) proposed a meta-harmony search algorithm (meta-HSA) to 
solve VRPTW which uses two HS algorithms, an HSA-optimizer and HSA-solver. The HSA-
optimizer adaptively adjusts the components and the configurations of the HSA-solver (LS) based 
on the search status. The HSA-solver, which is a hybridization of HSA and local Search, takes the 
configuration generated by the HSA-optimizer as input and then solves the given problem instance. 
The proposed meta-HSA in this paper is used to adjust the parameter values, LS types and LS 
configurations (parameter values and neighborhood operators). Yassen et al. (Yassen et.al., 2015b) 
applied a hybrid metaheuristic algorithm to solve VRPTW, which hybridizes HSA with simulated 
annealing for improving the performance of HSA. They also investigated the effect of hybridizing 
LS algorithms with HSA for VRPTW in (Yassen et. al., 2015c) and used three well-known LS 
algorithms: hill climbing, simulated annealing, and reactive tabu search to hybridize with the 
harmony search algorithm. Ursani et al. (Ursani et. al., 2011) presented localized optimization 
framework in which a problem is decomposed into sub-problems and optimization is done on those 
sub-problems independent of each other. They used a genetic algorithm as an optimization method 
and adapted it to fit within the framework of VRPTW as a problem domain. Nagata et al. (Nagata, 
Bräysy, & Dullaert, 2010) developed a penalty-based memetic algorithm for the VRPTW by 
extending the edge assembly memetic algorithm (EAMA) of Nagata (Nagata, 2007) for the 
capacitated VRP. The suggested EAMA is based on the two-stage approach. An initial population 
of solutions, each consisting of the same number of routes, is generated with a sophisticated route 
minimization procedure developed by Nagata and Braysy (Nagata & Bräysy, 2009). A subsequent 
procedure of the EAMA is then applied for minimizing the total travel distance for the determined 
number of routes. In this paper, adapted edge assembly crossover (EAX) (Nagata, 2006) is used to 
the VRPTW and a novel penalty function for the time window violation is developed. Yu et al. (Yu 
, Yang , & Yao, 2011) proposed a hybrid approach, which consists of ant colony optimization 
(ACO) and tabu search, to solve the VRPTW. Baños et al. (Baños et. al., 2013) proposed a multi-
objective procedure based on simulated annealing called the multiple temperature Pareto simulated 
annealing (MT-PSA). This paper deals with a multi-objective variant of the VRPTW that 
simultaneously minimizes the travelled distance and the imbalance of the routes. This imbalance is 
analyzed from two perspectives: the imbalance in the distances travelled by the vehicles, and the 
imbalance in the loads delivered by them. Ding et al. (Ding et. al., 2012) presented a hybrid ant 
colony optimization to solve VRPTW by adjusting pheromone approach and introducing a disaster 
operator. This modification leads to prevent the search process from getting trapped in the local 
optimal solution by taking the candidate list into consideration and combining the ACO with the 
saving algorithm and ƛ-interchange mechanism. In this work, the saving algorithm (Clarke & 
Wright, 1964) is used to initially assign each customer to a separate route and ƛ -interchange 
mechanism (Osman, 1993) to improve the convergence speed of ACO. Table 1 shows a summary 
of the history of VRPTW. 
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Table 1. The summary of the history of VRPTW 
Author The proposed approach The number of best known solutions 

obtained 
Year 

Azi et. al. (2010) The introduction of a branch-and-price 
approach 

Not available 2010 

Nagata et al. (2010) Penalty-based memetic algorithm for the 
VRPTW by extending the edge assembly 
memetic algorithm (EAMA) 

Obtains 45 best known solutions and 
improves 1 than the best-known solutions 
in the literature 

2010 

Ursani et al. (2011) Localized Genetic Algorithm (LGA) Obtained 18 best known solutions and 10 
new best solutions  

2011 

Yu et al. (2011) A hybrid of ant colony optimization and 
Tabu search (ACO–Tabu) 

Obtains 41 best known solutions and 
improves 4 than the best-known solutions 
in the literature 

2011 

Ding et al. (2012) Hybrid ant colony optimization (HACO) Obtains 3 best known solutions and 
improves 3 than the best-known solutions 
in the literature 

2012 

Baños et al. (2013) Multi-objective procedure based on 
simulated annealing, the multiple 
temperature pareto simulated annealing 
(MT-PSA) 

Not available 2013 

Barbucha (2014) Cooperative Population Learning 
Algorithm (CPLA) 

Obtains 17 best known solutions and 
improves 9 than the best-known solutions 
in the literature 

2014 

Yassen et al. (2015a) Meta-harmony search algorithm (meta-
HSA) 

Not available 2015 

 

Harmony search algorithm (HSA) introduced for the first time in 2001 (Geem et. al., 2001) 
was inspired by the process of the orchestra playing the music. In comparison to other main stream 
meta-heuristics, HSA has fewer mathematical parameters and is robust enough for the wide range 
of applications. That is why HSA gained much attention for solving engineering problems (Lin et. 
al., 2017; Gao et. al., 2015). However, the performance of HSA highly depends on parameter 
selection and inaccurate parameter selection can lead to poor performance of HSA in local searches. 
On the other hand, population-based methods are integrated with LS algorithm (Blum et. al., 2011) 
to increase the exploitation process. Therefore, we hybridize HSA with LS algorithms in order to 
improve the quality of solutions and enhance the exploitation in this work. Furthermore, we used 
hill climbing (HC), simulated annealing (SA) and great deluge algorithm (GD) as the LS algorithms 
randomly mixed with self-adaptive global best harmony search algorithm (SGHSA) in the proposed 
HSGHSA algorithm. In addition, six local search neighborhood structures i.e., relocate, interchange, 
end customer interchange, or-opt, 2-opt star, and cross exchanges (Bräysy & Gendreau, 2005a) are 
also used for further improvement in the solution. The Solomon’s VRPTW benchmark is employed 
to evaluate the performance of the HSGHSA compared to the results of the standard HSA and the 
best-known results in the literature. The results show that the proposed algorithm is significantly 
efficient and finds closely the best-known solutions (BKSs) for most of the instances.  

The rest of the paper is structured as follows. In the Section 2, classic HSA and SGHSA are 
explained. The proposed method is described in more detail in the Section 3 and in the next Section, 
the experimental design is presented and the proposed algorithm is compared with some of the 
famous metaheuristic algorithms on standard VRPTW problems in the Section 5. Finally, the 
conclusions are presented in the Section 6. 
 

2. Harmony Search Algorithm 
HSA is a new population-based meta-heuristic algorithm inspired by the process of playing 

the music when a musician is looking for better harmony. In the algorithm, harmony in music is 
similar to solution vector, and the musician’s improvisations are similar to local and global search 
schemes. HSA is inclusive of three basic phases, namely, initialization, improvisation of a harmony 
vector and updating the harmony memory (HM). In the initialization phase, an initial population of 
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harmonies is randomly created and stored in a HM. In the next phase, a new harmony by using a 
memory consideration rule and a pitch adjustment rule are improvised. In the final phase, the 
harmony memory is updated if the new harmony is better than the worst harmony vector in the HM. 
Generally, HSA has five parameters as follows: 

- Harmony memory size (HMS) is the number of solution vectors in the HM. 
- Harmony memory consideration rate (HMCR) is used to improvise a new harmony and 

varies between 0 and 1. Depending on the HMCR, the decision variable of the new harmony is 
selected for HM. 

- Pitch adjustment rate (PAR) is the value, which varies between 0 and 1. The decision 
variable of new harmony is regulated if the randomly generated number between 0 and 1 
turns out to be less than the value of PAR. 

- The step size of the PAR parameter called distance bandwidth (BW). 
- The termination condition based on the number of improvisations (NI). 

 

 2.1. Self-adaptive global best harmony search algorithm 
The self-adaptive global best harmony search algorithm (SGHSA) (Quan-Ke Pan et. al., 2010) is 

a variant of HSA used an adaptive parameter tuning method and a new improvisation scheme. This 
algorithm uses a fixed user-specified value of the harmony memory size (HMS) and the number of 
improvisations (NI). HMCR and the pitch adjustment rate (PAR) parameters are dynamically adapted to 
a suitable range by recording their historic values corresponding to created harmonies in the harmony 
memory (HM). SGHSA starts with specified standard deviation and initial values of HMCR and PAR 
equivalent to their normal distribution means HMCRm and PARm. During the evolution, if the generated 
new harmony is replaced with the worst harmony in the HM then HMCR and PAR values are recorded. 
After a specified number of iterations learning period (LP), HMCRm and PARm are recalculated by 
averaging all the recorded HMCR and PAR values during this period. SGHSA consists of the following 
five steps. 

Step 1: Problem and algorithm parameter initialization. 
- Set parameters HMS, LP, NI,  and  
- Initialize BWmax, BWmin, HMCRm and PARm 
Step 2: Harmony memory initialization and evaluation. 
- Initialize HM from a uniform distribution and evaluate it. Set the generation counter lp=1. 
Step 3: New harmony improvisation. 
- Generate HMCR and PAR according to HMCRm and PARm. Yield BW according to 

BWmax and Bwmin. 
- Improvise a new harmony: To generate a new harmony, a new decision variable (with 

probability HMCR) from the best harmony is selected in the HM or randomly generate (with 
probability 1-HMCR). If the new decision variable has been inherited from the best harmony in the 
HM, then it should be adjusted (with probability PAR). 

Step 4: Harmony memory update. 
- Updated HM if the new harmony is better than the worst harmony in the HM and record the 

values of HMCR and PAR. 
Step 5: Termination criterion check. 
- If lp=LP, recalculate HMCRm and PARm according to the recorded values of HMCR and 

PAR. Reset lp=1; otherwise increase generation counter lp. If NI is completed, return the best 
harmony vector in the HM; otherwise go back to step 3. 

 
 Figure 1 shows the pseudo code of the SGHSA described above. 
 
 

Step 1: Set parameters HMS, LP and NI. 
Step 2: Initialize , , HMCRm and PARm. 
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Step 3: Initialize and evaluate HM. Set generation counter lp = 1. 
Step 4: Generate HMCR and PAR according to HMCRm and PARm. Yield BW according to 

and . 
Step 5: Improvise a new harmony Xnew as follows: 
           for (j = 1 to D) do 
                    if  then 

 
                                 if  then  

 
                                 endif 
                   else 

 
                    endif 
            end for 
Step 6: If , Update the HM as and record the values of HCMR and 
PAR. 
Step 7: If lp = LP, recalculate HMCRm (PARm) according to the recorded values of HCMR (PAR) 
and reset lp = 1; otherwise,lp = lp + 1; 
Step 8: If NI is completed, return the best harmony vector XB in the HM; otherwise go back to 
step 4. 

 
Figure 1. The pseudo-code of SGHSA 

 

3. The solution method  
In this section, the proposed algorithm is explained in more details. This work aims to 

propose a method that is better than all proposed methods based on harmony search for VRPTW in 
the literature by comparing the results of the application of HSGHSA with those obtained via the 
state-of-the-art methods.  

 

3.1. Adapting SGHSA to solve the VRPTW 
The SGHSA starts with a population of harmonies and, iteratively, generates a new harmonious 

solution for a specific problem instance. This algorithm process consists of five phases as follows: 
1. Initialize the problem and algorithm parameters. 
2. Initialize the harmony memory and randomly generate the initial population of solutions 

stored in HM: To create a solution first, an empty route is created and an un-routed customer 
is randomly selected and added to the current route such that it does not violate the VRPTW 
constraints. Then, the nearest un-routed customer to the last inserted customer is selected 
and appended to the current route (if it satisfies the imposed constraints). If no un-routed 
customer can be inserted into the current route, a new route is created. The process of 
creating new routes is repeated until all customers are routed. 

3. New harmony improvisation: To create a new harmony, an empty solution X is created, and 
a random number r between zero and one is generated. If r is less than HMCR, a route is 
randomly selected from the best solution stored in HM and added it to X. Otherwise, a route 
is randomly created and appended to X. Any route selected from the best solution in HM is 
improved with regard to the PAR as follows:  
First, a random number r between zero and one is generated. If r is less than PAR, a 
neighborhood operator is randomly selected and applied to the current route while 
respecting VRPTW constraints. Since improvising a new solution in the SGHSA is based on 
the best solution in HM, if the size of the created solution X in terms of the number of routes 
equals to the best solution in HM, the improvisation process will be terminated. The created 
solution X is usually infeasible, because VRPWT is a constrained problem and given the 
process of improvising a new solution X, routes of a new solution X are either routes of the 
best solution in HM or randomly generated. So, with a very high probability, there are 
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customers who are either duplicated or deleted on these routes. A repair mechanism is 
employed to convert this infeasible solution into a feasible solution by eliminating the 
repeated customers and the assignment of the lost customers while maintaining VRPTW 
constraints. Figure 2 shows an example of the process of repair mechanism for 9 nodes. In 
this example, the node 1 represents depot and nodes 2 to 9 represent customers. 

4. The harmony memory is updated. The quality of the solution X is calculated and replaced 
with the worst solution in HM and record the values of HMCR and PAR, if X has better 
quality than another one.  

5. Termination criterion is checked. Steps 3-5 are repeated iteratively until the stopping condition 
based on the learning period is reached. Then, the best-solution obtained will be returned. 

 

 
Figure 2. Repair mechanism  

 
3.2. Local search algorithms 
Local search algorithms (LS) have an important role in the exploitation of the search space 

used to intensify the search process in order to improve the algorithm convergence. In this work, 
these algorithms are adopted to improve SGHSA exploitation and applied to the improvised 
solution. For this purpose, the improvised solution is used as an initial solution for the LS 
algorithms. Unlike other methods, LS algorithms utilize several neighborhood structures at each 
iteration to generate a new neighbor solution. This procedure is iteratively repeated until the LS 
stopping condition is achieved. The LS neighborhood structures are (Bräysy & Gendreau, 2005a): 

Relocate: Transfers a customer from one route to another. 
Exchange: Swap two customers in different routes. 
End Customer Interchange: Swap two end customers in different routes. 
Or-opt: Relocate a chain of L consecutive customers so that three customers in the original tour 
are replaced by new three ones. 
2-opt: Exchanges the end segments of two routes so that the last customers of a route are 
introduced after the first customers of another route. 

CROSS-exchange: First, remove customers i-1, i, k and k+1 from a first route while customers j-1, 
j, l and l+1 are removed from a second route. Then, the segments i–k and j–l, which may contain an 
arbitrary number of customers are swapped, are swapped as is shown in Figure 3. 
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Figure 3. CROSS-exchange 

 

The probability of P is used to apply LS algorithm, which is calculated by the following equation: 

 
 
3.2.1 SA  
SA (Kirkpatrick et. al., 1983) is a randomized method that has major advantage of its ability to 

avoid falling into local minima in comparison to other methods used in this paper. According to the 
annealing acceptance criterion, SA probabilistically accepts worse solutions in order to flee from the local 
optima. This algorithm begins with an initial solution X and iteratively generates a neighborhood solution 
X’ via six neighborhood structures. If the quality of  X’ is better than X, this solution is replaced with X’. 
Otherwise, the worse solution might be accepted based on a certain probability p calculated as follows: 

 
Where Δf is the difference between the quality of X and X’, and t is the current temperature. 

At each iteration, the temperature is decreased using the geometric scheduled as follows: 

 
Where  is the cooling rate ( ). The search process is repeated until the stopping 

criterion is met (see Figure 4 (Yassen et. al., 2015a)). 
 

 Simulated annealing algorithm 
1. Input: Cooling schedule ; 
2.  ; /* Given of the initial solution  */ 

3. ;  /* Starting temperature */ 
4. while Stopping criteria is not met do 
5.           Generate a neighborhood solution X’; 

6.  
7.            If  
8.                    X=X’ ; /*Accept the neighbor solution*/ ; 
9.            else 

10.                    Accept X’ with a probability   
11.            end 
12.             /* Temperature update*/; 

13.  
14. Output Best solution found ; 

 

Figure. 4. The pseudo-code of SA 
 
 

3.2.2. GD  
GD (Dueck, 1993) is a generic algorithm applied to optimization problems which is similar 

in many ways to the hill-climbing and simulated annealing algorithms. The main difference GD 
with the SA is the deterministic acceptance function of neighboring solutions. At each iteration, a 
generated neighbor solution is accepted if its quality is less than the current boundary value, named 
level (see Figure 5) (Talbi, 2009). The initial objective function is considered as the initial value of 
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the level. The value of the level is monotonically decreased during the search using rain speed (UP) 
via Equation 4. 

 
Great deluge algorithm 

1. Input:  
2.  ; /* Given of the initial solution  */ 
3. Choose the rain speed UP ; /* UP > 0 */ 
4. Choose the initial water level LEVEL ; 
5. while Stopping criteria is not met do 
6.            Generate a neighborhood solution X’; 

7.            If  LEVEL 
8.                    X=X’ ; /*Accept the neighbor solution*/ ; 
9.            end 
10.            LEVEL = LEVEL − UP ; /* update the water level */; 
11. end 
12. Output: Best solution found. 

Figure 5. The pseudo-code of GD 

3.2.3. HC  
HC (Simion, 2013) is a simple optimization algorithm which starts with an initial solution X 

and iteratively create a neighbor solution X’ using the six neighborhood structures. If the quality of 
X' is better than X, substitute X with X'. Otherwise, X' is discarded and a new iteration is started 
(see Figure 6) (Yassen et. al., 2015a; Gehring & Homberger, 2001). The search process will be 
repeated until the stopping criterion is met.  

 
Hill climbing algorithm 

1.  ; /* Given of the initial solution  */ 
2. while Stopping criteria is not met do 
3.         Generate N(X) /* Generation of candidate neighbors */ ; 
4.         if there is no better neighbor then 
5.                   Stop 
6.         end 
7.         X=X’ /*Select a better neighbor X’ of  N(X)*/; 
8. end 
9. Output Final solution found (local optima).; 

 
Figure 6. The pseudo-code of HC 

 
3.3. HSGHSA 
HSGHSA is a hybrid evolutionary algorithm whose performance is dependent on the 

efficiency of three major components including, HSA parameters, the type of LS algorithm and the 
LS neighborhood structures. These components have outstanding contribution in creating balance 
between exploitation and exploration and increase the ability of HSGHSA to solve various 
optimization problems. The process of adjusting these components is very difficult depending on 
the nature of the problem that will be discussed and no specific values of these components, which 
work well on all samples, exist. To ensure proper selection of HSA parameters in the first 
component, we use SGHSA that employs an adaptive parameter tuning method and parameters with 
regard to the VRPTW problem which are self-adapted through a learning mechanism or dynamic. 
Type of LS algorithm in the second component is guaranteed to select simulated annealing, hill 
climbing and great deluge LS algorithms that had good performance on the VRPTW (Yassen et. al., 
2015a, 2015b, 2015c) (Bent & Van Hentenryck, 2004) (Baños et. al., 2013; Ding et. al., 2012; 
Clarke et. al., 1964; Osman, 1993) and is randomly determined to hybridize with SGHSA. Since LS 
plays such an important role in the algorithm’s performance, we use several neighborhood 
structures. The HSGHSA method presented in Figure 7 is described in the following steps: 
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1. Initialize the parameter values of SGHSA (HMS, LP, NI, HMCRm, PARm, HMCRstd and 
PARstd), and LS algorithms. 

2. Harmony memory initialization and evaluation. 
3. New harmony improvisation. 
4. Apply local search: To improve the improvised solution X, an LS algorithm is used. The LS 

algorithm generates a neighbor's solution, using six neighborhood structures, that is respectively 
applied to the improvised solution X. The neighbor's solution will replace X if the quality of 
neighbor's solution is better than that of X; otherwise, the neighbor's solution will be rejected. 

5. The harmony memory is updated. The quality of the solution X is calculated and replaced 
with the worst solution in HM and record the values of HMCR and PAR, if X has better 
quality than the bad one.  

6. Termination criterion is checked. Steps 3-6 are repeated iteratively until the stopping condition 
based on the learning period is reached. Then, the best obtained solution will be returned. 

 
 

Figure 7. The flow chart of HSGHSA 
 
4. Experimental design 
We used Solomon’s VRPTW benchmark (Solomon, 1987) to evaluate the performance of 

the HSGHSA. This benchmark contains 56 instances of Solomon with 100 customers, which are 
divided on six groups depending on the geographic location of the customers (R1, R2, C1, C2, RC1, 
RC2). The instances belonging to R1 and R2 groups located in random positions and C1 and C2 
groups are in clusters. The RC1 and RC2 groups contain a mix of both random and clustered 
customers. The features of these instance sets are illustrated in Table 2. 
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 Table 2. The characteristics of Solomon’s VRPTW datasets 
 Dataset 

Features R1 R2 C1 C2 RC1 RC2 
Number of Instants 12 11 9 8 8 8 
Number of Customers 100 100 100 100 100 100 
Number of vehicle 25 25 25 25 25 25 
Capacity of Vehicle 200 1000 200 700 200 1000 
Distribution of Customers Random Random Cluster Cluster Random/ 

Cluster 
Random/ 
Cluster 

 

Since the process of setting parameters plays an important role in achieving optimal solutions, in 
this section the parameter setting of the proposed algorithm is considered. The parameter values of 
HSGHSA are self-adaptive and are adjusted during the evolution, but the initial values of parameters 
SGHSA and LS algorithms should be adjusted. These parameters include HMS, LP, NI, HMCRm, PARm, 
HMCRstd and PARstd for SGHSA and , t, UP for LS algorithms. The proposed HSGHSA is coded in 
Matlab 2014 and run on the 2.40 GHz Intel core i3 processor with Windows 8 operating system. The 
initial values of parameters HMCRm, PARm, HMCRstd and PARstd are 0.98, 0.9,0.01 and 0.05 
respectively, as suggested in (Quan-Ke Pan et. al., 2010). Although these values in reference (Quan-Ke 
Pan et. al., 2010) are for continuous optimization problems, but due to the self-compatibility of these 
parameters in the SGHSA, these values are updated during the run in accordance with the problem 
conditions. 

The values of the parameters HMS and LP are fixed in 20 and 100 based on the preliminary 
test, respectively (see Table 3). This test is performed on six varied instances (R1-01, R2-01, C1-09, 
C2-06, RC1-01 and RC2-01) with 10 times execution of the proposed algorithm. 

 

 Table 3: The results of the different HMS and LP values 
HMS LP R1-01 R2-01 C1-09 C2-06 RC1-01 RC2-01 Average 

50 1650.7 1207.5 856.22 638.53 1705.7 1370.9 1238.3 
100 1646.5 1184.3 862.23 642.25 1699.9 1370.0 1234.2 

5 

200 1649.6 1211.6 862.56 653.37 1714.3 1369.3 1243.5 
50 1636.5 1203.1 874.67 650.95 1699.3 1351.8 1236.1 
100 1649.8 1201.1 837.39 694.21 1686.2 1364.8 1238.9 

10 

200 1651 1207.9 886.96 645.95 1683.7 1351.4 1237.8 
50 1641.8 1186.4 891.06 632.99 1697.3 1336.0 1230.9 
100 1663.8 1188.7 838.45 686.09 1673.6 1332.8 1230.6 

20 

200 1655.5 1205.2 866.03 672.80 1689.3 1335.2 1237.3 
 
GD has only one parameter that is the rain speed parameter (UP) calculated by Equation 5 as 

suggested in (Yassen et. al., 2015a).  SA algorithm has two parameters, initial temperature (t) and 
the cooling schedule ( ) fixed to 100 and 0.9, respectively. 

 

 
  
 

5. Experimental Results 
In this section, we will investigate the effectiveness of the HSGHSA in tackling VRPTW. 

For this purpose, In Section 5.1 the results obtained by the HSGHSA have been tabulated and 
compared with the best-known results in the literature and state-of the-art methods. In Section 5.2, 
the results of the HSGHSA are compared to the standard HSA and its variants. Finally, in Section 
5.3, we compare the results of the HSGHSA with HSA-HC, HSA-SA, HSA-RTS and Meta-HSA 
(Yassen et. al., 2015a, 2015b, 2015c). 
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The stopping criterion of the proposed method is decided based on the running time as suggested 
in (Yassen et. al., 2015a, 2015b, 2015c), which has been fixed in 25 minutes. The stopping criterion 
for the LS algorithms is adopted according to the number of non-improved iterations (NI_L=1000). 
Because the proposed approach is a metaheuristic algorithm, the results are reported for 31 
independent runs to obtain an accurate statistical analysis and the best solution found for all 
instances is reported. 

 
5.1. Evaluation of HSGHSA performance and comparison with other methods 
Tables 4 show the results obtained by the proposed HSGHSA method for instances 

belonging to each data set C1, R1, RC1, C2, R2, and RC2, respectively. The first column of the 
table is the instances name, and column 2 is the value of the best-known solution (BKS) in the 
literature and is divided into 3 sub-columns a, b and c. Column a, b and c give information about 
total distance traveled (TD), number of vehicles (NV) and the reference (Ref) of the heuristic. 
Column 3 gives information about the results obtained by HSGHSA which is divided into 5 sub-
columns a, b, c, d and e. Column a, b and c give information about best, average (Ave) and standard 
deviation (Std) in 31 runs respectively. Column d gives the number of vehicles NV, column e gives 
the percent deviation  between the best obtained solution and best-known. The  is 
calculated as follows: 

 
 
Where  is the best result obtained by HSGHSA and is the best-known value (TD) in 

the literature. A negative value of Gap indicates that the best result obtained by the proposed 
method is better than the best-known on an instance and a positive value of Gap indicates that the 
best-known is better than the best result obtained by proposed method. Finally, the zero represents 
the same performance methods. 

According to the results listed in Table 4 and percentage deviation, we can see that 
HSGHSA has attained 5 best-known solutions shown in bold and has improved R1-01 best-known 
solution with percentage deviations -1.05. Furthermore, the proposed algorithm was able to obtain 
very close solutions to BKS in other instances such that Gap of 18 instances is less than 4 
percentages.   

 
Table 4: The results obtained by the HSGHSA on Solomon’s VRPTW benchmark 
 

  BKS  HSGHSA 
Data set  a. TD b. NV c. Ref  a. Best b. Avg c. Std d. NV e. Gap% 
C1-01  828.94 10 2*  828.94 843.11 25.03 10 0 
C1-02  828.94 10 2*  828.94 896.56 31.41 10 0 
C1-03  828.06 10 2*  857.63 919.34 29.04 10 3.57 
C1-04  824.78 10 2*  888.5 949.78 29.72 10 7.72 
C1-05  828.94 10 2*  828.94 831.05 4.66 10 0 
C1-06  828.94 10 2*  830.33 845.27 25.80 10 0.16 
C1-07  828.94 10 2*  828.94 834.23 11.87 10 0 
C1-08  828.94 10 2*  831.93 896.32 38.88 10 0.36 
C1-09  828.94 10 2*  831.83 881.87 27.13 10 0.34 
R1-01  1642.87 20 5*  1625.6 1662 12.623 20 -1.05 
R1-02  1472.62 18 5*  1480.3 1523.2 14.32 18 0.52 
R1-03  1213.62 14 2*  1241.2 1271.8 14.35 15 2.27 
R1-04  982.01 10 2*  1046.6 1083.4 18.64 11 6.57 
R1-05  1360.83 15 5*  1390.8 1430.2 16.27 16 2.20 
R1-06  1241.518 13 5*  1281 1307.3 12.44 15 3.18 
R1-07  1076.125 11 5*  1133.3 1161.1 17.37 11 5.31 
R1-08  948.573 10 5*  988.49 1017.7 14.63 11 4.20 
R1-09  1151.839 13 5*  1217.2 1268.7 24.74 13 5.67 
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R1-10  1080.36 11 2*  1131 1177.1 19.59 12 4.68 
R1-11  1053.496 12 5*  1101.2 1160.3 19.91 12 4.52 
R1-12  953.63 10 2*  1029.8 1059.1 16.96 11 7.98 
RC1-01  1623.58 15 2*  1670.6 1704.2 22.83 16 2.89 
RC1-02  1466.84 14 5*  1519.4 1547.9 16.13 15 3.58 
RC1-03  1261.67 11 3*  1345.8 1412.8 24.82 12 6.66 
RC1-04  1135.48 10 4*  1198.2 1248.7 17.48 11 5.52 
RC1-05  1518.600 16 5*  1564.8 1606.4 20.18 16 3.04 
RC1-06  1377.352 13 5*  1432.9 1452.2 19.01 14 4.03 
RC1-07  1212.830 12 5*  1285.2 1321.4 17.04 13 5.96 
RC1-08  1117.526 11 5*  1188.7 1229.7 22.12 11 6.36 
C2-01  591.56 3 2*  591.56 655.64 29.15 3 0 
C2-02  591.56 3 2*  609.94 653.96 25.04 3 3.10 
C2-03  591.17 3 2*  620.81 700.43 25.98 3 5.01 
C2-04  590.60 3 2*  632.89 700.74 43.52 3 7.16 
C2-05  588.88 3 2*  591.42 644.48 27.72 3 0.43 
C2-06  588.49 3 2*  615.74 674.53 28.97 3 4.63 
C2-07  588.29 3 2*  598.77 639.33 26.913 3 1.78 
C2-08  588.32 3 2*  619.24 682.22 37.66 3 5.25 
R2-01  1147.80 9 1*  1184.3 1223.3 22.41 9 3.18 
R2-02  1039.32 5 1*  1071.5 1188.4 245.19 6 3.09 
R2-03  874.87 5 1*  915.64 961.57 57.121 6 4.66 
R2-04  735.8 3 1*  814.21 952.54 240.66 5 10.65 
R2-05  954.160 5 1*  1014.6 1053.6 20.48 6 6.33 
R2-06  884.25 4 1*  945.75 1008.7 49.21 4 6.95 
R2-07  797.99 4 1*  861.62 948.33 144.63 6 7.97 
R2-08  705.62 3 1*  772.67 856.03 217.96 4 9.50 
R2-09  860.11 5 5*  912.19 994.38 214.25 6 6.05 
R2-10  910.98 5 1*  959.99 1020.2 31.38 6 5.37 
R2-11  755.82 4 1*  823.73 885.91 37.31 4 8.98 
RC2-01  1266.11 9 1*  1302.2 1346 21.23 8 2.85 
RC2-02  1096.75 8 1*  1130.8 1200.4 28.711 7 3.10 
RC2-03  926.89 5 1*  996.87 1061.1 113.9 6 7.55 
RC2-04  786.38 4 1*  849.94 988.70 207.29 4 8.08 
RC2-05  1157.55 7 1*  1240.8 1296.7 34.25 8 7.19 
RC2-06  1056.21 7 1*  1124.3 1173.1 34.54 7 6.44 
RC2-07  966.08 7 1*  1060.6 1143.2 77.87 6 9.78 
RC2-08  779.84 4 5*  876.05 949.19 48.89 5 12.33 

 
1* - De Olivera, Vasconcelos, Alvarenga, Mesquita, & De Souza, 2007 
2* - Rochat & Taillard, 1995 
3* - Shaw, 1998 
4* - Cordeau, Laporte, & Mercier, 2001 
5* - Alvarenga, Mateus, & Tomi, 2007 

 
 
 
In addition, in order to demonstrate the efficiency of the algorithm, six of the solutions 

found in the examples in the previous tables are presented in Figure 8. This figure shows the results 
of HSGHSA for the R101, R201, C101, C201, RC101, and RC201 instances in which NV is the 
number of vehicles and TD is the total distance. It should be noted that in the R1-01 examples 
presented in this figure, the proposed algorithm has been able to improve the optimum solution 
compared to the best-known solution. 

Furthermore, the HSGHSA results are compared to those obtained by other state-of-the-art 
methods in the literature. We select twelve works that have obtained the best results on VRPTW in 
Table 5.  
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These methods contain the following: 
- Meta-HSA: Hybrid harmony search algorithm (Yassen et. al., 2015a) 
- NB10: Penalty-based edge assembly memetic algorithm (Nagata et. al., 2010) 
- Homberger: Hybrid ant colony with tabu search (Homberger & Gehring, 2002) 
- BVH: Two-stage hybrid local search (Bent & Van Hentenryck, 2004) 
- CH01: Parallel two-phase metaheuristic (Gehring & Homberger, 2001) 
- CH99: Two evolutionary meta-heuristics (Homberger & Gehring, 1999) 
- CLM: Unified tabu search (Cordeau et. al, 2001) 
- B01: Reactive variable neighborhood search (Bräysy, 2003) 
- EA2: Fast evolutionary metaheuristic (Bräysy & Dullaert, 2003) 
- LC03: Cooperative parallel meta-heuristic (Le Bouthillier & Crainic, 2005) 
- LCK05: Guided cooperative search (Le Bouthillier et. al., 2005) 
- PDR09:  Branch-and-price-based large neighborhood search algorithm (Prescott-Gagnon et. 

al., 2009) 
 
Table 5 presents the best solutions obtained via the application of meta-HSA, Homberger, 

CLM, CH01, CH99, B01, BVH, EA2, LC03, LCK05, PDR09, NB10 and HSGHSA on Solomon’s 
benchmark datasets including, R1, R2, C1, C2, RC1 and RC2 alongside the published best results. 
Each row in this table contains 3 parts of the average total distances obtained for each dataset (TD), 
the percentage of deviation from the published best (%TD) and the average number of vehicles for 
each dataset(NV). The method for calculating percentages is given below. 

 

100% 






 


b

bh

TD

TDTD
TD  (7) 

 

 where   is distance of heuristic concerned and  is distance of best solution. 
 
The results show that the proposed HSGHSA has been able to find better solutions than 

other algorithms for two group instances, R2 and RC2 out of six. Furthermore, in 4 groups, 
including R1, C1, C2 and RC1, although the algorithm cannot obtain better solutions than others, 
the high quality solutions are gained and the quality of the solutions are acceptable compared with 
most of the algorithms.  

In more details, the proposed algorithm has obtained the solutions with 3.44, 6.31, 1.34, 
3.42, 4.59 and 6.79 presents of %TD respectively in comparison with the published best solutions. 
Although HSGHSA did not manage to beat the best-known results for all datasets, the obtained 
results for these datasets are very competitive.  
 

 
Table 5: Comparison of the performance of the proposed HSGHSA and different heuristics 

Algorithms  R1 R2 C1 C2 RC1 RC2 
 

Published Best NV 13.08 4.73 10.00 3 12.75 6.38 
 TD 1181.45 878.79 828.38 589.86 1339.24 1004.48 

 
Meta-HSA TD 1207.76 977.19 838.47 605.41 1381.96 1099.12 
 %TD +2.23 +11.19 +1.22 +2.64 +3.19 +9.42 
 NV - - - - - - 
Homberger  TD 1226.38 969.96 828.38 589.86 1392.57 1144.43 
 %TD +3.80 +10.3 0 0 +3.98 +13.93 
 NV 12.00 2.73 10.00 3.00 11.63 3.25 
CLM TD 1210.14 969.57 828.38 589.86 1389.78 1134.52 
 %TD +2.43 +10.33 0 0 +3.77 +12.95 
 NV 12.08 2.73 10.00 3.00 11.50 3.25 
CH01 TD 1217.57 961.59 828.63 590.33 1395.13 1139.73 
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 %TD +3.06 +9.42 +0.03 +0.08 +4.17 +13.46 
 NV 12.00 2.73 10.00 3.00 11.50 3.25 
CH99 TD 1198 947 829 590 1365 1144 
 %TD +1.40 +7.76 +0.07 +0.02 +1.92 +13.89 
 NV 1242 2.82 10.00 3.00 11.88 3.25 
B01 TD 1222.12 975.12 828.38 589.86 1389.58 1128.39 
 %TD +3.44 +10.96 0 0 +3.6 +12.34 
 NV 11.92 2.73 10.0 3.00 11.50 3.25 
BVH TD 1231.08 954.18 828.38 589.86 1384.17 1124.47 
 %TD +4.20 +8.58 0 0 +3.35 +11.95 
 NV 12.18 2.73 10.00 3.00 11.50 3.25 
EA2 TD 1220.14 977.57 828.38 589.86 1397.44 1140.06 
 %TD +3.27 +11.24 0 0 +4.35 +13.49 
 NV 12.00 2.73 10.00 3.00 11.50 3.25 
LC03 TD 1209.19 963.62 828.38 589.86 1389.22 1143.70 
 %TD +2.35 +9.65 0 0 +3.73 +13.86 
 NV 12.08 2.73 10.00 3.00 11.50 3.25 
LCK05 TD 1214.20 954.32 828.38 589.86 1389.22 1143.70 
 %TD +2.77 +8.59 0 0 +3.73 +13.86 
 NV 11.92 2.73 10.00 3.00 11.50 3.25 
PDR09 TD 1210.34 955.74 828.38 589.86 1384.16 1119.44 
 %TD +2.45 +8.76 0 0 +3.35 +11.44 
 NV 11.92 2.73 10.00 3.00 11.50 3.25 
NB10 TD 1210.34 952.08 828.38 589.86 1384.72 1119.45 
 %TD +2.44 +8.34 0 0 +3.39 +11.45 
 NV 

 
11.92 2.73 10.00 3.00 11.50 3.25 

HSGHSA TD 1222.20 934.2 839.55 610.04 1400.7 1072.69 
 %TD +3.44 +6.31 +1.35 +3.42 +4.59 +6.79 
 NV 13.08 4.72 10.00 3.00 12.75 6.37 

 

    
 

Figure 8. The results of instances: R101, R201, C101, C201, Rc101 and Rc201 
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The HSGHSA incorporates the local search algorithms in order to exploit local routing 

solutions. To demonstrate the effectiveness of local exploitation in HSGHSA, the convergence trace 
of the best and average the traveled distance in a population for six selected instances (one from 
each category) with and without the local search are plotted in Figure 9. As shown in Figure 9, the 
HSGHSA hybrid with local search performs better by having lowered the traveled distance for 
almost all instances than the one without any local exploitation. It has also been observed that other 
instances in the Solomon’s 56 data sets exhibit similar convergence performances as those shown in 
Figure 8, which confirm the importance of incorporating local search exploitation in HSGHSA. 

 
5.2. Comparisons of the HSGHSA with the standard HSA its variants 
According to various methods of parameter setting, many versions of HSA were presented 

in the literature. In this subsection, we investigate the performance of the HSGHSA and compare it 
with the standard HSA and seven other well-known HSA variants including Classic HAS, Improved 
harmony search algorithm (IHSA) (Mahdavi et. al., 2007), Global best harmony search algorithm 
(GHSA) (Omran & Mahdavi, 2008), SGHSA (Quan-Ke Pan et. al., 2010), Harmony search 
algorithm with dynamic subpopulation (DHSA) (Pan et. al., 2011), Modified harmony search 
algorithm (MHSA) (Cheng et. al., 2008), Self-adaptive harmony search algorithm (SHSA) (Yadav 
et. al., 2012), and Intelligent tuned harmony search algorithm (ITHSA) (Yadav et. al., 2012). 

The results of the standard HSA and HSA variants have been collected from (Yassen et. al., 
2015a). The standard HSA and the HSA variants use three LS neighborhood structures (Relocate, 
Exchange and Two-opt star). To show the method’s performance more clearly, the Best, Avr and 
Std of the results of eight mentioned algorithms and the proposed algorithm are tabulated in Table 6 
in which the best results of nine algorithms are highlighted in bold. Moreover, mean of Best, Ave 
and Std of all algorithms for nine instances are shown in this table.  

The following remarks upon the computational of this table shows that the proposed method 
appears to be robust generating high-quality solutions for every benchmark instance. Precisely, the 
objective values of the HSGHSA method appear to be clearly lower than those obtained by the 
other algorithms. With the exception of the obtained results of benchmark instance by three 
algorithms, HSA, DHSA and MHSA, the proposed methodology produces higher quality solutions 
than other five algorithms. By According to the results listed, the performance of the HSGHSA in 
terms of all indexes, the best, average and standard deviation, is much better than the basic HSA 
and its variants. In fact, using six neighboring structures leads to enhance the exploitation ability 
instead of randomly using a neighborhood structure. Besides, the results of the columns HSGHSA 
and SGHSA show that even with the same parameter setting, the results are very different due to the 
use of different neighboring structures. It is noted that applying the self-adaptive method for 
parameters setting, have a significant impact on the obtained results. 
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Figure 9. Comparison of simulations with and without local search exploitation in HSGHSA 
 

5.3. Comparisons of HSGHSA with the proposed methods based on HSA to solve VRPTW in 
literature 

In 2015, Yassen et al. proposed HSA-HC, HSA-SA, and HSA-RTS (Yassen et. al., 2015c) 
that hybridized HSA with LS algorithms and also Meta-HSA (Yassen et. al., 2015a) to solve 
VRPTW. In this section, the performance of HSGHSA is compared to these four hybrid schemes on 
eight different instances in Table 7. According to the results listed in this table, the tabulated 
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comparison results show that all of the methods obtained the same results on instances R1-01, C1-
02 and C2-01 with the exception of Meta-HSA for the benchmark instance C2-01 and HSGHSA for 
the benchmark instance R1-01. Besides, the results indicate that although both algorithms HSA-
RTS and Meta-HSA can obtain three BKSs, the first one finds the best solutions for R1-01, C1-02 
and C2-01 and the best solutions of R1-01, R2-01 and C1-02 are obtained by the second algorithm. 
Also, Meta-HSA outperformed HSA-HC, HSA-SA, HSA-RTS and HSGHSA on instance C2-06. 
Furthermore, HSA-SA have been able to find the BKSs in four examples out of eight, including R1-
01, C1-02, C2-01 and RC2-01, but HSA-SA obtained the best results for the two instances, C1-09 
and RC1-01. By comparing results of these algorithms, it is concluded that not only two best-known 
solutions on instances C1-02 and C2-01 are obtained, but also the algorithm can improve results of 
three instances, R1-01, R2-01 and RC2-01. Therefore, although the HSGHSA did not manage to 
beat the best-known results for all instances, the obtained results by the proposed algorithm for 
these instances are very competitive and generally better than HSA-HC, HSA-SA, HSA-RTS and 
Meta-HSA.  

  
6. Conclusion 
In this work, a hybridized SGHSA has been proposed to solve the VRPTW and is used to 

explore the search. Besides, the randomly LS algorithm is selected of three well-known LS  
algorithm and is used to further improve the solution generated by the SGHSA. The 56 VRPTW 
instances of Solomon’s benchmark are used to evaluate the performance of the proposed method.  

 
 Table 6: The best, Ave and Std results of HSGHSA compared to the other algorithms 

 HAS IHSA GHSA SGHSA HSGHSA 
Dataset Best Ave Std Best Ave Std Best Ave Std Best Ave Std Best Ave Std 
R1-01 1704.11 1762.02 29.13 1692.5 1767 37.05 2389.48 2534.3 85.81 2025.19 2245.04 104.94 1625.6 1662 12.623 
R1-03 1387.59 1497.12 39.37 1412.28 1507.72 50.76 2125.59 2366.45 93.58 1646.71 1846.03 99.78 1241.2 1271.8 14.358 
R2-01 1858.5 1990.66 75.73 1824.19 1983.83 96.69 2106.68 2294.26 85.78 1846.44 2150.17 133.94 1184.3 1223.3 22.415 
C1-02 1228.2 1456.81 104 1176.51 1402.57 117.08 2708.38 2920.21 129.48 1616.49 2051.46 273.28 828.94 896.56 31.415 
C1-09 1362.78 1615.31 133.59 1418.72 1659.52 111.6 2894.76 3079.97 111.26 1690.83 2127.45 248.93 831.83 881.87 27.133 
C2-06 1516.25 1802.84 171.22 1505.35 1758.84 148.17 2109.02 2308.17 124.97 1677.9 2226.03 265.53 615.74 674.53 28.971 
C2-08 1414.39 1679.24 130.67 1297.89 1666.59 153.07 1805.01 2161.45 130.52 1751.98 2091.27 242.35 619.24 682.22 37.66 

RC1-01 1734.57 1814.3 48.28 1703.34 1811.43 42.16 2537.67 2742 101.4 2097..18 2325.94 135.17 1670.6 1704.2 22.837 
RC2-01 2106.93 2237.13 89.22 2084.07 2260.14 90.68 2497.04 2701.32 111.01 2227.3 2448.81 158.03 1302.2 1346 21.232 
Mean 1590.37 1761.71 91.25 1568.32 1757.52 94.14 2352.63 2567.57 108.20 1810.36 2168.02 184.66 1102.18 1149.16 24.30 

 DHSA MHSA SHSA ITHSA HSGHSA 
Dataset Best Ave Std Best Ave Std Best Ave Std Best Ave Std Best Ave Std 
R1-01 1704.11 1956.56 57.73 1692.5 1836.07 43.84 2389.48 1741.15 21.65 2025.19 1771.57 31.61 1625.6 1662 12.623 
R1-03 1387.59 1613.44 57.72 1412.28 1586.46 44.7 2125.59 1447.27 23.83 1646.71 1485.82 34.75 1241.2 1271.8 14.358 
R2-01 1858.5 2024.42 140.67 1824.19 2099.55 95.18 2106.68 1521.87 37.16 1846.44 1991.73 130.52 1184.3 1223.3 22.415 
C1-02 1228.2 1623.65 147.43 1176.51 1614.25 147.89 2708.38 1197.21 55.87 1616.49 1334.46 121.16 828.94 896.56 31.415 
C1-09 1362.78 1841.43 151.67 1418.72 1833.45 142.58 2894.76 1225.69 64.8 1690.83 1603.77 120.06 831.83 881.87 27.133 
C2-06 1516.25 2051.09 199.4 1505.35 1968.11 213.28 2109.02 888.88 43.71 1677.9 2050.26 426.17 615.74 674.53 28.971 
C2-08 1414.39 2021.68 171.32 1297.89 1938.39 166.3 1805.01 862.95 40.16 1751.98 2042.63 501.94 619.24 682.22 37.66 

RC1-01 1734.57 1998.28 92.51 1703.34 1893.67 68.19 2537.67 1800.66 37.9 2097..18 1830.43 50.74 1670.6 1704.2 22.837 
RC2-01 2106.93 2362.23 110 2084.07 2412.18 146.35 2497.04 1772.53 38.89 2227.3 2282.6 105.77 1302.2 1346 21.232 
Mean 1590.37 1943.64 125.38 1568.32 1909.3 118.70 2352.63 1384.25 40.44 1810.36 1821.48 169.19 1102.18 1149.16 24.30 

 
 Table 7: The best results of HSGHSA compared to the proposed methods based on HA. 

Dataset Best know HSA-HC HSA-SA HSA-RTS Meta-HSA HSGHSA 
R1-01 1642.88 1642.88 1642.88 1642.88 1642.88 1625.6 
R2-01 1202.96 1203.61 1203.61 1258.61 1202.96 1184.3 
C1-02 828.94 828.94 828.94 828.94 828.94 828.94 
C1-09 828.94 831.79 831.30 866.40 832.29 831.83 
C2-01 591.56 591.56 591.56 591.56 - 591.56 
C2-06 588.49 644.32 650.44 699.22 594.7 619.24 
RC1-01 1631.17 1632.20 1631.17 1660.22 1639.73 1670.6 
RC2-01 1326.45 1326.45 1332.09 1366.48 1345.16 1302.2 
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The obtained results showed that the use of six neighborhood structures has a significant 
impact on results and the proposed method achieved competitive results compared to algorithms 
proposed in the literature and it even acts better than the other methods on R2 and RC2 dataset. 

 The other results also showed that the proposed method outperformed the standard HSA 
and its variants and it is an effective solution method for VRPTW. It seems that using effective 
heuristic algorithms can lead to gaining better solutions than other famous algorithm. Furthermore, 
this powerful metaheuristic can be used for solving for other versions of VRP. Future projects will 
focus on working on such ideas and making them operational. 
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