

34

A Genetic Algorithm Approach to Regenerate Image from a Reduce Scaled
Image Using Bit Data Count

Kishor Datta Gupta

Ph.D. Student, Computer Science
University of Memphis, United States of America

3720 Alumni Ave, Memphis, TN 38152, USA
kdgupt1@memphis.edu

Sajib Sen
Ph.D. Student, Computer Science

University of Memphis, United States of America
3720 Alumni Ave, Memphis, TN 38152, USA

ssen4@memphis.edu

Abstract
Small scaled image lost some important bits of information which cannot be recovered when

scaled back. Using multi-objective genetic algorithm, we can recover these lost bits. In this paper,
we described a genetic algorithm approach to recover lost bits while image resized to the smaller
version using the original image data bit counts which are stored while the image is scaled. This
method is very scalable to apply in a distributed system. Also, the same method can be applied to
recover error bits in any types of data blocks. In this paper, we showed proof of concept by
providing the implementation and results.

1. Introduction
Revolution of a portable camera with computer started to produce an exponential rate of

media files, and users are sharing these files with everyone. So, using the cloud to store images is
becoming a favorite choice for users. But cloud does not only store huge files which are
approximately 1.2 trillion in 2017 (Perret, 2017), it also has to transfer these files to a different
network to serve users. To reduce load, the cloud system started to use different compression
algorithm. These algorithms have a tradeoff between time and space. Most of these have better time
complexity than space. But as the cloud has powerful and distributed computing power, it may be
better to focus on saving space. As data transfer takes more time than processing same data in the
cloud. A perfect use case is a mobile sending the large image to the cloud takes more data transfer
time than the compression and decompression process in the cloud. So, in this age of the distributed
computer, it is better to reduce size as computation time is less important than network data transfer
time.

Figure 1. Photo amount by year (Perret, 2017)

K. D. Gupta, S. Sen - A Genetic Algorithm Approach to Regenerate Image
from a Reduce Scaled Image Using Bit Data Count

 35

Currently, 4.7 trillion of photos are saved in the cloud (Perret, 2017). And only a few
percentage are called to use again. So less used files can be stores in a compression technique which
can save more space than time and make the cloud system faster as memory redundancy time will
be reduced.

Figure 2. Image stored in cloud each year (Perret, 2017)

Therefore, it’s expected that we need a more space preserving algorithm which can work

well in distributed operating system.

2. Background
An image file can be modeled using a continuous function of three variables; they are X, Y

and T. X and Y are coordinates of x, y in a plane, and T is time, if image changes in respect to time.
For normal image time T is always static 1. So, we can ignore it for our work. (55:148 Digital
Image Processing, 2017). To work with image, we need to digitize the image, and it means that
function f (x, y) have to sample in a matrix with H rows and W column.

Figure 3. Data compression and image reconstruction (55:148 Digital Image Processing, 2017)

There are several techniques which are normally divided into two categories lossy and

lossless image compressions. In lossy compression, after recovery there are negligible difference
present where lossless gives accurate image. Huffman encoding is very well known, which can
provide optimal compression and decompression without error (55:148 Digital Image Processing,
2017). The basic idea of Huffman coding is to represent data by number of variable size, where
more frequent info being represented by shorter number (55:148 Digital Image Processing, 2017).
Currently the Lempel-Ziv (or Lempel-Ziv-Welch, LZW) algorithm for dictionary-based coding has
got attention as a better compression algorithm (55:148 Digital Image Processing, 2017).

As Genetic algorithms are types of computational models which get inspired from genetic
evolution (Whitley, 1994). The way these algorithms work is that they encode all the probable
solutions on a simple data and use these data to mix between them and some random change and
calculate probability of solution from these data (Whitley, 1994).

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 36

3. Related works
In 2008, Roger Johansson was able to regenerate a Mona Lisa image from random sampling

(Roger Johansson, 2017). It uses a genetic algorithm to model a population of individuals, each
containing a string of DNA which can be visualized in the form of an image (Grow Your Own
Picture Genetic Algorithms & Generative Art, 2017).

Figure 4. Image regeneration using GA

By starting with a population consisting of a randomly generated gene pool, each individual

is compared to the reference image (the one on the left), and the individuals can then be ranked by
their likeness to it, known as their "fitness", with the best fit being displayed on the output image
(the one on the right) (Grow Your Own Picture Genetic Algorithms & Generative Art, 2017). By
breeding the fittest individuals from the population, the DNA which produces the most accurate
representation of the reference image is selected over successive generations, effectively
demonstrating the power of a natural selection process to produce the best candidate for any given
environment (Grow Your Own Picture Genetic Algorithms & Generative Art, 2017).

In 1992, a structured genetic algorithm was applied for automatic image registration of
digital images (Dipankar Dasgupta, 1992). In 2001, Gradient based genetic algorithms in image
registration were applied (Igor & Maslov, 2001). In 2001, genetic clustering was applied for image
classification (Bandyopadhyay, 2002). Also, Genetic programming is successfully implemented for
pattern recognition, control, planning and the generation of neural networks (Koza, 1992). It was
also proved that genetic algorithm can work for content-based image retrieval (Ricardo da S.
Torres, 2009) (Luca Piras, 2017). Genetic programming it is now also widely used for image
clustering techniques (Ujjwal Maulik, 2000).

4. Our Proposal
Our proposal is to store each column and row bits count in a separate file and used that to

reproduce the image using genetic algorithm.

K. D. Gupta, S. Sen - A Genetic Algorithm Approach to Regenerate Image
from a Reduce Scaled Image Using Bit Data Count

 37

Figure 5. Image down sample

If we take 10% of an image size and the row and column image hamming bit count our total

size will be approximately below 15% of the actual image size. We proposed a method to reproduce
original image from using this 15% information.

 4.1. Methodology Formulation

Figure 6. Methodology

Our method will first resize the image using normal image resizing option provided by

operating system or standard library and attach the extra 2 array of data which contains no of 1 in
original image in each row and column. Also, the total no of 1 in that image will be present too.

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 38

Now we will use genetic algorithm which will use this information to reproduce the image in
original size.

4.2. Methodology Steps

Figure 7. Basic Methodology

As in figure 7 we are storing the extra data which is look like figure 8. Where a 20*20 size

image of alphabet ‘A’ data has been stored. When we regenerate image, we are using these data.

Figure 8. Sample Data Extraction for a 20*20 size image

5. Data extraction technique
For the extraction, our goal is to divide an image into smaller blocks and keep the row and

column data for these blocks. But for our experiment we used a single block, which means taking
the full image as a single block. For bigger image we should always divide the image in separate
blocks and work on them par rally. As in figure 8, after extracting the data we can add the row and
column bits information in the resized image or saved in a separate file. For proof of concept we
saved it in a text file. And later that file is used to feed GA to make the fitness function, in figure 9
an extraction has been shown. In upper and side textbox containing the information which later is
saved in a text file.

K. D. Gupta, S. Sen - A Genetic Algorithm Approach to Regenerate Image
from a Reduce Scaled Image Using Bit Data Count

 39

Figure 9. Resized image and extracted data for a 100*100 size image

6. Image Regeneration
First, we have to convert the pixelated small image to the original size image, and then

divide these into the blocks as it done in extraction time. Then we have to add or subtract random
bits from each of these blocks to equal each block hamming bit to original hamming bit number.
And then GA is applied to match these randomness to original image hamming bits in per row and
column. In figure 10 there is a 4-block example which regenerates randomly using total block bit
count. Now we will try to match their row and column bits of information with the extracted data
which is described in later section.

Figure 10. Block example

7. GA implementation
We use genetic algorithm with tournament selection method. We used a 3-point crossover

and dynamic mutation rate between 15% to 30%. We had 4 fitness functions, all of them had
different weight to calculate total fitness of each individual.

7.1. Algorithm

1. Image Regeneration (image data)
2. Get from data,
3. Number of black bits in a block is m
4. Number of black bits in p number of row, row[p]
5. Number of black bits in q number of column, column[q]
6. Randomly generate N number of images name population[N], which contain m number of black bits

placed randomly.
7. For each image Ii in population
8. Get fitness Fi from Ii
9. If any fitness Fi is near 0
10. return Ii
11. Select N/2 number of I with best fitness using tournament method
12. Do Crossover to generate N/2 offspring using selected N/2 images
13. Do mutation on N images
14. Go to step 7

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 40

7.2. Encoding
For each block We will create a population with random n*n size blocks where no of 1 is

equal to provide no of 1s for that block. Genotypes are 1 and 0 from pixel bit conversion.
Phenotypes are each block matrix. So, an image will be encoded to a single string of its
height*width size.

7.3. Population
We generated M number of images which act as a single individual in population. Each

individual has the same number of bits present in the original image block. We set this bit
completely randomly. For each block we will have to create a different population set which can
run in different process.

7.4. Fitness
It is a multi-objective genetic algorithm.
We will have four objectives for each individual.
So, we will define four fitness function as:

 Fr(r) = Calculate difference of rows (rd) from provided blocks rows data (Odr).
 Fc(c) = Calculate difference of columns(cd) from provided blocks column data (Odc).
 Fb(b)=Calculate difference of total bit Tb in block from provided blocks data. Od
 Fx(X)=Calculate difference of bits Xd from pixelated image block Xpd

Now let p and q, height and width of the image.

 (1)

 (2)
Fb(b) = |Tb-Od| (3)

 (4)

I. Penalty function
 We applied penalty value when each row and column difference go certain extent.

Let calculate Rdavg = (5)

And Cdavg = (6)

For Fr penalty parameter Ppr,Pppr and Pnpr

For each Rdi

Fr(r)= Fr(r) + Pppr If Rdi>Ppr*Rdavg (7)
Fr(r)= Fr(r) + Pnpr If Rdi<Ppr*Rdavg (8)

Similarly,
For Fc penalty parameter Ppc,Pppc and Pnpc
For each Cdi

K. D. Gupta, S. Sen - A Genetic Algorithm Approach to Regenerate Image
from a Reduce Scaled Image Using Bit Data Count

 41

Fc(c)= Fr(c) + Pppc If Rdi>Ppc*Rdavg (9)
Fc(c)= Fr(c) + Pnpc If Rdi<Ppc*Rdavg (10)

II. Total fitness
If weight for each fitness function are Wr, Wc, Wb, Wx where Wr Wc and Wb Wx Wr

Total fitness Ft(T) = Fr(r)* Wr + Fc(c)* Wc + Fb(b)* Wb + Fx(X)* Wx (11)

III. Selection scheme

We used the tournament method for selection. We run n/2 round tournament each size is n/tn

. And use n/2 round winner as selected individual for crossover.

IV. Crossover and mutation

We used a 3-point crossover in each champion from tournament selection and produce n/2
number of offspring and merge these champions and offspring for new set of population. In this
way, the population size always remains constant. We used multi-point which are randomly
selected mutation.

7.5. Terminating condition
When last N number of generation has same average fitness, we are terminating the GA, and

it shows the output.

8. Result Analysis and Discussion
In figure 11 it is the initial population showed and figure 12 the population started to change

and figure 13 we reached a convergence.

Figure 11. Initial population

Figure 12. After few generation

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 42

Figure 13. Reached convergence

As we can see, here we were able to recover the lost middle portion of character ‘A’ using

our genetic algorithm. If we can apply some noise filtering technique, the result would be far better.
In figure 14, 15 there are another two examples

Figure 14. Symbol 8 regeneration

In Figure 15 we were able to generate the symbol H without any help from a small image we

used only for row and column data.

Figure 15. Symbol H regeneration (without reference pixelated image)

From the result analysis, it seems that if we make a smaller block we can produce image

more faster and more accurate to original. Also, its seldom that we hit the local optima and stuck

K. D. Gupta, S. Sen - A Genetic Algorithm Approach to Regenerate Image
from a Reduce Scaled Image Using Bit Data Count

 43

with not good enough version. Changing mutation rate that time gives us better result. It seems we
need to apply dynamic penalty method and mutation rate to tackle this issue.

For some images there is a chance to get stuck where fitness function maxed, but we are not
near to the original image like in figure 16, both row and column fitness matched. But image lost a
key portion from original image, in these cases we should increase the weight of fitness function
Fx(X), which will solve the issue.

Figure 16. Failed Generations

Also, we used very small data set to test and only used black and white. But as every image
can convert in 0 and 1 as binary, our method should have to work for these too.

As every file can converted to 0 and 1, whatever the format the file is, this technique has
huge application for not only image files, but for every kind of file. Specially in error bit recovery,
this technique could be helpful. If any data block transfer contains its row column bit data as
redundant data and data block gets damaged somehow, we could be able to reproduce the data
block used this algorithm. As this recovery can be done in smaller parts, it will be very easy and
faster to do it in distributed system. Many cloud systems can use this technique to transfer data
between each cloud, thus the network congestion will get reduced.

8. Conclusion
We used genetic algorithm to recover an image from its small scaled image. Our method has

scalability to deployed in any distributed system and can work faster. Using some more constraints
and filtering this algorithm can provide better results. Also, the same technique can also be applied
to any file system. This procedure can really improve the reduction of noise in QR code better than
the (Gupta, 2018) had done before; when using parallel computing, time overhead cost will be
reduced and the process can generate a near perfect reconstruction fast. In the future we will try it to
run in distributed computer by dividing it into different blocks and then merge them together. That
way it will be faster than now and will be a real application. Also, we will try to implement in
Media files such as audio and video, and for binary bits data recovery. If some data gets lost we can
recover these data using this algorithm, in that case we will have more guiding parameters as some
original data would be present. So, success rate would be higher.

References

55:148 Digital Image Processing. (2017, December 06). Retrieved from 55:148 Dig. Image Proc.
Chapter 12: http://user.engineering.uiowa.edu/~dip/lecture/DataCompression.html.

Grow Your Own Picture Genetic Algorithms & Generative Art. (2017, December 06). Retrieved
from https://chriscummins.cc/s/genetics/.

Bandyopadhyay, S. a. (2002). Genetic clustering for automatic evolution of clusters and application
to image classification. Pattern recognition 35, no. 6 , 1197-1208.

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 2 (May, 2018), ISSN 2067-3957

 44

Dipankar Dasgupta, D. R. (1992). Digital image registration using structured genetic algorithm.
Proc. SPIE 1766, Neural and Stochastic Methods in Image and Signal Processing.

Igor V. Maslov, I. G. (2001). Gradient-based genetic algorithms in image registration. Proc. SPIE
4379, Automatic Target Recognition XI.

Johansson, R. (2017). Genetic Programming: Evolution of Mona Lisa. Retrieved from
https://rogerjohansson.blog/2008/12/07/genetic-programming-evolution-of-mona-lisa/

Gupta, K. D., Ahsan, M., Andrei, S. (2018). Extending the Storage Capacity And Noise Reduction
of a Faster QR-Code. Broad Research in Artificial Intelligence and Neuroscience, Vol. 9,
Issue 1, 59-71.

Koza, J. R. (1992). Genetic Programming. Cambridge, MA: MIT Press.
Luca Piras, G. G. (2017). Information fusion in content based image retrieval: A comprehensive

overview. Information Fusion, Vol. 37, 50-60.
Perret, E. (2017). Here's How Many Digital Photos Will Be Taken in 2017. Retrieved from

https://mylio.com/true-stories/tech-today/how-many-digital-photos-will-be-taken-2017-
repost.

Torres, R. S., Falcão, A. X., Gonçalves, M. A., Papa, J. P., Zhang, B., Fan, W., Fox, E. A. (2009). A
genetic programming framework for content-based image retrieval. Pattern Recognition,
Volume 42, Issue 2, 283-292.

Maulik, U., Bandyopadhyay, S. (2000). Genetic algorithm-based clustering technique. Pattern
Recognition, Vol. 33, Issue 9, 2000, Pages , ISSN 0031-3203, 1455-1465.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, Vol. 4.

Kishor Datta GUPTA was born in Chittagong, Bangladesh in 1989. He received his Bachelor of

Science in Computer Science and Engineering (CSE) in 2011 from Khulna
University of Engineering and Technology (KUET), Bangladesh and Masters of
Science in Computer Science in 2017 from Lamar University, Texas, USA. he is
currently working as a research assistant and continuing his Ph.D. in Computer
Science Department of University of Memphis, USA. His research interest
includes Block chain, Evolutionary Computation

Sajib SEN was born in Chittagong, Bangladesh in 1992. He received his Bachelor of Science in
Electrical and Electronic Engineering(EEE) in 2014 from Khulna University of
Engineering and Technology (KUET), Bangladesh. He worked as a Lecturer in
Electrical and Electronic Engineering Department of Prime University,
Bangladesh from 2015 to 2017.Currently, he is working as a graduate assistant
and continuing his Ph.D. in Computer Science Department of University of
Memphis, USA. His research interest includes machine learning, cyber security
and cyber-physical system.

