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Opinion 
I do not understand why the neocortex is a mystery to everyone. Its neuron net circuits are 

repeated throughout the cortex. It consists of excitatory and inhibitory neurons whose functions 
have been known for decades. The neuron net circuit is repeated over layers whose axonal outputs 
feed on as inputs to other layers. The neurons of each layer, each receive axonal inputs from one or 
more sending layers and all that they need to do is to correlate the axonal input stimulus pattern 
with their axonal connection patterns from those inputs and produce output frequencies proportional 
to their resultant psps (psp = Post Synaptic Potential). Axonal growth toward a neuron is definitely 
the mechanism for permanent memory formation and it is just what is needed to implement 
conditioned reflex learning. This axonal growth must be under the control of the glial cells which 
conditionally enable axon growth and must be a function of the signals surrounding the neurons.  

The cortex is known to be able to do pattern recognition and the correlation between an 
axonal input stimulus and an axonal input connection pattern is just what is needed to do pattern 
recognition. However, pattern recognition needs normalized correlations and a means to compare 
these correlations so that the largest correlation in a group of neighboring neurons is recognized 
by one of the neurons of the group. Without normalization, the psps' relative values would not 
be constrained properly and could not be used to determine the best pattern match. In order to get 
psps to be compared so that the maximum psp neuron would fire, an inhibitory neuron is needed. 
By having a group of excitatory neurons feed an inhibitory neuron that feeds back inhibitory axonal 
signals to those excitatory neurons, one is able to have the psps of the excitatory neurons compared, 
with the neuron with the largest psps firing before the others do as the inhibitory signal decays after 
each excitatory stimulus inhibiting the other excitatory neurons with the smaller psps. This 
inhibitory neuron is needed in order to achieve psp comparisons, no question about it. For a 
meaningful comparison, the psps must be normalized [1]. As unlikely as it may seem possible, it 
comes out that the inhibitory connections growing by the same rules as excitatory connections, 
grow to a value which accomplishes the normalization. That is, as the excitatory axon pattern grows 
via conditioned reflex rules, the inhibitory axon to each excitatory neuron grows to a value equal to 
the square root of the sum of the squares of the excitatory connections. This can be shown by a 
mathematical analysis of a group of mutually inhibiting neurons under conditioned reflex learning. 
This normalization does not require the neurons to behave differently from what has been known 
for decades about neurons, but rather requires that they interact with an inhibitory neuron as 
described. 

Thus, by simply having the inhibitory neurons receive from neighboring excitatory neuron 
with large connection strengths where if the excitatory neuron fires, the inhibitory neuron fires, and 
by allowing the inhibitory axonal signals be included with the excitatory axonal input signals to the 
inputs to those excitatory neurons, the neocortex is able to do normalized conditioned reflex pattern 
recognition as its basic function.  

If one thinks about it, layers of mutually inhibiting groups of neurons are all that are needed 
to explain the neocortex functions. The layers of neurons are able to exhibit conditioned reflex 
behavior between subpatterns, generating new learned behaviors between those subpattern as 
observed by the human. With layer to layer feedback, multi-stable behavior of layers of neurons 
results, forming short term memory patterns that become part of the stimulus to other neurons. With 
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normalized correlations, there are always axonal input stimulus patterns that will excite every 
excitatory neuron [1].  
  

The only way to prove this cortex model is to build a simulator, modeling large nets of 
neurons and observing behaviors that appear human. Most certainly we will never be able to 
measure the neuron nets of the cortex due to their small sizes. This means, that projects must be 
formed that do these simulations and do not waste R&D efforts to try to measure a wide range of 
properties of the cortex which don't result in defining neuron nets that can be built and simulated. 
Certainly the area to area connection scheme is needed, but it likely can be varied from that of the 
human, still with intelligence being exhibited. Trials will be needed to determine the initial 
connection strengths when initiating the simulator. These connections will need to be simple, such 
as non-zero between corresponding neurons of the mutually inhibiting groups.  

Axon growth toward pulsing neurons is the likely mechanism for memory alteration. Having 
neuron axons back away from neurons, rather than grow toward neurons, has no physical basis and 
is supported by the fact that the number of axons increases, not decreases, with age in the human. 
Certainly axon connection strengths never become proportional to axon pulsing frequencies, 
otherwise the nets of neurons will never exhibit permanent past memories, but rather would be a 
function of recent events only. Glial cells are likely participants to axonal growth control. It is likely 
that they will inhibit axonal growth physically, unless a chemical falls below a concentration. In 
particular, this would be when the excitatory stimulus (chemically emitted to a neuron by axons to 
that neuron) to a cell, falls below a critical level, where the correlation between stimulus and 
connection pattern falls below a limit. The result of such a rule is that learning would only occur if 
stimulus patterns are new and don’t match well the connection patterns to neurons. The 
psychological effect would be a curiosity behavior, observed in humans. Also, it would result in old 
age reduction of ability to learn, also observed in humans. 

Progress in understanding how the brain works has been basically non-existent over the last 
40 years due to limits in measurement. Rather, progress requires simulation to work out the missing 
details. I predict that simulation will dominate the future efforts of researchers. Also, I predict that 
special purpose hardware will dominate the approach where using conventional computers to 
simulate nets of neurons in real-time will go out of style very soon because of their high costs. 

Simulation permits an evolution process to arrive upon a successful brain understanding. If a 
logical conclusion of some property of a neuron net is wrong, simulation will eliminate it. If it is 
right, simulation will verify it. 

I believe that I know how the neocortex works, permitting a detailed artificial neuron 
representation of the full cortex. In the above presentation, I present my logic for my neuron net 
model and there is direct evidence from neurological experiments to support the model (that the 
neocortex consists of mutually inhibiting neurons). I am looking for neuro-scientists who support 
my model and will help me acquire a home for a project to build a neocortex simulator. At least, 
I hope to find others to communicate with, who might share my theories.  

For a derivation of the normalization of the axonal patterns to a group of mutually inhibiting 
neurons, see the bellow text, based on [2]. 
 

Abstract 
 The post-synaptic potential of a neuron for a long time has been known to be a cross-
correlation between an input axonal frequency pattern and an excititory synaptic strength 
connection strength pattern. In order for correlations to be useful, they must be able to be compared 
and must be normalized (covariance of the connection strengths must be constant over all the 
correlations). A biologically feasible net of neurons was studied (net of N excitatory neurons 
interacting with an inhibitory neuron) and a very simple Pavlovian rule used for connection strength 
variation (same rule for both excititory and inhibitory neurons). The surprise was that the neurons of 
such a net are able to compare their correlations in a normalized way. Also, the net exhibited greater 
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learning for new input patterns than for old input patterns, thereby explaining the brain’s curiosity 
drive and reduction of permanent memory plasticity as one ages. 
 

 
Figure 1. The structure 

 
 Referring to Figure 1, if each neuron n (n = n1, n2, ... nN) receives the same input excitation 
pattern ai(t), a2(t), ... aI(t) where each of these I inputs to neuron n is weighted by a corresponding 
component of that neuron’s connection strength pattern v1,n(t), v2,n(t), ... vI,n(t), then the neuron 
which will fire among the neurons is that with the maximum Pn(t) where (1) 
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and where the denominator actually is the inhibitory connection strength, eJ,n(t), to neuron n from 
the inhibitory neuron J. 
 The model presented and studied here uses the same rule for varying inhibitory and 
excitatory connection strengths. A Pavlovian rule (for the growth of these connections) is used. 
Connection strengths increase only. The dynamic range of each connection variable must (for 
physical reasons) be finite so that the use of only increasing variables requires considerations of 
what prevents variables from approaching infinity. By requiring the excitatory psp (post synaptic 
component) porportional to the acetyl-coline around a neuron to fall below a threshold before any 
connections may increase, did the trick. Thus, axons of neurons only grow forward under control of 
glial cells which can detect the acetylcoline levels.  
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 A group of excitatory neurons interacting with a single inhibitory neuron is observable in the 
human cortex. It can be shown that the model presented here still results in normalized correlations 
even if more than one inhibitory neuron is involved, as long as all of these inhibitory neurons are 
triggered by the pulsing of any one of the excititory neurons. 
 

1. The Model and its Analysis 
 Consider again the net of N excitatory neurons n1, n2, ... nN interacting with the inhibitory 
neuron J in Figure 1. The ai(t) associated with the output of a neuron i does not denote the voltage 
waveform within neuron i’s output axon, but rather, it denotes the psp voltage waveform which 
would be produced within a receiving test neuron via a unit connection strength. As pointed out in 
the previous section, all N neurons receive the same input pulse pattern a1(t), a2(t), ... aI(t) via 
corresponding sets of connection strengths v1,n(t), v2,n(t), ... vI,n(t). Also, there are the connection 
strengths eJ,n1(t), eJ,n2(t), ... eJ,nN(t) which denote the connection strengths from the inhibitory neuron 
J to neurons n = n1, n2, ... nN and there are the N excitatory connection strengths vn1,J(t), vn2,J(t), ... 
vnN,J(t) from each of the N neurons to neuron J. Because of the way the output state of a neuron is 
defined, the psp’s within the N neurons can be written as follows (see Equation (2)), 
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and that for neuron J, of course, can be written as in Equation (3). 
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 The usual conditions for pulsing within a neuron n with threshold “theta” is (4)  
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where the threshold in any neruron n, theta, is infinite for a short period of time immediately after 
Equation 4 is satisfied, after which theta exponentially decays toward a resting level theta0 with a 
time constant of around 1 millisec. 
 If the inhibitory neuron J has fired at times tm up to time t, where the psp’s are exponential 
waveforms, we can write (5) 
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where a relatively long time constant is assumed for the inhibitory psp waveforms (which has been 
measured for inhibitory psp waveforms and is rather important in this derivation). 

A similar output equation applies for each neuron n (6): 
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where the tm are the times when neuron n has pulsed up to time t. 
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 To make this a net of mutually inhibiting neurons, the connection strengths to inhibitory 
neuron area ssumed to obey the following relation (7): 
 

0, )( θ>tv Jn    (7) 
 

Thus, neuron J will pulse for each pulsing of one of the N neurons. If no two neurons among 
the N neurons pulse within a few millisenconds of each other, one pulse will be produced in the 
inhibitory neuron per pulse from one of the N neurons. This will be the case if the psp waveforms in 
the N neurons are not equal, since when neuron one fires, the inhibitory component to the psp 
waveforms of the N neurons suddenly goes more negative preventing the others from reaching 
threshold. 
 Being more specific, when one of the N neurons fires, shortly thereafter the following 
conditions is true in all the neurons (8): 
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where aJ(t) decays in an exponential way with a time constant of 100msecs until the first neuron 
meets the firing condition and adds another exponential component to aJ(t), etc. Thus, the neuron 
that will pulse will always be the one which can pulse at the largest value of aJ(t). Solving for that 
value of aJ(t) for each neuron n (Equation 2 substituted into Equation 4) and calling it Pn(t), the 
following results (9). 
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Assuming (10): 
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then Equation (9) reduces to (11): 
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where vi,n(t) / eJ,n(t) can be interpreted as an effective excitatory connection strength, wi,n(t). 
 To complete the specification of the model, the synaptic weights are assumed to vary 
according to the conditioned reflex-like rule as follows: (12) and (13). 
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where Ln(t) is positive (non-zero) if reinforcement is present, but otherwise this derivation of a 
normalized cross-correlation is not dependent upon it. 
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 If it is assumed that the frequency of firing of the pulsing inhibitory neuron is greater than 
20 pulses per second (determined by the 100 millisec inhibit decay rate), then (14): 
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so that (13) can be written as (15): 
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which can be combined with (11) to eliminate Pn(t), and then both sides of the resulting equation 
can be multiplied by eJ,n(t) / c2 to yield the following equation (16): 
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 Taking Equation (12) and multiplying both sides by vi,n(t) / c1 and summing over i = 1 to I, 
we get the following result (17): 
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From Equations (16) and (17) we get (18): 
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which when integrated with initial conditions of zero, becomes the following equation (19): 
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Taking the square root of both sides we get the following result (20): 
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Thus, the effective connection strength becomes (21): 
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which has constant covariance of c2 / c1 as derived by the following equation (22). 
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Equation (11) becomes (23): 
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where the max Pn(t) (n = n1, n2, ... nN) determines which neuron will fire and will do so with a 
normalized correlation. 
 

2. Discussion 
 In Equations (12) and (13), the an(t) term determines which neuron connections will alter.  
The Ln(t) term determines whether they may alter. The following function for Ln(t) is interesting 
(see (24)): 
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because it permits learning if the excititory correlation is less than a threshold. It is readily 
performed by the glial cells that support the neurons. This function represents the “newness” of the 
input pattern as seen by neuron n. This function will produce a tendancy in a large net of neurons to 
seek newness, since its trials that seek less newness, are less remembered. This tendancy toward 
remembering those trials that yield greater newness, explains man’s curiosity drive. Since 
connections only increase, it also explains that there are less input patterns which will produce 
sufficient newness for learning to occur. This explains man’s poorer permanent memory as he ages. 
 When this paper was first presented over twenty years ago in a remote publication and the 
audience was generally not interdisciplinarian enough to understand it, there were no inquiries 
about its contents. Today, the typical biologists have calculus behind them, so that this paper should 
be within their comprehension. 
 It has been impossible to measure the behavior of even a few neurons because of the large 
number of inputs, their size, and probe damaging effects. This paper has developed this model by 
deductive reasoning where it was necessary to get neuronal correlations to be normalized. The 
model is extremely simple with a simple conditioned reflex rule for connection growth, yet it 
achieves this normalization which required a square-root of the sum of squares of a large number of 
connection strengths. The connection growth mechanism is very feasible since each pulse reaching 
a synapse causes the vesicles containing the transmitter chemical to break through the synaptic 
membrane junction to a neuron, and replacing a portion of that membrane with the membrane of the 
vesicles, thereby expanding the synaptic contact area. If the glial cells do not “relax”, no learning 
occurs. If they do relax, the connections increase.  
 Looking back at the equations, Ln(t) could be negative where the glial cells instead of 
relaxing actually pressure the synapse to shrink as the vesicles penetrate the synaptic boundry, yet 
the normalization process would not be altered. Permanent memory properties would not necessary 
exhibit the “newness” seeking behavior, but at least the normalization process would be preserved.  
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3. Conclusion 
 Twenty years ago integrated circuits were not of sufficient size and low cost to be used to 
model a large net of neurons. Today this is not the case. An FPGA chip connected to 19 memory 
chips, can be produced to model five hundred thousand frequency neurons (or around 25 million 
pulsing neurons) in real-time at a cost of $500. A 25 billion pulsing neuron net would cost 
$500,000. Thus, researcher efforts are now feasible to study a full brain model if desired. However, 
neuronal nets should show very interesting behavior at the 500 million pulsing neuron size.  
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