Citation: Neslihan Taşar, İlhan Kaya Tekbudak, İbrahim Demir, Mikail Açar, MuratKürsat (2022). Comparative karyological analysis of some Turkish Cuscuta L. (Convolvulaceae). Caryologia 75(3): 145-157. doi: 10.36253/caryolo-gia-1831

Received: September 13, 2022
Accepted: November 25, 2022
Published: April 5, 2023
Copyright:©2022 Neslihan Taşar, IIhan Kaya Tekbudak, İbrahim Demir, Mikail Açar, Murat Kürşat. This is an open access, peer-reviewed article published by Firenze University Press (http://www.fupress.com/caryologia) and distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Competing Interests: The Author(s) declare(s) no conflict of interest.

ORCID

NT: 0000-0002-0417-4660
IKT: 0000-0002-2754-2489
iD: 0000-0003-1533-556X
MA: 0000-0003-3848-5798
MK: 0000-0002-0861-4213

Comparative karyological analysis of some Turkish Cuscuta L. (Convolvulaceae)

Neslihan Taşar ${ }^{1}$, İlhan Kaya Tekbudak ${ }^{2}$, İbrahim Demir ${ }^{3}$, Mikail Açar ${ }^{1, \star}$, Murat Kürşat ${ }^{3}$
${ }^{1}$ Munzur University, Department of Plant and Animal Production, Tunceli Vocational School of Higher Education, Tunceli, 62000, Turkey
${ }^{2}$ Van Yüzüncü Yol University, Faculty of Agriculture, Department of Plant Protection, Van, Turkey
${ }^{3}$ Bitlis Eren University, Faculty of Arts and Sciences, Department of Biology, Bitlis, Turkey *Corresponding author. E-mail: mikailacar@munzur.edu.tr

Abstract

This study investigated the somatic chromosome numbers and morphometric properties of 11 different taxa belonging to the genus Cuscuta L., which is one of the parasitic flowering plants and causes significant economic losses on agricultural products. For this purpose, the species were examined karyologically and compared statistically. Belonging to the genus Cuscuta, C. campestris Yunck., C. hyalina Roth, C. kotschyana Boiss., C. babylonica Aucher ex Choisy, C. europaea L., C. kurdica Engelm., C. brevistyla A.Braun ex A.Rich, C. planiflora Ten., C. approximata Bab., C. lupuliformis Krock. C. palaestina Boiss. the chromosome number and morphology of the species were investigated using karyological techniques. Chromosome numbers of the species; C. kotschyana, C. babylonica, C. europaea, C. kurdica, C.planiflora 2n=14; C. campestris, C. hyalina, C. approximata, C. lupuliformis, and C. palaestina $2 \mathrm{n}=28$ and C. brevistyla $2 \mathrm{n}=42$ is determined. Also, the species' chromosome number, total chromosome length, relative length, arm ratio, centromere index and centromere states, and karyotype asymmetry values were determined. Chromosome numbers of C. kotschyana and C. kurdica taxa were defined for the first time in this study. Thus, new data on the systematics of these species have been revealed.

Keywords: Convolvulaceae, Cuscuta, parasitic plant, Chromosome number, karyotype.

INTRODUCTION

Cuscuta (Dodder) is a member of the Convolvulaceae family, including about 200 different root parasite species. About 15-20 of these species cause severe problems in agricultural areas (Dawson et al., 1994). With this, most Cuscuta species are considered extinct in the wild, and some species even require conservation measures in nature (Costea and Stefanovic 2009a). Cuscuta species can be found in various habitats, including temperate, tropical, desert, riparian, coastal, high mountain, woodland, saltwater, and degraded environments (Costea et al., 2015). Like other parasitic plants, Cuscuta species play an essential role in ecosystems (Press et al. 1999).

Yunker (1932) divided the genus Cuscuta into three subgenera according to styles and stigma shapes. These; Cuscuta are Grammica (Lour.), Yunck, and Monogynella (Des Moul.). In the flora of Turkey, 15 species of these subgenera and two unknown species (C. aratica Butk. and C. subuniflora K. Koch), and one suspicious (C. epilinum Wiehe) species have been identified (Plitman, 1978). Since the vegetative parts of parasitic plants are generally reduced, flower characters are insufficient in taxonomy. This situation creates problems in diagnosis. For this reason, it is necessary to use some methods to identify species belonging to the genus Cuscuta. Studying chromosome numbers and structures can give valuable results in solving taxonomic problems (Taşar et al., 2018a; 2018b).

It has been determined that Cuscuta species generally have holocentric chromosomes and undergo inverted meiosis (Pazy and Putmann 1987; 1991; 1994).

Some morphological features are overlooked in plant determinations and classifications of classical taxonomy. Characteristics acquired according to environmental factors appear to be new features, confusing classification. For this reason, considering the characters in classical taxonomy, examining the chromosome numbers, structure and structures gives beneficial results in solving the problems (Taşar et al., 2018a; 2018b). In addition, statistical analyzes can be useful in morphological and anatomical studies recently (Genç et al. 2021; Arabacı et al. 2021; Dirmenci et al. 2019; Dirmenci et al. 2020; Açar and Satıl 2019; Açar and Taşar 2022). This study aims to reveal the karyological features of Cuscuta species distributed in Turkey, determine the relationships between them, and contribute to the genus's taxonomic classification.

MATERIAL AND METHODS

Material

Cuscuta samples, the study material, were obtained from the field. Localities of taxa are given in Table 1. Plant taxa were identified using the genus Cuscuta (Yuncker 1932) and Flora of Turkey. (Davis, 1978). The collected specimens have been turned into herbarium material and are kept in Van Yüzüncü Yıl University, Faculty of Agriculture, Plant Protection Department, and Bitlis Eren University, Biology Department.

Methods

Chromosome measurements

The seeds of the plant samples were sown in Petri dishes and germinated in an oven at $20-22{ }^{\circ} \mathrm{C}$. Roots
reaching $1-2 \mathrm{~cm}$ in length from the germinated seeds were cut, kept in colchicine for 2 hours at room temperature, and subjected to pretreatment (Gedik et al., 2014). Then, the root tips were placed in Carnoy fixative (3:1) and fixed by keeping them in the refrigerator at $+4{ }^{\circ} \mathrm{C}$ for 24 hours. At the end of the period, root tips were hydrolyzed in 1 N HCl in an oven at $60^{\circ} \mathrm{C}$ for $5-18$ minutes. Root tips removed from hydrolysis were stained with Feulgen stain for 1 hour in a dark environment at room temperature. Then it was washed 2-3 times with tap water. For preparation, the growth meristem part was cut off with a sharp razor blade in a drop of 45% acetic acid on the slide, and the coverslip was closed. The best three somatic cells for each species were photographed using an Olympus BX53 microscope. The naming system of Levan (1964) was used to locate the centromere. The intra-chromosomal asymmetry index (A1) was calculated according to the formula proposed by Romero Zarco (1986). Interchromosomal asymmetry index (A2) and karyotype symmetry nomenclature were made according to Stebbins (1971).

Statistical analisyes
For analysis used, several formulas were established on chromosome characteristics. The measurements were built on haploid datasets. The calculations and abbreviations used in the analysis are as follows. TLC (total length of chromosomes), MTLC (mean of total length of chromosomes), MAX (maximum length of chromosome), MIN (minimum length of chromosomes), MLA (mean of long arms), MSA (mean of short arms), MrV (mean of r-value), MdV (mean of d value), MAR (mean of arm ratio), MCI (mean of chromosome index), MRLC (mean of the relative length of chromosomes), DRL (difference of range of relative length), TF\% (total form percentage), $\mathrm{S} \%$ (relative length of the shortest chromosome), A1 (intrachromosomal asymmetry index), A2 (interchromosomal asymmetry index), and A (Degree of asymmetry). Both arm ratios were assumed to be equally affected (Adhikary 1974). All karyotype formulas and asymmetry indexes were determined based on Huziwara (1962) (TF\%), Levan et al. (1964) (r and d values), Zarco (1986) (A1 and A2), Watanabe (1999) (A), Peruzzi and Eroğlu (2013) (CI) as well. The abbreviations were taken from Rezeai et al. (2014) (RLC\%, DRL, S\%). The formulas are as follows.

Formulas

r value $=\frac{\text { Length of the long arm of chromosome }}{\text { Length of the short arm of chromosome }}$
d value=Length of the long arm of chromosome-Length of the short arm of chromosome
arm ratio $=\frac{\text { Length of the short arm of chromosome }}{\text { Length of the long arm of chromosome }}$
$C I=\frac{\text { Length of the short arm of chromosome }}{\text { Length of the long arm of chromosome }+ \text { Length of the short arm of chromosome }}$
$R L C \%=\frac{\text { total length of each chromosome }}{\text { total length of chromosomes }} \times 100$
$D R L=$ (maximum relative length)- (minimum relative length)

TF $\%=\frac{\text { total length of short arms }}{\text { total length of chromosomes }} \times 100$
$S \%=\frac{\text { length of shortest chromosome }}{\text { length of longest chromosome }} \times 100$
$A=\left(\frac{1}{n}\right) \sum A i, \quad A i=\frac{l i-s i}{l i+s i}$
(li = lengths of a long arm, si= lengths of a short arm, n = haploid chromosome number).
$A 1=1-\frac{\sum_{i=1}^{n} \frac{b_{i}}{B_{i}}}{n}$
($n=$ number of homologous chromosome pairs, $b_{i}=$ the average length of short arms in every homologous chromosome pair, $B_{i}=$ the average length of long arms in every homologous chromosome pair).
$A 2=\frac{S}{\bar{x}}$
($S=$ standard deviation of chromosome lengths, $=$ mean of chromosome lengths).

A data matrix was constructed according to 17 chromosomal traits in Table 1. The Principal Component Analysis (PCA) was used based on the data matrix. Next, the cluster analysis was made using the Gower similarity index to determine the relationships between Cuscuta taxa's chromosome traits. Also, the Pearson correlation coefficient (r) analysis was performed to see strong and weak relationships between chromosome traits. At the same time, Shapiro - Wilk normality test was performed. Then, the one-way analysis of variance (ANOVA) was performed to determine whether the difference between the data was statistically significant. All the analyses were carried out with PAleontoSTatistics (PAST) (Hammer et al. 2001).

RESULTS

In this study, the karyological characteristics of 11 different Cuscuta taxa were investigated, and their details are given below.

Cuscuta campestris: The chromosome number of C. campestris, native to the United States of America and spread to many countries from there, and can be found almost everywhere in Turkey, was found to be $2 \mathrm{n}=2 \mathrm{x}=28$. The haploid karyotype formula of this species is 10 median regions (m), 2 submedian regions (cm), and 2 dotted median (M) regions. Metaphase chromosome length varies between 2.48-1.48 $\mu \mathrm{m}$. Chromosome arm ratios vary between $1.43-1 \mu \mathrm{~m}$. Its centromere index ranges from 50.00 to $29.44 \mu \mathrm{~m}$, and its relative length is between 10.93 and $18.32 \mu \mathrm{~m}$. The intra-chromosomal asymmetric index (A1) is 0.32 , and the inter-chromosomal asymmetric index (A2) is 0.04 (Table 2, Figure 1).

Cuscuta hyalina: The chromosome number of C. hyalina species, distributed in Turkey's local area (Bitlis

Table 1. The localities of studied taxa.

Taxa	Localities	Voucher specimen
Cuscuta campestris Yunck.	Adana, İmamoğlu, Alaybey village	1752
Cuscuta hyalina Roth.	Bitlis, Hizan, Karbastı village	2101
Cuscuta kotschyana Boiss.	Bitlis, Süphan mountain	2098
Cuscuta babylonica Aucher ex Choisy.	Van, Çatak, Sırmalı village	2100
Cuscuta europaea L.	Bitlis, Hizan	1993
Cuscuta kurdica Engelm.	Hakkäri, Ördekli village	14935
Cuscuta brevistyla A.Braun ex A.Rich	Bitlis, Hizan	1786
Cuscuta planiflora Ten.	Van, Tuşba	1766
Cuscuta approximata Bab.	Denizli, Honaz mountain	1801
Cuscuta lupuliformis.	Hakkâri Centre	2099
Cuscuta palaestina Boiss.	Van, Gürpınar	2095

Table 2. Chromosomes measurements of Cuscuta taxa (Ch. No: Chromosome No, C: Total length of the chromosome, L: Length of the long arm, S: Length of the short arm, CP: Centromeric position).

Ch. No	C	L	S	L/S	CI	RL	CP	Ch. No	C	L	S	L/S	CI	RL	CP
Cuscuta campestris								17	2,03	1,10	0,93	1,18	45,81	16,42	m
1	2,48	1,46	1,02	1,43	41,13	0,00	m	18	1,94	1,16	0,78	1,49	40,21	17,18	m
2	2,4	1,4	1	1,40	41,67	0,00	m	19	1,92	1,00	0,92	1,09	47,92	17,36	m
3	2,29	1,39	0,9	1,54	39,30	0,00	m	20	1,89	1,05	0,84	1,25	44,44	17,63	m
4	2,1	1,31	0,79	1,66	37,62	0,00	m	21	1,78	0,92	0,86	1,07	48,31	18,72	m
5	2,06	1,03	1,03	1,00	50,00	0,00	M	Cuscuta palaestina							
6	2,06	1,16	0,9	1,29	43,69	0,00	m	1	4,80	2,40	2,40	1,00	50,00	10,78	M
7	1,98	1,21	0,77	1,57	38,89	0,00	m	2	4,74	2,44	2,30	1,06	48,52	10,92	m
8	1,9	1,08	0,82	1,32	43,16	0,00	m	3	4,69	2,53	2,16	1,17	46,06	11,04	m
9	1,84	1,12	0,72	1,56	39,13	0,00	m	4	4,36	2,97	1,39	2,14	31,88	11,87	sm
10	1,8	1,27	0,53	2,40	29,44	0,00	sm	5	4,28	2,93	1,35	2,17	31,54	12,09	sm
11	1,67	1,03	0,64	1,61	38,32	0,00	m	6	4,13	2,91	1,22	2,39	29,54	12,53	sm
12	1,54	0,84	0,7	1,20	45,45	0,00	m	7	3,93	2,37	1,56	1,52	39,69	13,17	m
13	1,51	1,03	0,48	2,15	31,79	0,00	sm	8	3,72	2,34	1,38	1,70	37,10	13,91	sm
14	1,48	0,74	0,74	1,00	50,00	0,00	M	9	3,42	1,71	1,71	1,00	50,00	15,13	M
Cuscuta kotschyana								10	3,16	1,58	1,58	1,00	50,00	16,38	M
1	3,95	2,1	1,85	1,14	46,84	6,19	m	11	2,89	1,55	1,34	1,16	46,37	17,91	m
2	3,93	2,51	1,42	1,77	36,13	6,22	sm	12	2,79	1,56	1,23	1,27	44,09	18,55	m
3	3,51	1,89	1,62	1,17	46,15	6,96	m	13	2,62	1,44	1,18	1,22	45,04	19,76	m
4	3,47	1,93	1,54	1,25	44,38	7,04	m	14	2,23	1,23	1,00	1,23	44,84	23,21	m
5	3,36	1,68	1,68	1,00	50,00	7,27	M	Cuscuta hyalina							
6	3,18	1,61	1,57	1,03	49,37	7,69	m	1	5,18	2,63	2,55	1,03	49,23	11,08	m
7	3,04	1,52	1,52	1,00	50,00	8,04	M	2	5,05	2,58	2,47	1,04	48,91	11,36	m
Cuscuta europaea								3	4,93	2,50	2,43	1,03	49,29	11,64	m
1	6,48	3,60	2,88	1,25	44,44	5,25	m	4	4,80	2,40	2,40	1,00	50,00	11,95	M
2	5,58	3,42	2,16	1,58	38,71	6,10	m	5	4,50	2,35	2,15	1,09	47,78	12,75	m
3	4,72	3,00	1,72	1,74	36,44	7,21	sm	6	4,40	2,20	2,20	1,00	50,00	13,04	M
4	4,53	2,63	1,90	1,38	41,94	7,51	m	7	4,25	2,15	2,10	1,02	49,41	13,50	m
5	4,37	2,45	1,92	1,28	43,94	7,79	m	8	4,18	2,30	1,88	1,22	44,98	13,72	m
6	4,35	2,52	1,83	1,38	42,07	7,82	m	9	4,00	2,00	2,00	1,00	50,00	14,34	M
7	4,00	2,70	1,30	2,08	32,50	8,51	sm	10	3,58	1,85	1,73	1,07	48,32	16,03	m
Cuscuta brevistyla								11	3,42	1,71	1,71	1,00	50,00	16,77	M
1	3,95	2,10	1,85	1,14	46,84	6,19	m	12	3,19	1,61	1,58	1,02	49,53	17,98	m
2	3,93	2,51	1,42	1,77	36,13	6,22	sm	13	3,09	1,57	1,52	1,03	49,19	18,57	m
3	3,51	1,89	1,62	1,17	46,15	6,96	m	14	2,80	1,50	1,30	1,15	46,43	20,49	m
4	3,47	1,93	1,54	1,25	44,38	7,04	m	Cuscuta babylonica							
5	3,36	1,68	1,68	1,00	50,00	7,27	M	1	6,23	3,48	2,75	1,27	44,14	5,45	m
6	3,18	1,61	1,57	1,03	49,37	7,69	m	2	5,32	3,12	2,20	1,42	41,35	6,38	m
7	3,04	1,52	1,52	1,00	50,00	8,04	M	3	5,22	3,50	1,72	2,03	32,95	6,51	sm
8	3,01	1,85	1,16	1,59	38,54	11,07	m	4	4,69	3,24	1,45	2,23	30,92	7,24	sm
9	2,90	1,79	1,11	1,61	38,28	11,49	m	5	4,36	2,18	2,18	1,00	50,00	7,79	M
10	2,85	1,55	1,30	1,19	45,61	11,69	m	6	4,34	2,64	1,70	1,55	39,17	7,82	m
11	2,81	1,60	1,21	1,32	43,06	11,86	m	7	3,80	2,36	1,44	1,64	37,89	8,94	m
12	2,68	1,34	1,34	1,00	50,00	12,44	M	Cuscuta kurdica							
13	2,54	1,49	1,05	1,42	41,34	13,12	m	1	4,80	2,40	2,40	1,00	50,00	6,46	M
14	2,46	1,26	1,20	1,05	48,78	13,55	m	2	4,67	2,45	2,22	1,10	47,54	6,64	m
15	2,30	1,18	1,12	1,05	48,70	14,49	m	3	4,66	2,50	2,16	1,16	46,35	6,65	m
16	2,22	1,11	1,11	1,00	50,00	15,01	M	4	4,40	3,00	1,40	2,14	31,82	7,05	sm

Ch. No	C	L	S	L/S	CI	RL	CP
5	4,36	2,97	1,39	2,14	31,88	7,11	sm
6	4,25	2,95	1,30	2,27	30,59	7,30	sm
7	3,87	2,36	1,51	1,56	39,02	8,01	m
Cuscuta approximata							
1	3,68	1,84	1,84	1,00	50,00	8,87	M
2	3,36	1,68	1,68	1,00	50,00	9,72	M
3	3,08	1,82	1,26	1,44	40,91	10,60	m
4	2,48	1,28	1,20	1,07	48,39	13,17	m
5	2,42	1,50	0,92	1,63	38,02	13,49	m
6	2,36	1,36	1,00	1,36	42,37	13,83	m
7	2,28	1,40	0,88	1,59	38,60	14,32	m
8	2,12	1,24	0,88	1,41	41,51	15,40	m
9	2,01	1,20	0,81	1,48	40,30	16,24	m
10	1,98	0,99	0,99	1,00	50,00	16,49	M
11	1,85	1,24	0,61	2,03	32,97	17,65	sm
12	1,84	1,06	0,78	1,36	42,39	17,74	m
13	1,62	1,00	0,62	1,61	38,27	20,15	m
14	1,57	0,84	0,73	1,15	46,50	20,80	m
Cuscuta lupuliformis							
1	6,96	3,48	3,48	1,00	50,00	6,40	M
2	3,82	2,24	1,58	1,42	41,36	11,65	m
3	3,80	2,55	1,25	2,04	32,89	11,72	sm
4	3,20	1,60	1,60	1,00	50,00	13,91	M
5	3,14	1,82	1,32	1,38	42,04	14,18	m
6	3,07	1,83	1,24	1,48	40,39	14,50	m
7	2,98	1,76	1,22	1,44	40,94	14,94	m
8	2,94	1,80	1,14	1,58	38,78	15,14	m
9	2,76	1,70	1,06	1,60	38,41	16,13	m
10	2,52	1,56	0,96	1,63	38,10	17,67	m
11	2,43	1,33	1,10	1,21	45,27	18,32	m
12	2,40	1,20	1,20	1,00	50,00	18,55	M
13	2,30	1,26	1,04	1,21	45,22	19,36	m
14	2,20	1,10	1,10	1,00	50,00	20,24	M
Cuscuta planiflora							
1	5,28	2,64	2,64	1,00	50,00	5,54	M
2	4,35	2,55	1,80	1,42	41,38	6,72	m
3	4,24	2,82	1,42	1,99	33,49	6,89	sm
4	4,08	2,04	2,04	1,00	50,00	7,16	M
5	3,96	2,26	1,70	1,33	42,93	7,38	m
6	3,78	2,15	1,63	1,32	43,12	7,73	m
7	3,54	2,18	1,36	1,60	38,42	8,26	m

province), was found as $2 \mathrm{n}=2 \mathrm{x}=28$. The haploid karyotype formula of this species has 10 median regions (m) and 4 points median (M) regions. Metaphase chromosome length varies between 5.18-2.80 $\mu \mathrm{m}$. Chromosome arm ratios vary between 1.03-1.15 $\mu \mathrm{m}$. Its centromere index ranges from 50.00 to $44.98 \mu \mathrm{~m}$ and relative length from 11.08 to $20.49 \mu \mathrm{~m}$. The intra-chromosomal asym-
metric index (A1) is 0.04 , and the inter-chromosomal asymmetric index (A2) is 0.04 (Table 2, Figure 1).

Cuscuta kotshyana var. caudata: The chromosome number of this species was determined as $2 \mathrm{n}=2 \mathrm{x}=14$. Haploid karyotype formula; It has 4 median regions (m), 2 points median (M) and 1 submedian region (cm) region. Metaphase chromosome length was measured in lengths ranging from 3.93-3.04 $\mu \mathrm{m}$. Chromosome arm ratios vary between $1.77-1 \mu \mathrm{~m}$. The centromere index is $50.00-36.13 \mu \mathrm{~m}$. Its relative length was measured in the range of 6.22-8.04 $\mu \mathrm{m}$. The intra-chromosomal asymmetric index (A1) is 0.15 , and the inter-chromosomal asymmetric index (A2) is 0.07 (Table 2, Figure 1).

Cuscuta babylonica var. babylonica: The chromosome number of this species is mainly found in the Eastern Anatolia region of Turkey, at an altitude of 850-1200 m , whose stems are between thin filamentous and medium thickness, and which is yellowish-red is $2 \mathrm{n}=2 \mathrm{x}=14$. The haploid karyotype formula of this species is 4 median regions (m), 2 submedian regions (cm), and 1 dotted median (M) region. Metaphase chromosome length varies between 6.23-3.80 $\mu \mathrm{m}$. Chromosome arm ratios range from 1.64 to $1 \mu \mathrm{~m}$. Its centromere index ranges from $50.00-30.92 \mu \mathrm{~m}$, and its relative length ranges from 5.45 to $8.94 \mu \mathrm{~m}$. The intra-chromosomal asymmetric index (A1) is 0.34 , and the inter-chromosomal asymmetric index (A2) is 0.07 (Table 2, Figure 1).

Cuscuta europaea: C. europaea; has $2 \mathrm{n}=2 \mathrm{x}=14$ chromosomes. The haploid karyotype formula has 5 median regions (m) and 2 submedian regions (cm). Metaphase chromosome length varies between 6.48-4 $\mu \mathrm{m}$. Chromosome arm ratios vary between $2.08-1.25 \mu \mathrm{~m}$. Its centromere index ranges from 44.44 to $32.50 \mu \mathrm{~m}$, and its relative length ranges from 5.25 to $8.51 \mu \mathrm{~m}$. The intrachromosomal asymmetric index (A1) is 0.33 , and the inter-chromosomal asymmetric index (A2) is 0.07 (Table 2, Figure 1).

Cuscuta kurdica: The chromosome number of this species was found to be $2 \mathrm{n}=2 \mathrm{x}=14$. The haploid karyotype formula has 3 median regions (m), 3 submedian regions (cm), and 1 dotted median (M) region. Metaphase chromosome length varies between $4.80-3.87 \mu \mathrm{~m}$. Chromosome arm ratios vary between $2.27-1 \mu \mathrm{~m}$. Its centromere index ranges from 50.00-30.59 $\mu \mathrm{m}$ and relative length is between 6.46 and $8.01 \mu \mathrm{~m}$. The intra-chromosomal asymmetric index (A1) is 0.34 , and the interchromosomal asymmetric index (A2) is 0.07 (Table 2, Figure 1).

Cuscuta brevistyla: The chromosome number of C. brevistyla species, which is annual, parasitic, and generally distributed in the mountains, was determined as $2 \mathrm{n}=6 \mathrm{x}=42$. The haploid karyotype formula has 15 medi-

Figure 1. Mitotic metaphase chromosomes of Cuscuta taxa 1. Cuscuta campestris, 2. Cuscuta hyalina, 3. Cuscuta kotschyana, 4. Cuscuta babylonica, 5. Cuscuta europaea 6. Cuscuta kurdica, 7. Cuscuta brevistyla, 8. Cuscuta planiflora, 9. Cuscuta approximata, 10. Cuscuta lupuliformis, 11. Cuscuta palaestina (Scale:10 $\mu \mathrm{m}$).
an regions (m), 3 submedian regions (cm), and 3 dotted median (M) regions. Metaphase chromosome length varies between 4.73-1.78 $\mu \mathrm{m}$. Chromosome arm ratios vary between $1.97-1 \mu \mathrm{~m}$. Its centromere index ranges from 50.00-33.63 $\mu \mathrm{m}$, and its relative length varies between 12.63- $33.55 \mu \mathrm{~m}$. The intra-chromosomal asymmetric index (A1) is 0.25 , and the inter-chromosomal asymmetric index (A2) is 0.02 (Table 2, Figure 1).

Cuscuta planiflora: The chromosome number of this species was determined as $2 \mathrm{n}=2 \mathrm{x}=14$. The haploid karyotype formula has 4 median regions (m), 1 submedian region (cm), and 2 dotted median (M) regions. Metaphase chromosome length varies between 5.28-3.54 $\mu \mathrm{m}$. Chromosome arm ratios vary between $1.60-1 \mu \mathrm{~m}$. Its centromere index ranges from 50.00 to $38.42 \mu \mathrm{~m}$, and its relative length ranges from 5.54 to $8.26 \mu \mathrm{~m}$. The intrachromosomal asymmetric index (A1) is 0.24 , and the inter-chromosomal asymmetric index (A2) is 0.07 (Table 2, Figure 1).

Cuscuta approximata: C. approximata has $2 \mathrm{n}=4 \mathrm{x}=28$ chromosomes. The haploid karyotype formula has 10 median regions (m), 1 submedian region (cm), and 3
point median (M) regions. Metaphase chromosome length varies between $3.68-1.57 \mu \mathrm{~m}$. Chromosome arm ratios vary between $1.60-1 \mu \mathrm{~m}$. Its centromere index ranges from 50.00 to $32.97 \mu \mathrm{~m}$ and its relative length from 8.87 to $20.80 \mu \mathrm{~m}$. The intra-chromosomal asymmetric index (A1) is 0.23 , and the inter-chromosomal asymmetric index (A2) is 0.04 (Table 2, Figure 1).

Cuscuta lupuliformis: The chromosome number of this species was found to be $2 \mathrm{n}=2 \mathrm{x}=28$. The haploid karyotype formula has 9 median regions (m), 1 submedian region (cm), and 4 point median (M) regions. Metaphase chromosome length varies between 6.96-2.20 $\mu \mathrm{m}$. Chromosome arm ratios vary between $2.04-1 \mu \mathrm{~m}$. Its centromere index ranges from 50.00-32.89 $\mu \mathrm{m}$, and its relative length is $6.40-20.24 \mu \mathrm{~m}$. The intra-chromosomal asymmetric index (A1) is 0.24 , and the inter-chromosomal asymmetric index (A2) is 0.04 (Table 2, Figure 1).

Cuscuta palaestina: The chromosome number of this species was determined as $2 \mathrm{n}=4 \mathrm{x}=28$. The haploid karyotype formula is 7 median regions (m), 4 submedian regions (cm), and 3 point median (M) regions. Metaphase chromosome length varies between 4.80-2.23 $\mu \mathrm{m}$.

Table 3. Karyotype characteristics of Cuscuta taxa (TLC: Total Lenght of Chromosomes, MTLC (Mean of Total Length of Chromosomes, MAX: Maximum Length of Chromosome, MIN: Minimum Length of Chromosome, MLA: Mean of Long Arms, MSA: Mean of Short Arms, MrV: Mean of r Value, MdV: Mean of d Value, MAR: Mean of Arm Ratio, MCI: Mean of Chromosome Index, MRLC: Mean of Relative Length of Chromosomes, DRL: Difference of Range of Relative Length, TF\%: Total Form Percentage, S\%: Relative Length of Shortest Chromosome, A_{1} : Intrachromosomal Asymmetry Index, A_{2} : Interchromosomal Asymmetry Index).

Cuscuta Taxa	TLC	MTLC	MAX	MIN	MLA	MSA	MrV	MdV	MAR	MCI	MRLC	DRL	TF\%	S\%	A_{1}	A_{2}	A
C. campestris	27.11	0.97	1.46	0.48	1.14	0.78	1.92	0.36	1.51	40.69	14.37	7.39	0.41	0.33	0.32	0.04	0.19
C. hyalina	57.37	2.05	2.63	1.30	2.09	2.00	4.09	0.09	1.05	48.79	14.52	9.41	0.49	0.49	0.04	0.04	0.02
C.kotschyana	24.44	1.75	2.51	1.42	1.89	1.60	3.49	0.29	1.19	40.12	7.06	1.82	0.46	0.57	0.15	0.07	0.08
C. babylonica	33.96	2.43	3.5	1.45	2.93	1.92	4.85	1.01	1.59	39.49	7.16	3.49	0.40	0.41	0.34	0.07	0.21
C. europaea	34.03	2.43	3.6	1.30	2.90	1.95	4.85	0.95	1.53	40.01	7.17	3.26	0.40	0.36	0.33	0.07	0.20
C. kurdica	31.01	2.22	2.97	1.30	2.66	1.76	4.42	0.90	1.62	39.60	7.03	1.55	0.40	0.44	0.34	0.07	0.20
C. brevistyla	59.72	1.42	2.53	0.78	1.62	1.22	2.84	0.40	1.34	43.45	22.63	20.92	0.43	0.31	0.25	0.02	0.14
C. planiflora	29.23	2.09	2.82	1.36	2.37	1.79	4.16	0.58	1.38	42.76	7.01	2.72	0.43	0.48	0.24	0.07	0.14
C. approximata	32.65	1.17	1.84	0.61	1.31	1.01	2.32	0.30	1.37	43.87	14.89	11.92	0.43	0.33	0.23	0.04	0.13
C. lupuliformis	44.52	1.59	3.48	0.96	1.80	1.37	3.17	0.43	1.36	43.10	15.19	13.84	0.43	0.28	0.24	0.04	0.14
C. palaestina	51.76	1.85	2.97	1.01	2.14	1.55	3.69	0.59	1.43	42.48	14.80	12.43	0.42	0.34	0.28	0.04	0.16

Chromosome arm ratios vary between 2.39-1 $\mu \mathrm{m}$. Its centromere index ranges from 50.00 to $44.84 \mu \mathrm{~m}$ and its relative length from 10.78 to $23.21 \mu \mathrm{~m}$. The intra-chromosomal asymmetric index (A1) is 0.28 , and the interchromosomal asymmetric index (A2) is 0.04 (Table 2, Figure 1).

Karyotypes in plants; According to the types of chromosomes, there are two types: symmetrical and asymmetrical. The symmetrical karyotype is characterized by the predominance of median and submedian chromosomes of approximately the same size. The increase in asymmetry caused by the centromere shift creates an asymmetric karyotype. Chromosomes change from the median and submedian type to subterminal and terminal (Babaarslan and Eroğlu, 2014). When the asymmetric indices of Cuscuta taxa were examined, it was seen that the TF\% value changed between 0.41-0.49, the A index changed between 0.02 and 0.25 , the A1 index between $0.21-0.38$ and the A2 index between 0.09-0.31 (Table 3).

Statistical findings

Chromosome micromorphological features of 11 Cuscuta taxa were specified, and statistical analyses were performed using formulas created using various chromosome features. Mitotic metaphase chromosome images of Cuscuta taxa are given in Figure 1, and karyotype features are given in Table 2-3. One-way ANOVA test, which is one of the analyzes made according to the chromosome characteristics of the taxa, is given in Table According to the values obtained with the formulas using the micromorphological chromosome features
of taxa, the data show a normal distribution according to the Shapiro-Wilk test ($\mathrm{p}>0.05$), and the residual plot graph is shown in Figure 2. Then, according to the oneway ANOVA test p-value, the difference between taxa was statistically significant $(\mathrm{p}<0.05)$ (Table 4).

Correlation analysis

According to the correlation analysis, there are relations between the r-values of chromosomal data according to the significance level less than $\mathrm{p}<0.05$. Particularly a high relationship Although there was a strong positive relationship between MTLC and MIN, MAX, MLA, MSA, and MRV, it was observed that there was a strong negative relationship between MRLC and DRL. In addition, MAR and A1 and A characters are strongly positively correlated, while TF\% is strongly negative; With MRLC, DRL is strongly positive while A2 is strongly negative; TF\% was strongly negatively correlated with MAR, MDV, A1, A (Figure 3).

Principal Component Analysis (PCA)

According to PCA (Figure 4), the first two components explained most of the variation according to chromosome data between taxa. While the first two components explain 87.94 and 9.80% of the variance, these characters explained 97.75% of the total variation. The characters most affected by the variation were TLC, $\mathrm{DRL} \%, \mathrm{MCl}$, and MRLC. The TLC value was the most influential one. The impact of other characters was very

Figure 2. Shapiro - Wilk normality test($\mathrm{p}=0.4809>0.05$)-Residual plot.

Table 4. One way ANOVA test results.

DISCUSSION

Test for equal means

	Sum of sqrs	df	Mean square	F	p (same)
Between groups:	45343.3	16	2833.96	351.6	$8.149 \mathrm{E}-179$
Permutation					
Within groups:	2329.64	289	8.06104		p (n=99999)
Total:	47672.9	305			$1 \mathrm{E}-05$
omega2:	0.9483				

low. While this TLC value was positively correlated with MCL, MRLC, and DRL characters in the correlation analysis, it was negatively correlated with MAR, A, A1, A2, and S\% characters.

Cluster analysis

According to the Cluster analysis results of the UPGMA algorithm and Gower similarity index, the taxa are divided into three main groups (Figure 5). C. brevistyla, C. lupuliformis, C. palaestina, C. approximata, and C. campestris were group, C. kotschyana, C. planiflora, C. babylonica, C. europea, C. kurdica had created a group. The C. hyalina species wholly separated from these groups were a group. As stated before, the fact that C. hyalina species spread in a local area directly correlates with the analysis result.

Cuscuta species show wide variation in chromosome numbers ranging from $2 \mathrm{n}=8$ to $2 \mathrm{n}=60$. Therefore, the genus is generally a polyploid complex resulting from two basic chromosome numbers $x=7$ and $x=15$ (Pazy \& Plitmann, 1995; Hunziker, 1949-50).

The first step in combating parasitic plants is their correct diagnosis, as with other weeds. Due to the lack of true root and leaf structure of dodder, diagnosis is mainly made according to flower and fruit characteristics. These features are sometimes insufficient for diagnosis. Diagnosis of this genus is problematic in the World and Turkey. Therefore, determining the chromosome number and chromosomal morphology of the species belonging to this genus is of great importance in determining the systematic location of the species, identifying the species, and, when necessary, agriculturally struggling with these species. According to the karyotype analysis results of Cuscuta taxa, the primary chromosome number was determined as $x=7$. Among the study samples, C. brevistyla is polyploid, C. campestris, C. hyalina, C. approximata, C. lupuliformis, C. palaestina tetraploid, and other taxa are diploid.

According to the total length of chromosomes, The species with the longest chromosome length is C. lupuliformis, with $6.96 \mathrm{M} \mu$ lengths. This species was morphological; C. campestris, with a total chromosome length of $2.48 \mathrm{M} \mu$ was determined to be the shortest chromo-

Figure 3. Correlation analysis between karyotype characteristics.

Figure 4. PCA analysis scatter plot (same colors are the same subgenus).
some length. The chromosome number of C. campestris was first determined by $\operatorname{Ward}(1984)$ as $2 \mathrm{n}=28$; later, Aryavand and García \& Castroviejo (1987) 2n=56; Khatoon \& Ali(1993) determined it as $2 \mathrm{n}=14,28$. According to our research results, the chromosome number of the species is $2 \mathrm{n}=28$. It has been shown that the haploid karyotype formula is $10 \mathrm{~m}+2 \mathrm{sm}+2 \mathrm{M}$. The morphometric characteristics of the species were first revealed in this study. Singh and Roy(1970). collected C. hyalina from

India; The chromosome number of the species is $2 \mathrm{n}=30$; Vu et al. determined as $2 \mathrm{n}=28$. According to our study results, the chromosome number of the species is $2 \mathrm{n}=28$. The haploid karyotype formula is $10 \mathrm{~m}+4 \mathrm{M}$. This study first revealed the chromosome number and morphometric characteristics of C. kotschyana species. Chromosome number $2 \mathrm{n}=14$; Haploid karyotype formula; It has 4 median regions (m), 2 points median (M), and 1 submedian region (cm) region (Figure 6).

Figure 5. Cluster analysis according to karyotype characteristics Show that 3 main groups (Same colored taxa are located in the same section).

Pazy and Plitmann (2002) determined the chromosome number of C. babylonica as $2 \mathrm{n}=8$, where they specified Israel as the locality. However, according to our research results, the chromosome number of the species is $2 \mathrm{n}=14$, and the haploid karyotype formula is $4 \mathrm{~m}+2$ $\mathrm{cm}+1 \mathrm{M}$.

The chromosome number of the C. europaea species was previously reported by Albers and Pröbsting(1998) and García and Castroviejo(2003) as $2 \mathrm{n}=14$. Our research data also confirm this result. The haploid karyotype formula of the species, in which we found the chromosome number as $2 \mathrm{n}=14$, is $5 \mathrm{~m}+2 \mathrm{~cm}$.

Regarding chromosome number and morphology, the chromosome number of C. kurdica species, which was first discussed in this study, was determined as $2 \mathrm{n}=14$. The haploid karyotype formula is $3 \mathrm{~m}+3 \mathrm{~cm}+1 \mathrm{M}$.

Pazy and Plitman (1994) and Feinbrun and Taub(1978) found the chromosome number of C. brevistyla as $2 \mathrm{n}=42$, where they specified Israel as a locality. According to our study results, the chromosome number of this species is $2 \mathrm{n}=42$. The haploid karyotype formula is $15 \mathrm{~m}+3 \mathrm{~cm}+3 \mathrm{M}$.

The chromosome number of C. planiflora has been determined by many researchers. Singh and Roy determined the chromosome number of this species as $2 \mathrm{n}=14$; Pazy and Plitmann. (1991) 2n=14; García and Castroviejo.
(2003) $2 \mathrm{n}=26$, 28; Aryavand(1987) reported $2 \mathrm{n}=28$ and Vasudevan $2 \mathrm{n}=14$. As a result of our research, the chromosome number of the species was determined as $2 \mathrm{n}=14$. The haploid karyotype formula was $4 \mathrm{~m}+1 \mathrm{~cm}+2 \mathrm{M}$.
C. approximata; García and Castroviejo (2003) and Guerra(2004). $2 \mathrm{n}=28$ chromosomes have reported it. Our studies also confirm this result, and the chromosome number of this species is $2 \mathrm{n}=28$. The haploid karyotype formula is $10 \mathrm{~m}+1 \mathrm{~cm}+3 \mathrm{M}$..

The chromosome number of C. lupuliformis was determined as $2 \mathrm{n}=28$ by Vasudevan. According to our research results, the chromosome number of this species is $2 \mathrm{n}=28$. The haploid karyotype formula is $9 \mathrm{~m}+1 \mathrm{~cm}+4 \mathrm{M}$.

Plazy and Plitmann (1991) showed the C. palaestina species as $2 \mathrm{n}=28$ chromosomes. Our research confirms this result. We found the chromosome number of $2 \mathrm{n}=$ 28 of this species. The haploid karyotype formula is 7 m $+4 \mathrm{~cm}+3 \mathrm{M}$.

Various karyological studies have been carried out on the chromosome number of species belonging to the Cuscuta genus. As a result of these studies, the Chromosome number of Cuscuta japonica Choisy. species is $2 \mathrm{n}=$ 32 (Leusova et al., 2005); the Chromosome number of Cuscuta epithymum L. species is $2 \mathrm{n}=14$ (Montgomery et al., 2003); the chromosome number of Cuscuta australis R. Br. species is $2 \mathrm{n}=56$ (Yeh et al., 1995); Chromosome

Figure 6. Haploid idiogram in Cuscuta taxa 1. C. campestris, 2. C. hyalina, 3. C. kotschyana, 4. C. babylonica, 5. C. europaea 6. C. kurdica, 7. C. brevistyla, 8. C. planiflora, 9. C. approximata, 10. C. lupuliformis 11. C. palaestina..
number of Cuscuta triumvirati Lange. Species $2 \mathrm{n}=14$ (García et al., 2003); Chromosome number of Cuscuta pentagona Engelm. is $2 \mathrm{n}=44$ (Pazy et al., 1995); The chromosome number of Cuscuta pedicellata Ledeb. species was determined as $2 \mathrm{n}=10$ (Pazy et al., 1991), and the chromosome number of Cuscuta chinensis Lam. species was determined as $2 \mathrm{n}=60$ (Mesicek et al., 1995).

According to cluster analysis, taxa were divided into 3 main groups. It is noteworthy that although C. campestris and C. hyalina are in the Grammica subgenus, they are in different groups according to chromosome micromorphological data. Here, it is estimated that some chromosomal features (According to PCA, such as TLC) may have differentiated over time, as the C. hyalina species was distributed in a local region in Turkey. It is seen
that C. babylonica and C. europea species in the Cuscuta subgenus and C. kurdica species are closely related. According to their morphological similarities, C. europea and C. kurdica species show very close similarities.

According to PCA, the most important character explaining the differentiation between taxa was seen as TLC (Total Lenght of Chromosomes) character. In addition, when the distribution of taxa in the diagram is examined, it is a compatible image with cluster analysis.

In this study, 11 species belonging to the genus Cuscuta, an essential part of Turkey's biological richness and consists of parasitic plants, were discussed in detail in terms of chromosome number and chromosome morphology and compared statistically. These karyological studies reveal the karyological differences and similari-
ties between the infrageneric and species. The results obtained increase our knowledge about these species. Thus, obtaining new data that can be used in the systematics of these species aims to reveal basic information about the systematics, karyology, and morphological features of taxa. In addition, it will form a fundamental step for future breeding and hybridization studies related to this genus and contribute to other biological research.

REFERENCES

Açar M, Satıl F. 2019. Distantes R. Bhattacharjee (Stachys L. /Lamiaceae) Altseksiyonu Taksonları Üzerinde Karşılaştırmalı Anatomik ve Mikromorfolojik Çalışmalar. [Comparative Micromorphological and Anatomical Investigations on the Subsection Distantes R.Bhattacharjee (Stachys L./Lamiaceae)]. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 22(Ek Sayı 2): 282-295.
Açar M. \& Taşar N. 2022. A statistical overview to the chromosome characteristics of some CentaureaL. taxa distributed in the Eastern Anatolia (Turkey). Caryologia. https://doi.org/10.36253/caryologia-1562
Adhikary AK. 1974. Precise determination of centromere location. Cytologia. 39: 11-16.
Albers F. \& Pröbsting W. 1998. In R. Wisskirchen \& H. Haeupler, Standardliste der Farn- und Blütenpflanzen Deutschlands. Bundesamt für Naturschutz \& Verlag Eugen Ulmer, Stuttgart.
Arabaci T., Çelenk S., Özcan T., Martin E., Yazici T., Açar M., ... \& Dirmenci T. 2021. Homoploid hybrids of Origanum (Lamiaceae) in Turkey: morphological and molecular evidence for a new hybrid. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 155(3): 470-482.
Aryavand, A. 1987. The chromosome numbers of some Cuscuta L. (Cuscutaceae) species from Isfahan, Iran. Iran. J. Bot. 3: 177-182.
Costea M, Stefanović S. 2009. Molecular phylogeny of Cuscuta californica complex Convolvulaceae and a new species from New Mexico and Trans-Pecos. Syst Bot., (34): 570-579.
Costea M, Tardif F.J. 2006. The biology of Canadian weeds. 133. Cuscuta campestris Yuncker, C. gronovii Willd. ex Schult., C. umbrosa Beyr. ex Hook., C. epithymum (L.) L. and C. epilinum Weihe. Canadian Journal of Plant Science, 86 (1): 293-316.
Davis P.H. (ed.) (1978). Flora of Turkey and the East Aegean Islands (Vol. 6). Edinburgh Univ. Press., Edinburgh.

Dawson J.H, Musselman L. J, Wolswinkel P, Dörr I. (1994). Biology and control of Cuscuta. Reviews of Weed Science, (6): 265-317.
Dirmenci T., Arabacı T., Özcan T., Yazıcı T. Martin E., Çelenk S., Açar M., Üzel D. (2020). Chapter 6: Homoploid Hybridization and Its Role in Emergence and Diversity of the Genus Origanum L. (Lamiaceae). In book: The Lamiaceae Family: An Overview. Alexander Adler (Editor). Series: Plant Science Research and Practices. Nova Science Publisher. ISBN: 978-1-53617-078-8.
Dirmenci T, Özcan T, Açar M, Arabacı T, Yazıcı T, Martin E. 2019. A rearranged homoploid hybrid species of Origanum (Lamiaceae): O. \times munzurense Kit Tan \& Sorger. Botany Letters. 166(2): 153-162.
Feinbrun-Dothan N., 1978. - Flora Palaestina, 3: 44-50, The Israel Acad. of Sci. and Humanit., Jerusalem.
García M. A. \& S. Castroviejo. 2003. Estudios citotaxonómicos en las especies ibéricas del género Cuscuta (Convolvulaceae). Anales Jard. Bot. Madrid 60(1): 33-44.
Gedik O., Kıran, Y., Arabacı, T., Kostekci, S. 2014. Karyological studies on the annual members of the genus Carduus L. (Asteraceae, Cardueae) from Turkey. Caryologia, 67(2):135-139.
Genç H, Yildirim B, Açar M, Çetin T. 2021. Statistical evaluation of chromosomes of some Lathyrus L. taxa growing in Turkey. Caryologia. 74(3): 107-117. doi: 10.36253/caryologia1124

Guerra M., \& García M. A. (2004). Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab.(Convolvulaceae). Genome, 47(1): 134-140.
Hammer Q, Harper DAT, Ryan, PD. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. 4(1): 1-9.
Hunzıker A.T., 1949-50. -Las especies de Cuscuta (Convolvulaceae) de Argentina y Uruguay. Trab. Mus. Bot. Univ. Nac. Cordoba, 1 (2): 1-358.
Huziwara Y. 1962. Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosome of Aster. American Journal of Botany. 49(2): 116-119.
Khatoon S. \& S. I. Ali. 1993. Chromosome Atlas of the Angiosperms of Pakistan. Department of Botany, University of Karachi, Karachi.
Levan A., Fredga K., Sandberg A.A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas, 52: 201-220.
Leusova. 2005. Karyological study of Cuscuta japonica Choisy. Pages 53-54 in Karyology, Karyosystematics and Molecular Phylogeny. St. Petersburg, Russia.

Mesĭcek, J. \& J. Sojăk. 1995. Chromosome numbers of Mongolian angiosperms. II. Folia Geobot. Phytotax. 30: 445-453.
Montgomery, L., M. Khalaf, J. P. Bailey \& K. J. Gornal. 1997. Contributions to a cytological catalogue of the British and Irish flora, 5. Watsonia 21: 365-368.
Pazy B. \& U. Plitmann. 1991. Unusual chromosome separation in meiosis of Cuscuta L. Genome 34: 533-536.
Pazy B. \& U. Plitmann. 2002. New perspectives on the mechanisms of chromosome evolution in parasitic flowering plants. Bot. J. Linn. Soc. 138(1): 117-122.
Pazy B., Plitmann, U., 1987. -Persisting demibivalents: a unique meiotic behaviour in Cuscuta babylonica Choisy. Genome, 29: 63-66.
Pazy B., Plitmann, U., 1987: Persisting demibivalents: a unique meiotic behaviour in Cuscuta babylonica CHoIsY. Genome 29: 63-66. 1991: Unusual chromosome separation in meiosis of Cuscuta L. Genome 34: 533-536.
Pazy B., Plitmann, U., 1991. Unusual chromosome separation in meiosis of Cuscuta L. Genome, 34: 533-536.
Pazy B., Plitmann, U., 1994. Holocentric chromosome behaviour in Cuscuta (Cuscutaceae). Pl. Syst. Evol., 191: 105-109.
Pazy, B. \& U. Plitmann. 1995. Chromosome divergence in the genus Cuscuta and its systematic implications. Caryologia 48(2): 173-180.
Peruzzi L, Eroğlu HE. 2013. Karyotype asymmetry: again, how to measure and what to measure? Comparative cytogenetics. 7(1): 1-9.
Plitman S. 1978. Cuscuta, 222-237 in Davis PH. Flora Of Turkey and The East Aegean Islands. (6), Edinburgh Press MC, Scholes JD, Watling JR. 1999. Parasitic plants: physiological and ecological interactions with their hosts. In: Press, MC, Scholes, JD, Barker, MG, eds. Physiological Plant Ecology. Oxford, UK: Blackwell Science, 175-197
Rezaei M, Naghavi MR, Hoseinzadeh AH, Abbasi A, Jahangiri B. 2014. Study of Karyological Characteristics in Papaver bracteatum and Papaver somniferum. Cytologia. 79(2): 187-194.
Singh V.K and S.K. Roy. (1970). Sitology of Cuscuta Linn. Sci. Cult.36: 567-568
Stebbins GL. 1971. Chromosomal Evolution in Higher Plants. Edward Arnold. London.
Tasar N, Dogan G, Kiran Y, Rahman MO, Cakilcioglu U. 2018a. Morphological, Anatomical and Cytological Investigations on three taxa of Centaurea L. (asteraceae) From Turkey. Bangladesh J. Plant Taxon. 25(2): 215-226.
Tasar N, Dogan G, Kiran Y. 2018b. Karyological Investigation on Seven Centaurea L. (Asteraceae) Taxa from Turkey. Cytologia. 83(3): 317-321.

Ward D. E. 1984. Chromosome counts from New Mexico and Mexico. Phytologia 56(1): 55-60.
Watanabe K, Yahara T, Denda T, Kosuge K. 1999. Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae): Statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. J. Plant Res. 112: 145-161.
Yeh, H. c. \& J. l. Tsai. 1995. Karyotype analysis of the Convolvulaceae in Taiwan. Annual Taiwan Mus. 38: 58-61.
Yuncker T.G. 1932. The genus Cuscuta. Mem Torr Bot. Club., (18): 113-331.
Zarco RC. 1986. A new method for estimating karyotype asymmetry. Taxon. 35(3): 526-530.

