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1. Introduction 

User-generated content on social media networks and the web is a common practice nowadays [1]. 
Users, who were once consumers of information, are now major information contributors [2]. This 
shift from information consumers to information producers has provided an abundance of data, both 
structured and unstructured, that can be collected, processed, and analysed to yield useful information. 
The observed increase in online user content is explained primarily by the latest technology 
advancement and wide adoption of Web 2.0, whereby expressing one's emotions or feelings over 
communication networks has become much simpler and easier [3]. For instance, using short text 
messages such as LOL for expressing 'laugh all loud' or 'lots of love', people are no longer bound to 
typing full texts when communicating. Also, with the introduction of emoticons and multimodal 
content (text with image, video, audio, animated images), users can quickly and explicitly convey 
their feelings without having to type long descriptive messages [4], [5]. Currently, most, if not all, 
online messages are written in short text format and contain some form of emoticons. Consequently, 
classical methods of text analysis, such as sentiment analysis, are not sufficient in obtaining a correct 
interpretation of the meaning conveyed in each message.  

In general, sentiment analysis, also known as opinion mining, focuses on classifying text into three 
main categories namely positive, negative, and neutral. Those three categories are useful in various 
applications [6] but will, however, not provide accurate details regarding any emotion expressed in a 
message. For instance, sentiment analysis cannot perceive emotions such as joy, fear, surprise, guilt 
etc., which are essential to understanding the actual feeling expressed by a user [7]. For a more 
effective interpretation of a message, it is not only essential to identify the contents and context of the 
message, but it is also crucial to detect the emotion expressed within the message [8]. Emotion 
analysis, in this sense, seeks to capture the emotion expressed in a message [9]. Emotions by nature, 
however, are very complex to identify, and several techniques have been proposed for emotion 
analysis.  
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In this paper, we present the different achievements and challenges in emotion analysis. The rest 
of the paper is organized as follows: Section 2 introduces the concept of emotion along with 
considerations to take when detecting emotion. Different applications of emotion analysis are 
presented in section 3. Section 4 describes some popular emotion models used to classify emotions, 
followed by section 5, which gives an overview of datasets available for emotion analysis. Section 6 
presents some of the techniques used for emotion analysis as found in past studies, and section 7 
highlights some noteworthy findings concerning the state-of-the-art techniques for emotion analysis. 
We conclude the paper with some future research directions. 

2. Method 

Emotion is a complex state of mind, which represents the feeling of a person and which can 
influence both the physical and psychological behaviour of that individual [10]. Happiness, sadness, 
love, and hatred are some examples of emotions expressed by human beings. Emotions can be 
involved in that emotion, rather than being singular, which can consist of a cluster of emotions. It is 
also common for emotions to vary according to a person's personality traits and the corresponding 
context and environment [11].  

In emotion analysis from the text, the aim is to correctly identify the actual state of mind of an 
individual when the written message was sent. In general, however, it is very challenging to detect 
emotions from texts for several reasons. Firstly, text messages can be highly unstructured and may 
not follow strict grammatical or syntactic rules such that a general approach for text processing cannot 
be applied. For instance, messages consisting of texts written as "carooooooooooooooooooooooo im 
going to kiiiillll uuuuuuuuuuuuuuuuu... n u know why but i still love u (a little bit:P) don’t worry :P 
mwahhh" are very hard to process [12]. 

Secondly, as [13] explained, context plays a vital role in emotion detection as evidenced by the 
following sentence, "The performers were greeted with joyless cheer". Here, the emotion factor of the 
word "cheer' is influenced by the word "joyless" which transforms the emotion expressed by the phrase 
"joyless cheer" to sadness rather than joy. Thirdly, sarcasm/metaphors, when expressed in messages, 
add further complexity when detecting emotion in text. For example, the sentence "Yes. I guess your 
amazing delivery service has not yet arrived" is clearly not expressing the feeling of a delighted 
customer [14]. Similarly, some expressions of anger emotion class are metaphorical, that is, they 
cannot be evaluated by the literal meaning of the expression (e.g. 'She is boiling with anger' or 'Don’t 
snarl at me’) [15]. 

Fourthly, expressions may constitute of multiple emotions, which may vary according to culture. 
For instance, according to [16], emotions are organized differently for each culture. In the Chinese 
culture, we can identify seven basic emotions: happiness, anger, anxiety, thoughtfulness, sadness, 
fear, surprise whereas in the Indian culture, we find eight core emotions, namely, erotic, mirth, 
sorrow, anger, energy, fear, disgust, astonishment. And finally, there are some messages that do use 
words at all. Rather, emotion expression is expressed via emoticons. E.g. I still have Christmas 
shopping to do  [17]. 

2.1. Applications of Emotion Analysis 

Backed by the capabilities of the social web, emotion analysis has led to the creation or 
improvement of various applications and services [18]. For instance, by considering the emotions 
expressed during the navigation of websites, web designers obtain useful insights that help them 
design websites for improved user experience [19].  

In the marketing field, customer emotional responses to promotional video campaigns or ads are 
used as a critical factor to determine strategies that can drive sales figures [20], [21]. In E-learning, 
automatic emotion recognition has been used to discover the emotional state of the learner to adapt to 
the learner’s ability and provide an optimized learning experience [22], [23].  

Psychologists can further use emotion analysis to detect topic sensitivity from facial emotion 
recognition and subtle voice changes. Emotion analysis can also help identify key emotional point 
that may require more in-depth investigations [24]. The application of emotion analysis also extends 
to social media. For instance, cyber-bullying incidents can be classified by detecting the emotional 
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state of users [25] and in customer service, tweets can be ranked based on the emotion expressed, and 
reply to customers can be prioritized accordingly, hence increasing customer satisfaction [14].  

1) Emotion Models 

Emotion models set forth the different criteria to make various emotions expressed by an individual 
measurable and distinguishable [26]. Five emotion models, namely, discrete, dimensional, 
componential, circuit and appraisal model have been reported in previous studies [27]. In this section 
a brief overview on each model is provided.  

2) Discrete Model 

Discrete models identify a set of fundamental or core emotions that are expressed by every person, 
regardless of religion, culture, or ethnicity [28]. In Ekman’s basic emotion theory, six basic emotions 
identified are: anger, disgust, fear, happiness, sadness, and surprise. Extended Ekman’s basic list by 
taking into consideration neuropsychological aspects to propose ten core emotions: interest, joy, 
surprise, sadness, anger, disgust, contempt, fear, shame, and guilt [29]. James Russell [30], however, 
critiqued discrete models as they do not necessary provide accurate representations of an individual’s 
feeling. For instance, fear is a basic emotion, but “fear of getting wet” cannot be considered equal to 
“fear of bear”. “Fear of getting wet” will most likely be representing anger and “fear of bear” will be 
more representative of actual fear. 

3) Dimensional Model  

In contrast to the discrete emotion model, dimensional models map emotions into a continuous 
one-dimensional or multi-dimensional space. A one-dimensional model consists of a single 
dimension, and multi-dimensional may have two or more dimensions [27]. Dimension models 
represent different affective states as the point in a dimensional space with coordinates ranging from 
-1 to 1 in some cases, and in other cases, it can extend to higher ranges such as -100 to 100 [31]. 

The Pleasure Arousal and Dominance (PAD) emotional state model is an implementation of the 
dimensional model, which was introduced by [30]. To measure emotional states, PAD makes use of 
the following three dimensions: pleasure, for a degree of valence, arousal, indicating the level of 
affective activation and dominance for the degree of power or control [31]. 

Russel, for instance, put forth the circumplex model of affect, which states that any emotion can 
fit within two continuous dimensions of valence and arousal [30]. The valence (pleasure) dimension 
contrasts between positive and negative emotions, which can be evaluated on different axes with 
values nearer to zero, indicating neutral emotional states. Arousal (activation) dimension contrasts 
between active and passive emotional states, with a value of zero indicating intermediate states.  

However, the Dimensional model of effect has been criticized for three main reasons [27]. Firstly, 
it is not natural for the human representation of emotions as people do not think about emotions as 
points. Secondly, it is hard to represent ambivalent emotional states, and finally, some emotions such 
as fear and anger are indistinguishable, as these emotions both lie in the same quadrant of high arousal 
and negative valence 

4) Componential Model 

Componential models consider that emotions are manifested by cerebral assessment of events and 
the sequence of reactions in different physiological responses, facial expressions, gestures, stance and 
affect [30]. Ortony, Clore and Collin (OCC) in 1988 defined a hierarchy of twenty-two emotion types 
in their OCC model to represent all possible affective states, which might be experienced by an 
individual [32]. In the OCC model, each emotion is a result of an affective reaction, which occurs 
after evaluating the aspects of a situation as positive (beneficial) or negative (harmful). The reactions 
are consequences of events, actions of agents, and aspects of objects [31]. 

Psychologist Robert Plutchik recognized that there are eight core emotions and that all other 
emotions grow from those core emotions. In Plutchik’s psych evolutionary theory of emotion, he 
suggests that there are eight primary emotions, namely anger, fear, sadness, disgust, surprise, 
anticipation, trust, and joy and that various combinations of the eight basic emotions will form other 
emotions. For instance, joy and surprise can be combined to result into delight. The model is also 
known as Plutchik Wheel of Emotions [33] 
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[31] argued that complex models like the one proposed by [34] are rarely used in practical 
applications and the OCC model is used for emotion state prediction. Furthermore, in some cases, 
emotion recognition and prediction capabilities are merged to obtain a more precise emotional state. 

5) Circuit Model 

The Circuit model, also known as anatomical model, was proposed by neuroscientist, Joseph E. 
Ledoux [35]. Ledoux theorised that individual emotion can be processed in dissimilar, distinct neural 
circuits and essential tasks or systems are linked to those circuits. Neuropsychologists posit that 
evolutionary neural circuits in the brain construct elemental emotions and their distinctions. They 
discovered numerous important primitive emotions such as rage, fear, expectancy, and panic. Ledoux 
further insisted that language may not be enough to distinguish among emotions as there exists diverse 
circuits to compute dissimilar emotions in our brain, and which may not be necessary measurable or 
translated in a language format. 

6) Appraisal Models  

Smith and Lazarus proposed the appraisal model, which suggests that emotions emerge from the 
constantly changing communication of appraisal and coping processes that rely on the agent’s 
depiction of its relationship with the environment [36]. The model also states that each environment 
relationship is assessed with the help of a defined number of appraisal dimensions or variables, and 
connections among environmental and affect changes. Appraisal variables are based on "if-then" 
rules, i.e. on relevance, implications, coping potential, and normative significance. Appraisal model 
is the leading theory related to human emotion in computer science, specifically in symbolic 
Artificial Intelligence (AI) systems. 

2.2 Datasets available for Emotion Analysis 

Emotion analysis is a relatively new field in computational linguistic [37], [38]. Consequently, 
quality datasets expressing all or most measurable emotions do not exist. In this section, we discuss 
some datasets, which have been used for emotion analysis. 

The International Survey on Emotion Antecedents and Reactions (ISEAR) was a project lead by 
[39]. The authors constructed a dataset with seven out of ten basic emotions, joy, fear, anger, sadness, 
disgust, shame, and guilt based on a study in 37 countries. Despite its size, ISEAR only comprises of 
a personal reaction toward an event, which triggered an emotional response. For instance, “A girl 
entered in the division where I work and greeted everybody but not me”, is an extract from the dataset 
which expresses anger. However, this form of the dialog is not expected in a conversation. The ISEAR 
dataset was built with the intention of sentence-level emotion recognition and not for conversation 
level analysis.  

Klimt and Yang created the Enron Email Dataset, which consists of emails collected from one 
hundred and fifty-eight users from Enron senior management office [40]. The original dataset only 
contained emails and was not annotated. It was up to the researchers to annotate the mails. In 2017, 
Charlie Oxborough released sentence-level annotations to classify the mail dataset into two groups, 
namely negative and positive mails.  

SemEval 2007 is another dataset created by Strapparava and Mihalcea [41]. SemEval2007 consists 
of news headlines extracted from news web sites like Google News, CNN, and newspapers. Collected 
news is classified under Ekman six basic emotions, Anger, Disgust, Fear, Joy, Sadness, Surprise with 
a valence indicating its sentence polarity. However, headlines are quite straightforward and enclosed 
such as, “Trucks swallowed in subway collapse.”  

Twitter is a popular social network where people share or express their opinions. Mohammad and 
Bravo-Marquez collected tweets and manually annotated the data under four discrete emotions, anger, 
fear, joy, and sadness for the WASSA-2017 dataset [42]. In another attempt to create a Twitter dataset, 
Figure Eight collected tweets that were classified under thirteen emotion labels: anger, enthusiasm, 
fun, happiness, hate, neutral, sadness, surprise, worry, love, boredom, relief, and empty. The dataset 
contains forty thousand tweets. However, the emotions used in the dataset do not match any of the 
popular emotion models discussed previously.  

It is generally observed that labeled emotion datasets have been designed to address a specific text 
emotion classification problem. The main problem with currently available datasets is that the 
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emotions tagged belong to discrete human emotions. Authors attempting to resolve multi class 
emotion issues need to build their own or enhance existing dataset to suit their needs. 

2.3 Emotion Analysis Techniques 

Anusha and Sandhya proposed a supervised learning system, which makes use of Natural 
Language Processing (NLP), Naïve Bayes Multinomial (NBM) and Support Vector Machines (SVM) 
algorithms to classify text data into emotions [37]. The ISEAR dataset was used for training on five 
emotions classes: Anger, Disgust, Fear, Joy, and Sadness as per the Ekman emotion model. A 10-fold 
cross-validation was performed, and it was found that SVM yielded an Average F1 of 63.1 with Kappa 
statistics of 0.49 whereas NBM yielded an Average F1 of 52.9 with Kappa statistics of 0.43.  

Udochukwu and He proposed a rule-based approach toward implicit emotion detection using five 
emotion classes in the OCC model [43]. The approach was tested on three datasets: ISEAR, 
SemEval2007 and Alm. Two baseline models were crafted to test the rule-based approach. The first 
one is a lexicon matching technique, which uses NRC emotion lexicon for sentence-level emotion 
detection, and the second one is a supervised Naive Bayes (NB) classifier. The performance was 
evaluated using F-Measure in five-fold cross-validation. The rule-base system was unable to classify 
any “Fear” affect bearing sentences on the three datasets. However, its surpassed NB by 9.5% on Alm 
dataset and achieved almost equivalent results to NB for the ISEAR and SemEval2007 datasets. 

Perikos and Hatzilygeroudis, attempted emotion recognition from text using an ensemble classifier 
combining Naïve Bayes (NB), Maximum entropy (ME), and Knowledge-Based Tools (KBTool) [44]. 
The ensemble classifier is based on a voting function to make classification verdict based on the output 
of each base classifier. The authors argued that in comparison to NB, ME provides additional features, 
such as unigrams and bigrams, which can be added without risk of overlapping. The advantages of 
ME also extend to better performance in multiple Natural Language Processing tasks. However, it 
necessitates more time to be trained. The KBTool performs deeper sentence analysis by storing affect 
bearing words and using WordNet Affect. The model was trained on the ISEAR dataset on seven 
discrete emotions while Russell’s two-dimensional model of affect was used to detect emotion 
polarity. When tested on a manually crafted dataset, which consists of Tweets, news headlines and 
articles, an accuracy of 83% to 89%, precision of 85% to 90%, sensitivity of 79% to 91% and 
specificity of 86% to 89% were obtained. 

Yasmina et al. used Point Wise Mutual Information (PMI) to compute text emotion similarity on 
YouTube comments [45]. The authors extended Agrawal and an, learning algorithm to take into 
consideration any convergence between sets of an emotion, which can result into distortion in 
classification results [13]. The classifier categorized comments for each category under Ekman six 
basic emotion model and obtained results accounting to 90% in precision, 72% for recall and 67-70% 
in accuracy. 

Razek and Frasson, used Dominant Meaning Classifier (DMC) to recognize emotion from text 
[46]. A dominant tree is trained on the ISEAR dataset to form seven emotion classes, joy, fear, anger, 
sadness, disgust, shame, and guilt, which is in line with Carroll [29] discrete emotions. For each 
emotional class, a sub class is associated, for instance, under anger class, the sub classes mislead, 
punishment, argument and other emotions are added. The dominant tree is then utilized to classify 
text retrieved from users chat sessions. Instead of using keywords-based techniques, the authors 
adopted dominant meaning techniques to enhance the accuracy and refine the emotion classes. The 
following metrics were used to evaluate the accuracy of the model, average precision, recall, and F-
measure. A ten-fold cross validation comparison was made between Support Vector Machine (SVM) 
and DMC. It was observed that DMC yielded superior results across all emotion classes.  

To tackle the problem of emotion analysis from a psychological and linguistic perspective, [38] 
developed a framework designed to capture emotions from multilingual text using Ekman six basic 
emotions model. Two additional emotion classes were added: “Mixed Emotion” for sentences with 
multiple affects and “No Emotion” for sentences bearing no affective words. The dataset used was 
constructed from Twitter in three different areas, political election, healthcare, and sports. Latent 
Dirichlet Allocation (DLA) was applied for the extraction of repeating topics and keywords. Each 
tweet was manually labeled with an emotion class by four human annotators. The task of emotion 
classification was done in two segments. In the first segment, the dataset is split into two categories, 
emotion, and non-emotion, which is classified using SVM. In the second segment, fine tuning is 
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performed using SVM and NB. To cater for automatic emotion classification, three publicly available 
lexical resources, WorldNet-Affect (WNA), Hindi WordNet-Affect (HWNA) and Senti-WorldNet, 
were used to create three features sets to distinguish between affective and non-affective words. 
Evaluation was conducted using the following metrics: Precision, Recall, Accuracy, and F-measure. 
Comparison between SVM and NB showed that NB outperformed SVM with an accuracy of 72.81%.  

For messages with text sparsity, proposed two supervised intensive topic model namely: Weighted 
Labelled Topic Model (WLTM) and Intensive Emotion Topic Model (IETM) for emotion detection 
over short texts [47]. WLTM performs biterm (pair of words) extraction, which matches the topic 
from a document label set. Gibbs sampling algorithm was used to estimate the required parameters 
for WLTM. Then, Support Vector Regression (SVR) is used to forecast emotion distributions. IETM 
also performs biterm extraction. The two models were trained on the SemEval and ISEAR datasets. 
Averaged Pearson’s correlation coefficient, APdocument and APemotion were used to evaluate the 
models. WLTM result on SemEval did not perform well in terms of APdocument (0.24); however, 
the same model achieved the highest score on APemotion (0.45).  

In another emotion classification task, [48], employed Prediction by Partial Matching (PPM) 
technique to recognize Ekman's six basic emotions in character-based text. The PPM technique was 
experimented on three datasets, LiveJournal dataset, Alm’s dataset and Aman’s dataset to categorize 
emotions. The model obtained Accuracy within the range of 88% to 96%, Precision between 71% to 
90%, Recall between 70% to 88% and F-Measure between 67% to 88%.  

Hasan et al. further proposed an approach to automatic emotion detection from tweets by 
developing two systems called Emotex and EmotexStream [49]. The authors extended the circumplex 
model with WordNet’s synsets (synonym) to capture a broader spectrum of affect bearing words. NB, 
SVM and Decision tree as classifiers were used in Emotex. EmotexStream as an extension to Emotex 
was developed as a real-time tweet classifying system whose aim is to discover temporal distributions 
of aggregate emotion and detect emotional burst during major events. An unsupervised method 
(Binary classification using Linguistic Inquiry and Word Count (LIWC) and Affective Norms for 
English Words (ANEW) was developed to classify tweets in two groups, emotion-present and 
emotion-absent, which were fed in Emotex for emotion classification. Results for precision between 
78% to 93%, recall between 77% to 95% and F-Measure between 77.8% to 85.6% were observed.  

A method for unlabelled text emotion classification, called Universal Affective Model (UAM) was 
proposed by [50]. Their objectives were to detect social emotions from the point of view of social 
media users and to classify unlabelled text with limited features. Three steps are involved, keywords 
identification, biterm extraction and emotion prediction of unlabelled text with limited features. Their 
model was tested on three datasets, SemEval, Six and Sinanews. Six is a collection of small texts from 
BBC Forum posts, Digg.com, Myspace, Twitter, YouTube, and Runners World. Sinanews is a 
collection of news articles and contains eight emotion class, touching, empathy, boredom, anger, 
amusement, sadness, surprise, and warmness. The three datasets were evaluated using three metrics, 
namely, AP, APemotion, and Accu@1. The authors reported 35.7, 24.1, 36.7 in SemEval for each 
metric respectively, 54, 44.4, 77.2 in Six, and 54.5, 41.3, 54.7 in Sinanews. 

Chen et al. used Agglomerative Hierarchical Clustering and the Valence-Arousal (V-A) emotion 
(based on Plutchik wheels of emotions) dimensional space to monitor and analyze users’ emotions 
when chatting online [51]. Emoticons were manually mapped into the V-A space. PointWise Mutual 
Information criterion was used to calculate the correlations between chat messages and emoticons in 
terms of scores. The authors conducted data clustering to automatically detect emotions in a 
conversation and reported an accuracy of 88%. 

In an attempt to detect emotion from Twitter data, [52] made use of C-GRU (Context-aware Gated 
Recurrent Units) for context extraction when determining user feelings. Emotions were classified 
using the twelve discrete emotions: Anger, Anticipation, Disgust, Fear, Joy, Love, Optimism, 
Pessimism, Sadness, Surprise, Trust, and Neutral. The authors reported an accuracy of 0.532 and an 
F1 score of 0.64.  

Kratzwald et al. attempted emotion recognition using long-short term memory (LSTM) as per [53]. 
The proposed approach was tested on SemEval-2015 (a set election tweets datasets) and SemEval-
2018 (a set of general tweets datasets). Four discrete emotions categories, Anger, Fear, Joy, Sadness 
were targeted. Overall, the authors reported performance F1-score 58.4% for election tweets and 
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58.6% for general tweets. Another method consisting of the use of LSTM on text emotion recognition 
was further proposed by Su et al. (2018). The method was tested against Natural Language Processing 
and Chinese Computing (NLPCC) database which contains seven emotion categories: anger, 
boredom, disgust, anxiety, happiness, sadness, surprise and results obtained indicated an accuracy of 
70.66%. 

In an attempt to address Multiclass emotion classification, [55] put forth an approach using 
emotion distribution learning and a Multi-task Convolutional Neural Network for text emotion 
analysis. The proposed approach was evaluated on SemEval 2007 dataset on six Distribution 
Prediction: Euclidean, Sørensen, SquaredX2, KL divergence, Cosine, and Intersection and four 
classification performance: Precision, Recall, F-score, and Accuracy metrics. Distribution Prediction 
for each metric are as follows: 44.38, 41.96, 55.19, 73.06, 72.91, 58.04 and classification performance 
for each metric are as follows: 48.33, 42.23, 41.41, 51.60. Single class emotion classification is 
evaluated on the ISEAR, Fairy Tales, TEC and CBET datasets using the same performance metrics 
as multiclass emotion classification. Precision between 61.20 and 67.11, Recall between 52.57 and 
79.2, F-score between 56.94 and 78.72 and Accuracy between 61.52 and 79.21 were obtained. 

Chatterjee et al. attempted the detection of four emotion labels, Happy, Sad, Angry, Others, using 
a Deep learning approach called Sentiment and Semantic-Based Emotion Detector (SS-BED) which 
is based on the combination of semantic and sentiment representations of user text and makes use of 
two LSTM layers [14]. The authors created a dataset based on Twitter conversations. Those 
conversations are pre-processed and were assigned to five judges who in turn classified the 
conversation to an emotion class. SS-BED obtained precision, recall and F1 score of 69.51%, 52.29%, 
59.68, respectively for Happy, 85.42%, 76.63%, 80.79% for Sad and 87.69%, 63.33%, 73.55%, for 
Angry 

3. Results and Discussion 

Table 1 provides a summary of the different techniques, datasets, and evaluation metrics 
commonly used in emotion analysis research since 2015. It is generally observed that researchers have 
adopted hybrid implementation, that is, a combination of two or more algorithms to handle multiclass 
emotion classification with SVM and NB as the most used algorithms.  

The most used datasets are ISEAR and SemEval, both of which contain texts that express discrete 
emotions. We also note that the highest performing algorithm is PPM with an accuracy of up to 96% 
and the least performing algorithm is C-GRU with an accuracy of 53.2%. We also observe an 
inconsistency in the way performances are reported. Authors do not use the same metrics, datasets, 
and emotion models such that it is not possible to compare the different emotion analysis techniques. 
Moreover, it is found that earlier studies adopted a general statistical approach for classifying 
emotions, but recent studies are seen to adopt machine learning techniques, notably deep learning to 
address the problem of emotion analysis. 

Furthermore, as summarized in Table 1, authors either limit themselves to a single dataset or they 
may combine different datasets with a varying choice of different algorithms for emotion analysis. 
Given that each dataset adopts different emotion models (basic level emotions to different emotion 
levels), results reported would be significant only to the actual emotions present within the datasets. 
Eventually, there is concern regarding the relevance of reported performance into real-world 
applications. As is, most studies tend to focus mostly on the datasets overlooking any implications to 
real-world settings. Moreover, current datasets suffer from emotion imbalances, that is, they do not 
contain equal amount of all emotions classes, which makes it difficult for any classification system to 
calculate performance correctly. 
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Table 1. Techniques used for text emotion analysis over past five years  

Technique(s) Dataset(s) Emotion 

Model 

Performance (%) Source 

NLP, NBM, SVM ISEAR 5 discrete 
emotions 

F1- Score: 63.1 Anusha and Sandhya 
(2015)  

Rule-based approach:  

NRC emotion lexicon, 

NB 

ISEAR,  

SemEval-2007, Alm 

OCC model F1- Score: 51.3 - 

65.5 

Udochukwu and He 

(2015) 

NB, ME Twitter 7 discrete 

emotions,  

Circumplex 

model of affect 

Accuracy: 83 - 89 

Precision: 85 - 90 

Sensitivity: 79 - 91 

Specificity: 86 - 89 

Perikos and 

Hatzilygeroudis 

(2016)  

PMI YouTube comments Ekman basic 

emotions 

Precision: 92.75 

Recall: 72 

Accuracy: 67 - 70 

Yasmina et al. 

(2016) 

DMC ISEAR 7 discrete 
emotions 

Precision: 20.2 - 27.2 
Recall.: 46.9 - 60.2 

Razek and Frasson 
(2017) 

SVM, NB Twitter Ekman Basic 

Emotions 

Accuracy: 72.81 Jain et al. (2017) 

WLTM, IETM SemEval, ISEAR 7 discrete 
emotions 

APdocument: 0.24 
APemotion: 0.45 

Rao et al. (2017) 

PPM LiveJournal, Alm, 

Aman 

Ekman basic 

emotions 

Accuracy: 88 - 96 

Precision: 71 - 90 

Recall: 70 - 88 
F1-Score: 67 - 88 

Almahdawi and 

Teahan (2017) 

UAM SemEval, Six, 

Sinanews 

Discrete + 

Dimensional 

AP: 35.7 - 54.5 

APemotion: 24.1 - 44.4 

Accu@1: 36.7 - 77.2  

Liang et al. (2018) 

NB, SVM, and 

Decision tree 

Twitter Circumplex 

model of the 

effect 

Precision: 78 – 93 

Recall: 77 - 95 

F1-Score: 77.8 - 85.6 

Hasan et al. (2018) 

Agglomerative 

hierarchical clustering, 
PMI 

Real-time chat data Plutchik wheels 

of emotions 

Accuracy: 88 Chen et al. (2018) 

C-GRU Twitter 12 discrete 

emotions 

Accuracy: 53.2 

F1-score: 64 

Samy et al. (2018) 

LSTM, SemEval-2015, 
SemEval-2018 

4 discrete 
emotions 

F1-score: 58.4 - 58.6 Kratzwald et al. 
(2018) 

LSTM NLPCC-MHMC-TE 7 Emotions 

categories 

Accuracy: 70.66 Su et al. (2018) 

Multi-task: CNN, 
LDL,  

SemEval-2007, 
ISEAR, Fairy Tales, 

TEC, CBET 

Mix emotions Precision: 61.20 - 
67.11 

Recall: 52.57 - 79.2 

F1 score: 56.94 - 

78.72  
Accuracy: 61.52 - 

79.21  

Wang et al. (2018) 

LSTM  Twitter 4 discrete 

emotions 

Precision: 69.51 

Recall: 52.29 
F1 Score: 59.68 

Chatterjee et al. 

(2019) 

4. Conclusion 

This paper has provided an overview of the emotion analysis techniques used in past studies. It is 
observed that various algorithms have been adopted to classify emotions, but results reported are not 
comparable and sometimes deceiving since there is little scope for practical applications. Despite the 
existence of various emotion models, none can be considered sufficient to cover the range of emotions 
that are usually expressed by an individual. The same limitation is observed within the current datasets 
available for emotion analysis. Datasets adopt a single emotion model and are imbalanced. With the 
increasing amount of data and improved techniques for data analysis, there is a good scope for the 
field of emotion analysis to move beyond academic research and find its way into real-world 
applications. However, prior to that, researchers must consider the development of robust and reliable 
emotion models, which can be adopted in emotion analysis studies. Moreover, researchers are 
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encouraged to consider the development of benchmarks to allow for comparison of reported results 
across studies 
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