
22

Programming with Term Logic

J. Martín Castro-Manzano

Faculty of Philosophy & Humanities UPAEP
Av 9 Pte 1908, Barrio de Santiago, 72410 Puebla, Pue., Mexico

+52 (222) 229 94 00
josemartin.castro@upaep.mx

L. Ignacio Lozano-Cobos

Faculty of Philosophy & Humanities UPAEP
Av 9 Pte 1908, Barrio de Santiago, 72410 Puebla, Pue., Mexico

+52 (222) 229 94 00
luisignacio.cobos@upaep.edu.mx

Paniel O. Reyes-Cárdenas

Faculty of Philosophy & Humanities UPAEP
Av 9 Pte 1908, Barrio de Santiago, 72410 Puebla, Pue., Mexico

+52 (222) 229 94 00
panielosberto.reyes@upaep.mx

Abstract:
Given the core tenets of Term Functor Logic and Aristotelian Databases, in this contribution

we present the current advances of a novel logic programming language we call Term Functor Logic
Programming Language.

Keywords: Syllogistic, logic programming, Aristotelian Database.

1. Introduction
Under direct influence of (Sommers, 1967 ; Sommers, 1982 ; Sommers & Englebretsen,

2000, Thompson, 1982 ; Mostowski, 1957), in other place we have offered an intermediate term
logic for relational syllogistic that is able to deal with a wide range of common sense inference
patterns (we call it the system TFL+); an under direct influence of (Englebretsen, 1987 ;
Englebretsen, 1991 ; Englebretsen, 1996 ; Englebretsen & Sayward, 2011) and TFL+, in other place
we have presented the diagrammatic counterpart of TFL+ as to perform visual reasoning (we call it
the system TFL⊕) (Castro-Manzano & Pacheco-Montes, 2018). Now, under the influence of this
couple of systems and the notion of Aristotelian Database (Mozes, 1989), here we introduce the
current advances of a novel logic programming language we call Term Functor Logic Programming
Language (TFLPL).

To better understand these advances consider, as in the following diagram, that the language
we are suggesting here is the result of a series of works whose root lies in the logic of Aristotle and
go down three different paths: one for Sommers’ algebraic term logic, one for Leibniz’s linear
diagrams, and one for Veatch’s realist interpretation of Aristotelian logic. These paths are grounded
within three specific implementations: Sommers’ logic, together with the recognition of the
importance of non-classical quantifiers, result in the system TFL+; Sommer’s project and Leibniz’s
import on terms and linear diagrams impact on Englebretsen’s systems that, in turn, influence the
system TFL⊕; and Veatch’s ideas influence the computational work developed by Mozes. Together,
these last three implementations guide the maturation of TFLPL so that we obtain a computational
application defined after an enriched logic of terms.

J. M. Castro-Manzano, L. I. Lozano-Cobos, P. Reyes-Cárdenas - Programming with Term Logic

23

Hence, in this contribution we try to reach a simple goal: to present the advances of a

programming language designed after the system TFL+. In order to reach this goal we briefly
present the system TFL (Sommers 1967, Sommers 1982, Sommers and Englebretsen 2000,
Englebretsen 1987, Englebretsen 1996, Englebretsen and Sayward 2011) in the context of what we
have called «the received view of logic» (§2) and the concept of Aristotelian Database (§3); then we
expound the advances of the programming language TFLPL by giving some details about its syntax
and its working based upon the system TFL+ (§4); finally, we close with some remarks concerning
future work (§5).

2. The received view of logic
Logic is about inference and in order to study inference we usually make use of first order

languages. Thus, for example, propositional logic, first order logic, and first order logic with identity
are logical systems defined by first order languages: {p, q, r, ..., ¬, ⇒}, {a, b, c, ..., x, y, z, ..., f, g, h,
..., A, B, C, ..., ¬, ⇒, ∀, ∃}, and {a, b, c, ..., x, y, z, ..., f, g, h, ..., A, B, C, ..., ¬, ⇒, ∀, ∃, =},
respectively. The origin of this habit is associated with the representative advantages first order
languages provide when compared to traditional systems. Russell (1937), for instance, made popular
the idea that the limits of the traditional logic programme, i.e. syllogistic (vide Appendix A), were
due to a commitment to a syntax of terms, that is, a grammar of triads composed by a subject term
and a predicate term joined by a copula. Carnap (1930) generalized this idea to all traditional logic
when he maintained that its available syntax was predicative only, as in “All (some) Greeks are
(not) mortal” or “Socrates is (not) mortal”.

Although it is true that the syntactical shortcomings of the ternary syntax (subject-copula-
predicate) produce difficulties for the clear representation of singular, relational, or compound
propositions, the major problem ternary syntax creates is term homogeneity. Geach argues:

Our distinction between names and predicables enables us to clear up the confusion, going
right back to Aristotle, as to whether there are genuine negative terms: predicables come in
contradictory pairs, but names do not, and if names and predicables are both called “terms”
there will be a natural hesitation over the question “Are there negative terms?” (Geach,
1980, p. 64)

According to this argument, term homogeneity does not allow us to preserve the

fundamental noun-verb distinction. This incapacity of the ternary syntax is problematic because the
function of a noun and the function of a predicate are not interchangeable: while the function of a
noun is naming, the function of a predicate is predicating. Thus, as Geach argues, the interchange of
subject and predicate terms is a syntactical issue that creates an undesired semantic effect, for only a
noun can be a logical subject, but a noun cannot maintain its role as a noun if it suddenly becomes a
predicate. So, this syntactical issue turns out to be also a semantic impossibility: between a term
logic and genuine logic, goes Geach (1962, p. 54), there can only be war.

By contrast, genuine logic, namely first order logic (FOL), follows the syntax of the Fregean
paradigm that results from dropping terms and favoring a binary grammar of function-argument
pairs. These pairs promote a syntax that includes individual constants (a, b, c, ...) or variables (x, y,

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 3 (September, 2018)
ISSN 2067-3957

24

z, ...) as arguments that refer to individual objects as logical subjects, plus relations (A, B, C, ...) as
functions that refer to concepts, not objects, as logical predicates. Thus, for instance, a proposition
like “Socrates is mortal” could not be understood as a relation between a subject term and a
predicate term, but as a function-argument pair were a constant, a saturated and complete element,
say s, denotes an object named “Socrates” that works as an argument of the unsaturated and
incomplete expression “… is mortal”, say Mx, in such a way that Ms represents the proposition
“Socrates is mortal”: clearly, this syntactical representation does not allow any term shifting.
Moreover, given this binary syntax, a proposition like “All men are mortal” cannot be understood as
a relation of terms but as a relation between variables and quantifiers, say ∀x(Hx⇒Mx), so that there
are clear syntactic differences between singular propositions (like “Socrates is mortal”) and
universal propositions (like “All men are mortal”): this will be relevant below.

Hence, according to these remarks, genuine logic follows the syntax of the Fregean paradigm
that results from dropping the use of a ternary syntax (subject-copula-predicate) in order to favor a
binary syntax (function-argument). This binary syntax promotes the use of first order languages.
This syntactical choice is the one that seems familiar to us because it is the one we follow when we
teach, research, and apply contemporary logic: this is the received view of logic. However, it comes
as no surprise that this view might very well feel familiar, but it is certainty not natural. Woods
comments (emphasis is ours):

It is no secret that classical logic and its mainstream variants aren’t much good for human
inference as it actually plays out in the conditions of real life—in life on the ground, so to
speak. It isn’t surprising. Human reasoning is not what the modern orthodox logics were
meant for. The logics of Frege and Whitehead & Russell were purpose-built for the
pacification of philosophical perturbation in the foundations of mathematics, notably but not
limited to the troubles occasioned by the paradox of sets in their application to transfinite
arithmetic. (Woods, 2016, p. 404)

So, even if genuine logic (classical, according to Woods) has been fundamental for the study

of inference, both in cognitive science and artificial intelligence, it amazes us that, despite its
original purpose, it is constantly used as a bona fide tool for representing natural language
reasoning. Let us consider, to this effect, what we call “Bar-Hillel’s challenge”:

I evaluated as to its validity with the help of formal logic. I regard this fact as one of the
greatest scandals of human existence. Why has this happened? How did it come to be that
logic which, at least in the views of some people 2,300 years ago, was supposed to deal with
evaluation of argumentation in natural languages, has done a lot of extremely interesting and
important things, but not this? (Staal, 1969, p. 256)

This is certainly a scandal. However, since the late 60’s Fred Sommers defended a revision

of the traditional ternary syntax under the veil of Bar-Hillel’s challenge. Sommers, closer to a
project of naturalization of logic, was concerned with how we reason. So, for instance, Sommers
asked himself how is that a rational agent realizes that the following pair of beliefs is inconsistent:

(C1) All dogs are animals but (C2) someone who loves a dog does not love an animal.

 Of course FOL is capable of offering an answer to the previous problem by way of first
order languages (let C1 be ∀x(Px⇒Ax); and C2 be ∃x∃y((Py∧Qxy)∧∀z(Az⇒¬Qxz))) and the proper
deductive methods (Table 1), but as we will see, this capacity is not necessarily relevant for
understanding natural language reasoning.

J. M. Castro-Manzano, L. I. Lozano-Cobos, P. Reyes-Cárdenas - Programming with Term Logic

25

Table 1. A proof of the contradiction between C1 and C2 in FOL
1 ∀x(Px⇒Ax) C1

2 ∃x∃y((Py∧Qxy)∧∀z(Az⇒¬
Qxz))

C2

3
∃y((Py∧Qay)∧∀z(Az⇒¬Qa
z))

E∃ 2, a/x

4 (Pb∧Qab)∧∀z(Az⇒¬Qaz) E∃ 3, b/y

5 Pb∧Qab E∧ 4

6 ∀z(Az⇒¬Qaz) E∧ 4

7 Ab⇒¬Qab) E∀ 6, b/z

8 Pb⇒¬Ab) E∀ 1, b/x

9 Pb E∧ 5

1
0

Qab E∧ 5

1
1

Ab
E⇒ 8 and
9

1
2

¬Qab
E⇒ 7 and
11

1
3

Qab∧¬Qab I∧ 10

1
4

X EFSQ 13

3. Basic Aspects of Term Functor Logic
In this context, Sommers (1967, 1982, 2000) and Englebretsen (2000, 1987, 1996) developed

a plus-minus algebra, Term Functor Logic (TFL), that deals with syllogistic by using terms rather
than first order language elements such as individual variables or quantifiers.10 According to this
algebra, the four categorical propositions can be represented by the following syntax:11

 SaP := -S+P = -S-(-P) = -(-P)-S = -(-P)-(+S)
 SeP := -S-P = -S-(+P) = -P-S = -P-(+S)
 SiP := +S+P = +S-(-P) = +P+S = +P-(-S)
 SoP := +S-P = +S-(+P) = +(-P)+S = +(-P)-(-S)

 Given this algebraic representation, the plus-minus algebra offers a sound, complete, and
simple method of decision for syllogistic: a conclusion follows validly from a set of premises if and
only if i) the sum of the premises is algebraically equal to the conclusion and ii) the number of
conclusions with particular quantity (viz., zero or one) is the same as the number of premises with
particular quantity (Englebretsen, 1996, p. 167). Thus, for instance, if we consider a valid syllogism
from figure 1, we can see how the application of this method produces the right conclusion (Table
2).

10That we can reason without first order language elements such as individual variables or quantifiers is not news (cf.
Quine 1971, Noah 1980, Kuhn 1983), but Sommers’ logical project has a wider impact: that we can use a logic of terms
instead of a first order system has nothing to do with the mere syntactical fact, as it were, that we can reason without
quantifiers or variables, but with the the general view that natural language is a source of natural logic (cf. Sommers
1982, Sommers 2005, Moss 2015).
11We mainly focus on the presentation by Englebretsen (1996).

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 3 (September, 2018)
ISSN 2067-3957

26

Table 2. An aaa-1 type syllogism
 Proposition Representation

1. All dogs are animals. -D+A

2. All German Shepherds are dogs. -G+D

⊢ All German Shepherds are animals. -G+A

 In the previous example we can clearly see how the method works: i) if we add up the
premises we obtain the algebraic expression (-D+A)+(-G+D)=-D+A-G+D=-G+A, so that the sum
of the premises is algebraically equal to the conclusion and the conclusion is -G+A, rather than +A-
G, because ii) the number of conclusions with particular quantity (zero in this case) is the same as
the number of premises with particular quantity (zero).
 This algebraic approach is also capable of representing relational, singular, and compound
propositions with ease and clarity while preserving its main idea, namely, that inference is a logical
procedure between terms. For example, the following cases illustrate how to represent and perform
inferences with relational (Table 3), singular12 (Table 4), or compound propositions13 (Table 5). For
a brief but systematic explanation of the rules employed in what follows vide Appendix B.

Table 3. A reasoning with relational propositions

 Proposition Representation Rule

1. Some horses are faster than some dogs. +H+(+F+D) P

2. Dogs are faster than some men. -D+(+F+M) P

3.
That which is faster than what is faster than
some men, is faster than some men.14

-(+F+(+F+M))+(+F+M) P

4. +H+(+F+(+F+M)) DON 1,2

⊢ Some horses are faster than some men. +H+(+F+M) DON 3,4

Table 4. A reasoning with singular propositions

 Proposition Representation Rule

1. All men are mortal. -M+L P

2. Socrates is a man. -s+M P

⊢ Socrates is mortal. -s+L DON 1,2

Table 5. A reasoning with compound propositions

 Proposition Representation Rule

1. If P then Q -[p]+[q] P

2. P +[p] P

⊢ Q +[q] DON 1,2

 These basic notions of TFL are sufficient for offering a solution to the problems posed by
traditional term logic that we metioned above. But moreover, these features provide elements that

12Provided singular terms, such as Socrates, are represented by lowercase letters.
13Given that compound propositions can be represented as follows, P:=[p], Q:=[q], ¬P:=-[p], P→Q:=-[p]+[q],
P˄Q:=+[p]+[q], and P˅Q:=--[p]--[q], the method of decision behaves like resolution (cf. Noah 2005).
14Or in other words: the relation faster than is transitive.

J. M. Castro-Manzano, L. I. Lozano-Cobos, P. Reyes-Cárdenas - Programming with Term Logic

27

allow us to explain, for instance, why we instantaneously judge that (C1) All dogs are animals and
(C2) Someone who loves a dog does not love an animal are mutually inconsistent. Let us consider,
to this effect, the proof of the contradiction between C1 and C2 in TFL (Table 6).

Table 6. A proof of the contradiction between C1 and C2 in TFL
1 −P2+A2 C1

2 +(+Q12+P2)−(+Q12+A2) C2

3 +(+Q12+A2)−(+Q12+A2) DON 1, 2

 If we compare the proof of the contradiction between C1 and C2 in FOL (Table 1) with the
proof in TFL (Table 6), we can clearly observe that in FOL not only we need a more complex
representation by using first order elements (say, variables and quantifiers), but also a more
complex proof in order to justify there is a contradiction, and yet, such proof does not provide any
lights as to why we instantaneously see a contradiction between C1 and C2. By contrast, TFL has a
more natural grammar and a simpler set of rules for performing inference. And since FOL, due to
its very origin, does not have these features, it cannot offer cognitively relevant information as to
how we actually reason. And so, even if FOL has merits within the foundations of mathematics, it
cannot be the logic of natural language. And as we can suspect at this point, this story is akin to the
history of logic programming languages.

4. Aristotelian Databases
Indeed, according to Mozes (1989), the abandon of traditional logic, i.e. syllogistic, by

computer scientists in order to favor FOL is not justified (cf. Kowalski, 1988). Syllogistic is a term
logic that was originally created with the purpose of understanding and guiding human reasoning;
but as we have seen, this was not the original purpose of FOL, and so a term logic not only has
cognitive import, but also computational interest. Consequently, Mozes developed the concept of
Aristotelian Database based upon traditional logic.

A database is Aristotelian when it has the following features:
 The ability to give natural-language explanations of deductions.
 The ability to volunteer information, in answer to yes/no questions, if a stronger or weaker

version of the “yes” answer can be proved.
 The ability to point out results that cannot be proved but seem to be likely possibilities.
 The ability, in answer to yes/no questions, to suggest “missing rules”, i.e. rules that if added

to the database, will allow proving a “yes” answer.
 The ability to suggest instances in which non-deductive forms of reasoning, such as analogy

or induction, are likely to be useful.

To obtain these features, the structure of a database à la Mozes is defined by a set of constants

that represent objects and a set of relations that represent properties (we will refer to this issue later).
Information about objects is expressed by facts, that is, by relations applied to objects, for instance, man
(Socrates). In this sense, these databases follow a syntax similar to Prolog’s (cf. Sterling & Shapiro,
1994; Bratko, 2001). A rule, on the other hand, consists of a subject that is the conjunction of one or
more relations applied to variables or constants, and a predicate that is a unique relation; plus a type of
rule that indicates the nexus between the subject and the predicate. When a rule is written we first write
down the predicate, then the rule type, and finally the subject. There are four possible rule types that
correspond to the four categorical propositions (vide Appendix A). Thus, for instance, mortal(X) A
man(X) means All men are mortal (in Prolog, mortal(X):−man(X).).

In these databases there are two types of queries: answer queries that specify a fact or a rule
to be proved; and retrieval queries that return an answer given the compliance of a conjunction of
relations. After getting an answer, the user may ask for an explanation. If the query was a retrieval
query, the user may specify a constant and ask why such a constant was not returned. If the query is

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 3 (September, 2018)
ISSN 2067-3957

28

an answer query and it was not proven as true or false, the user may ask for implicit rules. Besides
the ability to prove negative facts, Aristotelian Databases also implement negation by failure.
Finally, as can be noted, the deductive processes of these databases are based upon syllogistic.

Consider, as an example, the next fragment adapted from (Mozes, 1989):

\\Facts
man(Socrates)
wise(Socrates)
man(Joe)
age(Joe,l)
man(John)
age(John,15)
man(Peter)
age(Peter,40)
dog(Fido)
work_of_art(MonaLisa)

\\Rules
animal(X) A man(X)
animal(X) A dog(X)
mortal(X) A man(X)
mortal(X) E work_of_art(X)
man(X) E dog(X)
responsible(X) E ¬man(X)
responsible(X) A wise(X)
responsible(X) E baby(X)
responsible(X) I adult(X)
responsible(X) E idiot(X)
age(X,0-120) A man(X)
baby(X) A (man(X)^age(X,0-2))
adult(X) A (man(X)^age(X,21-120))
idiot(X) I (man(X)^age(X,30-50))

\\Example
> mortal(X) A ¬responsible(X)
Joe
By negation as failure: John
Possibility: Fido
> Explain Joe
Because Joe is a man, he is mortal.
Because Joe is a man with age 1, he is a baby.
Because Joe is a baby, he is not responsible.
> Explain Fido
Because Fido is a dog, it is an animal.
Some animal is mortal; for example, the men.
Because Fido is an animal, it is, perhaps, mortal.
Because Fido is a dog, it is not a man.
Because Fido is not a man, it is not responsible.
> Explain Socrates
Because Socrates is wise, he is responsible.
> Explain Peter
Because Peter is a man with age 40, he is an adult.
Because Peter is an adult, he is, perhaps, responsible.

Aristotelian Databases, then, use syllogisms as models of inference. The main advantage of this

Aristotelian approach is its cognitive closeness with natural language reasoning. This suggests, in
Mozes’ opinion, two applications in which traditional logic could be useful: applications that require
human interaction with natural language, and applications that try to emulate human reasoning.

J. M. Castro-Manzano, L. I. Lozano-Cobos, P. Reyes-Cárdenas - Programming with Term Logic

29

5. An Introduction to Term Logic Programming
 Now, if we consider the first application, we require a more powerful Aristotelian Database,
namely, one capable of dealing with a wide range of common sense inference patterns but also
cognitively closer to natural language. To do this we first introduce the basic elements of the system
TFL+ and then we present the advances of TFLPL as a programming language designed after TFL+.
 Peterson (1979) and Thompson (1982) developed extensions for syllogistic (SYLL+) by
adding some extra quantifiers, namely, “most” (for majority propositions), “many” (for common
propositions), and “few” (for predominant propositions).15 So, this framework adds the next
propositions: p is the predominant affirmative (Few S are not P), b is the predominant negative
(Few S are P), t is the majority affirmative (Most S are P), d is the majority negative (Most S are
not P), k is the common affirmative (Many S are P), and g is the common negative (Many S are not
P). This framework allows us to extend syllogistic as to cope with a wide range of common sense
reasoning patterns. As expected, the addition of p, t, k, b, d, and g increases the number of valid
syllogistic moods (Table 7).

Table 7. Valid syllogistic moods according to SYLL+ adapted from (Thompson 1982)
 Figure 1 Figure 2 Figure 3 Figure 4

With
“most”

aat att ati
ead etd

eto

aed add
ado ead
etd eto

ati eto tai
dao

aed eto
tai

With
“many”

aak
atk
aki
akk
eag
etg
eko
ekg

aeg
adg
ago
agg
eag
etg
eko
ekg

aki
eko
kai
gao

aeg
eko
kai

With
“few”

aap
app
apt
apk
api
eab
epb
epd
epg
epo

aeb
abb
abd
abg
abo
eab
epb
epd
epg
epo

pai
epo
bao
api

aeb
pai
epo

 The plus-minus algebra of TFL, as we have seen, provides a simple and logically sound
algebraic approach for syllogistic that, alas, does not cover cases of common sense reasoning
involving non-classical quantifiers such as “most,” “many,” or “few;” on the other hand, the
syllogistic extended with extra quantifiers comprises a wide range of common sense inference
patterns but, unfortunately, it lacks an algebraic procedure. So, given this state of affairs, TFL+ is
system of syllogistic that includes such a broad range of inferential patterns but with the virtues of
an algebraic approach. In order to represent propositions p, t, k, b, d, and g within the framework of
the plus-minus algebra, TFL+ uses the proposal displayed in Table 8.

15We mainly focus on the presentation by Thompson (1982).

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 3 (September, 2018)
ISSN 2067-3957

30

Table 8. Representation of the syllogistic propositions
Proposition Representation Proposition Representation

SaP := -S0+P0 SeP := -S0-P0

SpP := +S3+P0 SbP := +S3-P0

StP := +S2+P0 SdP := +S2-P0

SkP := +S1+P0 SgP := +S1-P0

SiP := +S0+P0 SoP := +S0-P0

 Given this new representation, the modification of the plus-minus algebra method of decision is
as follows: a conclusion follows validly from a set of premises if and only if i) the sum of the premises
is algebraically equal to the conclusion, ii) the number of conclusions with particular quantity is the
same as the number of premises with particular quantity, and iii) the level of quantification of the
conclusion is lesser or equal than the maximum level of quantification of the premises.
 The performance of this tweaked version of syllogistic may be better appreciated by
considering the trade-off between the complexity of the SYLL+ framework and the expressive
power of the TFL framework regarding common sense reasoning with non-classical quantifiers. To
illustrate this, let us consider some examples (Tables 10-13). As expected, this tweaked version of
syllogistic allows the valid inference patterns displayed in Table 9.16

Table 9. Valid syllogistic patterns with extra quantifiers in the TFL+ framework

 Figure 1 Figure 2 Figure 3 Figure 4

With
“most”

att ati etd
eto

add ado
etd eto

ati eto tai
dao

eto
tai

With
“many”

atk
aki
akk
etg
eko
ekg

adg
ago
agg
etg
eko
ekg

aki
eko
kai
gao

eko
kai

With
“few”

app
apt
apk
api
epb
epd
epg
epo

abb
abd
abg
abo
epb
epd
epg
epo

pai
epo
bao
api

pai
epo

Table 10. An invalid reasoning: kaa-1

 Proposition Representation

1. Many homeless are ill. +H3+I0

2. This guy is homeless. -g0+H0

⊬ This guy is ill. -g0+I0

16For the valid inferential patterns that need existential import, like aat-1 or aak-1, the only requirement is to add
the missing implicit premise that states the existence of the minor term, namely, something akin to +S0+S0.

J. M. Castro-Manzano, L. I. Lozano-Cobos, P. Reyes-Cárdenas - Programming with Term Logic

31

Table 11. An invalid reasoning: akt-4
 Proposition Representation

1. All cops are fascists. -C0+F0

2. Many men are cops. +M1+C0

⊬ Most men are fascists. +M2+F0

Table 12. A valid reasoning: bao-3

 Proposition Representation

1. Few cars are hybrid. +C3-H0

2. All cars are expensive. -C0+E0

⊢ Some expensive cars are not hybrid. +E0-H0

Table 13. A valid reasoning: ekg-2

 Proposition Representation

1. No fool is a citizen. -F0-C0

2. Most voters are citizens. +V2+C0

⊢ Many voters are not fools. +V1-F0

 As we can see from these examples, the TFL+ framework gains the advantages of an
algebraic method (a reduction of a complex set of rules into a simple and unified formal approach)
and, at the same time, it gains the advantages of a theory of syllogisms with non-classical quantifiers
(an assessment of a wide range of common sense inference patterns that extends the scope of
traditional syllogistic), with the addition that the TFL+ framework is reliable in that all valid
syllogisms in the SYLL+ framework can be obtained by applying the modified plus-minus algebra
method of decision, and vice versa, all syllogisms that can be obtained by applying the modified
plus-minus algebra method of decision are valid syllogisms in the SYLL+ framework:

Proposition 1 (Reliability) An inference is SYLL+
valid iff it is TFL+

valid.

So, at this point we can say that, if the relevance of the reliability of TFL+ has to do with
expressive and algebraic limitations of FOL and TFL+ and SYLL+ with respect to common sense
inference in natural language, the usefulness of Term Functor Logic Programming Language
(TFLPL) results from its potential use for systems of information retrieval in which natural language
interaction is basic or fundamental. Given these remarks, TFLPL is a language that, like Prolog, has a
special grammar. The next fragment is an example of a program of TFLPL:

-s0+H0
-H0+M0

The first line can be read as “Socrates is a man” (i.e., -s0+H0 in TFL+; man(Socrates) in

Prolog) while the second line represents “All men are mortal” (i.e., -H0+M0 in TFL+; mortal(X):-
man(X) in Prolog). This allows us to see that, just as in TFL the distinction between singular and
universal proposition disappears, in TFLPL the distinction between facts and rules also disappears:
this is an important difference from other logic programming languages like Prolog; and this is also
different from the Aristotelian Database originally proposed by Mozes (Table 14).

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 3 (September, 2018)
ISSN 2067-3957

32

Table 14. Comparison

Proposition FOL TFL+ Prolog TFLPL

Socrates is a man. Ms -s0+M0 man(Socrates). -s0+M0

All men are mortal. ∀x(Hx⇒Mx) -H0+M0 mortal(X):-man(X). -H0+M0

Many humans are Greek. -- +H2+G0 -- +H2+G0

Given the previous program, we can make some inferential queries:

> s

-H0+M0
-s0+H0

-s0+M0

that is, “What is Socrates?” (s), and the program answers -s0+M0, that is to say, “Socrates is
mortal.” We can clearly see another difference between TFLPL and Prolog. The syntax of TFLPL is
ternary, Aristolelian as it were, and thus, it organically induces a database à la Mozes; however, it
different from the original notion of Aristotelian Database in another respect: TFLPL avoids the
choice of a Fregean binary syntax in order to favor a syntax closer to Sommers’. This results in a
logic programming language based upon a system of natural logic rather than on first order logic.

As a result of being grounded on TFL+, the syntax of TFLPL is the same as that of TFL+ with
the restriction that the super index notation is not maintained: the super index is written immediately
after the term. The syntax, then, can be summarized by the following BNF:

<program> ::= <proposition> | <proposition><program>
<proposition> ::= <termn><±term0>
<termn> ::= <±T0>|<+T1>|<+T2>|<+T3>

That is to say, a program in TFLPL is a sequence of one or more propositions. And each

proposition is defined by two terms as in TFL+. This formal syntax allows us to define, in a rigorous
way, the nexus between the philosophical and the cognitive motivation. Clearly, given this syntax,
the formal semantics of TFLPL is directly the semantics of TFL+, and given Proposition 1, it is
possible to claim TFLPL preserves the technical results we pretend to capture, namely, the inferential
process of a logic of terms.
 The implementation of TFLPL was achieved in C. At the moment, the inferential motor of
TFLPL receives a TFLPL program and makes an iterative use of the inferential process defined
previously, namely, that a conclusion follows validly from a set of premises if and only if i) the sum
of the premises is algebraically equal to the conclusion, ii) the number of conclusions with particular
quantity is the same as the number of premises with particular quantity, and iii) the level of
quantification of the conclusion is lesser or equal than the maximum level of quantification of the
premises.

As an example, consider the following program:

-s0+M0 // Socrates is a man.
-f0+D0 // Fido is a dog.
-M0+A0 // All men are animals.
-D0+A0 // All dogs are animals.
-M0+O0 // All men are mortal.
-A0+O0 // Few animals are not mortal.

> s // What is socrates.

J. M. Castro-Manzano, L. I. Lozano-Cobos, P. Reyes-Cárdenas - Programming with Term Logic

33

-M0+A0 // All men are animal.
-s0+M0 // Socrates is a man.

-s0+A0 // Therefore, Socrates is an animal.

-M0+O0 // All men are mortal.
-s0+M0 // Socrates is a man.

-s0+O0 // Therefore, Socrates is mortal.

We can extract some remarks after the syntax, the implementation, and the example: a) since
the syntax of TFL involves the abandon of the Fregean syntax, TFLPL does not require the use of
variables or constants. b) Since the syntax of TFL implies the rejection of the distinction between
singular and universal propositions, the distinction between facts and rules disappears in TFLPL. c)
Given the previous remarks, TFL does need to use the equality predicate, =, and so in TFLPL we
have no need for substitution or unification procedures as in Prolog. d) TFLPL allows us to define
Aristotelian Databases in so far as it uses syllogistic inference and has a leitmotiv closer to natural
language, even though TFLPL has also a syntactic difference with Mozes’ databases, namely, that
TFLPL has a ternary syntax. e) As of today, TFLPL only uses propositions defined after pairs of
terms, but since TFL is able to model more complex relations, we need to add a relational module to
TFLPL, as well as a module for numerical reasoning.

7. Final remarks
In this contribution we have tried to reach a simple goal: to present the advances of a

programming language designed after the Intermediate Term Functor Logic. As of now, the
implementation only uses propositions with two terms and the rule DON, but if we consider its
working and its motivation, we can see that TFLPL is a logic programming language that is quite
promising, not only a computational device, but also as a research device associated to a cognitive
project that will include inferential models for relational logic (in so far as TFL+ is capable of
dealing with relational inferences), probabilistic reasoning (in so far as TFL+ accepts a probabilistic
interpretation (cf. Thompson, 1986)), and numerical reasoning (in so far as we could incorporate
numerical term logic (cf. Murphree, 1998)). Also, this programming language can be adapted into
psychological accounts of common sense reasoning (cf. Keil, 2005 ; Khemlani & Johnson-Laird,
2012)) and philosophical discussions about the nature of inference (cf. Veatch, 1970 ; Sommers,
1982 ; Englebretsen, 1996, Englebretsen & Sayward, 2001)), not to mention it could have
pedagogical advantages given its closeness to natural language reasoning.

 References
Aristotle. (1989). Prior Analytics, Hackett Classics Series, Hackett.
Bratko, I. (2001). Prolog Programming for Artificial Intelligence, Addison Wesley.
Carnap, R. (1930). “Die alte und die neue logik”, Erkenntnis, 1, pp. 12-26.
Castro-Manzano, J.M., & Pacheco-Montes, J.R. (2018). “Moded Diagrams for Moded Syllogisms”,

In Chapman P., Stapleton G., Moktefi A., Perez-Kriz S., Bellucci F. (eds.) Diagrammatic
Representation and Inference. Diagrams 2018. Lecture Notes in Computer Science, vol
10871. Springer, Cham.

Couturat, L. (1961). La logique de Leibniz d'après des documents inédits, Hildesheim, G. Olms.
Englebretsen, G. (1987). The New Syllogistic, Peter Lang.
Englebretsen, G. (1991). “Linear Diagrams for Syllogisms (with Relationals)”, Notre Dame J.

Formal Logic, 33(1), pp.37-69.
Englebretsen, G. (1996). Something to Reckon with: The Logic of Terms, University of Ottawa

Press.
Englebretsen, G., & Sayward, C. (2011). Philosophical Logic: An Introduction to Advanced Topics,

Bloomsbury Academic.

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 3 (September, 2018)
ISSN 2067-3957

34

Geach, P. (1962). Reference and Generality: An Examination of Some Medieval and Modern
Theories, Cornell University Press.

Geach, P. (1980). Logic Matters, University of California Press.
Keil, F. (2005). “Exploring Boundary Conditions on the Structure of Knowledge: Some

Nonobvious Influences of Philosophy on Psychology”, in David S. Oderberg (ed.), The Old
New Logic: Essays on the Philosophy of Fred Sommers, Bradford, pp. 67-84.

Khemlani, S., & Johnson-Laird, P. N. (2012). “Theories of the Syllogism: a Meta-Analysis”, .
Psychological Bulletin, pp. 427-457.

Kowalski, R. A. (1988). “The early years of logic programming,” Commun. ACM, 31(1), pp. 38-43.
Kuhn, S. (1983). “An Axiomatization of Predicate Functor Logic”, Notre Dame J. Formal Logic,

24(2), pp. 233-241.
Mostowski, A. (1957). “On a Generalization of Quantifiers”, Fundamenta Mathematicae, 44(2), pp.

12-36.
Moss, L. (2015). “Natural logic”, in S. Lappin y C. Fox (eds.), The Handbook of Contemporary

Semantic Theory, John Wiley & Sons.
Mozes, E. (1989). “A Deductive Database Based on Aristotelian Logic”, Journal of Symbolic

Computation, 7(5), pp. 487-507.
Murphree, W. (1998). “Numerical Term Logic”, Notre Dame J. Formal Logic,39(3), pp. 346-362.
Noah, A. (1980). “Predicate-functors and the Limits of Decidability in Logic”, Notre Dame J.

Formal Logic, 21(4), pp. 701-707.
Noah, A. (2005). “Sommers’s Cancellation Technique and the Method of Resolution”, in David S.

Oderberg (ed.), The Old New Logic: Essays on the Philosophy of Fred Sommers, Bradford,
pp.169- 182.

Peterson, P. L. (1979). “On the Logic of “few”, “many”, and “most”,” Notre Dame J. Formal
Logic, 20, pp. 155-179.

Quine, W. Van O. (1971). “Predicate Functor Logic”, in J. E. Fenstad (ed.) Proceedings of the
Second Scandinavian Logic Symposium, North-Holland.

Russell, B. (1937). A critical exposition of the philosophy of Leibniz: with an appendix of leading
passages, G. Allen & Unwin.

Sommers, F. (1967). “On a Fregean Dogma”, in I. Lakatos (ed.), Problems in the Philosophy of
Mathematics, volumen 47 Studies in Logic and the Foundations of Mathematics, Elsevier,
pp.47- 81.

Sommers, F. (1982). The Logic of Natural Language, Oxford University Press.
Sommers, F. (2005). “Intellectual Autobiography”, in David S. Oderberg (ed.), The Old New Logic:

Essays on the Philosophy of Fred Sommers, Bradford, pp. 1-24.
Sommers, F., & Englebretsen, G. (2000). An Invitation to Formal Reasoning: The Logic of Terms,

Ashgate.
Staal, J. F. (1969). “Formal Logic and Natural Languages (a Symposium)”, Foundations of

Language 5(2), pp. 256-284
Sterling, L., & Ehud, S. (1994). The Art of Prolog: Advanced Programming Techniques, MIT Press.
Thompson, Bruce (1982), “Syllogisms using “few”, “many”, and “most”,” Notre Dame J. Formal

Logic, 23(1), pp. 75-84.
Thompson, B. (1986). “Syllogisms with Statistical Quantifiers”, Notre Dame J. Formal Logic,

27(1), pp. 93-103.
Veatch, H. B. (1970). Intentional Logic: A Logic Based on Philosophical Realism, Archon Books.
Woods, J. (2016). “Logic Naturalized”, In J. Redmond, O. Pombo, and A. Nepomuceno-Fernández

(eds.), Epistemology, Knowledge and the Impact of Interaction, Springer, pp. 403-432.

Appendix A. Syllogistic
Syllogistic (SYLL) is a term logic that has its origins in Aristotle’s Prior Analytics (1989) and deals
with the consequence relation between categorical propositions. A categorical proposition is a

J. M. Castro-Manzano, L. I. Lozano-Cobos, P. Reyes-Cárdenas - Programming with Term Logic

35

proposition composed by two terms, a quantity, and a quality. The subject and the predicate of a
proposition are called terms: the term-schema S denotes the subject term of the proposition and the
term-schema P denotes the predicate. The quantity may be either universal (All) or particular
(Some) and the quality may be either affirmative (is) or negative (is not). These categorical
propositions are denoted by a label, either a (universal affirmative, SaP), e (universal negative,
SeP), i (particular affirmative, SiP), or o (particular negative, SoP) that allows us to determine a
sequence of three propositions called mood. A categorical syllogism, then, is a mood ordered in
such a way that two propositions are premises and the last one is a conclusion. Within the premises
there is a term that appears in both premises but not in the conclusion. This special term, usually
denoted with the term-schema M, works as a link between the remaining terms and is known as the
middle term. According to the position of this last term, four figures can be set up in order to
encode the valid syllogistic moods or syllogistic patterns (Table A1).17

Table A1. Valid syllogisms

Figure 1 Figure 2 Figure 3 Figure 4

aaa
eae
aii
eio

eae
aee
eio
aoo

iai
aii
oao
eio

aee
iai
eio

Appendix B. Rules of inference for TFL
For the purposes of this study, here we expound the rules of inference for TFL as they appear in
(Englebretsen 1996).

1. Rules of immediate inference.
1. Premise (P): Any premise or tautology can be entered as a line in proof. (Tautologies

that repeat the corresponding conditional of the inference are excluded. The
corresponding conditional of an inference is simply a conditional sentence whose
antecedent is the conjunction of the premises and whose consequent is the conclusion.)

2. Double Negation (DN): Pairs of unary minuses can be added or deleted from a formula
(i.e., --X=X).

3. External Negation (EN): An external unary minus can be distributed into or out of any
phrase (i.e., -(±X±Y)=±X±Y).

4. Internal Negation (IN): A negative qualifier can be distributed into or out of any
predicate-term (i.e.,±X-(±Y)=±X+(±Y)).

5. Commutation (Com): The binary plus is symmetric (i.e., +X+Y=+Y+X).
6. Association (Assoc): The binary plus is associative (i.e., +X+(+Y+Z)=+(+X+Y)+Z).
7. Contraposition (Contrap): The subject- and predicate-terms of a universal affirmation

can be negated and can exchange places (i.e., -X+Y=-(-Y)+(-X)).
8. Predicate Distribution (PD): A universal subject can be distributed into or out of a

conjunctive predicate (i.e., -X+(+Y+Z)=+(-X+Y)+(-X+Z)) and a particular subject can
be distributed into or out of a disjunctive predicate (i.e., +X + (-(-Y) - (-Z))=--(+X + Y)-
-(+X + Z)).

9. Iteration (It): The conjunction of any term with itself is equivalent to that term (i.e.,
+X+X=X).

2. Rules of mediate inference.
1. (DON): If a term, M, occurs universally quantified in a formula and either M occurs not

universally quantified or its logical contrary occurs universally quantified in another

17 For sake of brevity, but without loss of generality, here we omit the syllogisms that require existential
import.

BRAIN – Broad Research in Artificial Intelligence and Neuroscience, Volume 9, Issue 3 (September, 2018)
ISSN 2067-3957

36

formula, deduce a new formula that is exactly like the second except that M has been
replaced at least once by the first formula minus its universally quantified M.

2. Simplification (Simp): Either conjunct can be deduced from a conjunctive formula; from
a particularly quantified formula with a conjunctive subject-term, deduce either the
statement form of the subject-term or a new statement just like the original but without
one of the conjuncts of the subject-term (i.e., from +(+X+Y)±Z deduce any of the
following: +X+Y, +X±Z, or +Y±Z), and from a universally quantified formula with a
conjunctive predicate-term deduce a new statement just like the original but without one
of the conjuncts of the predicate-term (i.e., from -X±(+Y+Z) deduce either -X±Y or -
X±Z).

3. Addition (Add): Any two previous formulae in a sequence can be conjoined to yield a
new formula, and from any pair of previous formulae that are both universal affirmations
and share a common subject-term a new formula can be derived that is a universal
affirmation, has the subject-term of the previous formulae, and has the conjunction of
the predicate-terms of the previous formulae as its predicate-term (i.e., from -X+Y and -
X+Z deduce -X+(+Y+Z>).

Table B1. An example of DON

 Proposition Representation Rule

1. Every boy loves some girl. -B1+(+L12+G2) P

2. Every girl adores some cat. -G2+(+A23+C3) P

All cats are mangy. -C+M P

Whatever adores something mangy is a fool. -(+A23+M3)+F P

 -G2+(+A23+M3) 2, 3, DON

 -G+F 4, 5, DON

⊢ Every boy loves a fool -B1+(+L12+F2) 1, 6, DON

