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ABSTRACT 

In 1962 and 1974, respectively H. Yilmaz and H.L. Resnikoff published two groundbreaking articles about 

color perception, which were ignored by the scientific community. Yilmaz showed the striking analogy 

between Lorentz transformations and the modification of color perception under illuminant changes. On the 

other hand, Resnikoff, using mathematical techniques coming from theoretical physics, studied the possible 

geometrical representations of a homogeneous space of perceived colors, i.e. a space in which all the 

elements have “the same importance”. Both works come up to the same conclusion: the structure of the 

space of perceived colors can be better characterized through hyperbolic geometry, while usual color 

spaces have a Euclidean structure. In this work, we show how a modern revision of these important articles 

allows us to highlight a correlation between the colorimetric attributes and some objects of special relativity 

theory and quantum mechanics, opening innovative perspectives in the theoretical comprehension of 

perceptual phenomena related to human chromatic vision. A remarkable result of this new formalism 

concerns the retinal chromatic encoding expressed by the sum of an achromatic signal and two opponent 

chromatic signals (typically called red-green and yellow-blue). This looks as an intrinsic description of a so-

called “color state”, in contrast to what happens in natural image statistics, where such an encoding is not an 

intrinsic result of the theory, but it is obtained through a principal component analysis. 

 

KEYWORDS Yilmaz, Resnikoff, Jordan Algebras, relativity, quantum mechanics, mathematical models for 

color perception. 
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1. Introduction 

The scope of this paper is to give a brief and simple 

overview, with dissemination purposes, about a novel 

program of formalization of colorimetry in which both 

geometry and techniques typically used in mathematical 

physics play a fundamental role. Due to space 

limitations, and in order to keep the storytelling as 

simple as possible, we will leave many details to open 

access references that the interested reader may wish 

to consult.  

 

2. Yilmaz’s relativistic model 

The value of Yilmaz’s work (Yilmaz, 1962) lies in the 

interpretation of color perception as a relativistic 

phenomenon. Indeed, as Einstein showed up that space 

and time are relative to the single inertial observers (i.e. 

observers moving with constant speed with respect to 

each other), in the same way Yilmaz states that the 

colors perceived by an observer adapted to a certain 

broadband illuminant are relative to it. Thence it is 

possible to use the mathematical tools typical of 

Einstein’s special relativity theory to model color 

perception. On one hand this opens new paths for a 

deeper comprehension of what is a color space and 

which are the most suitable coordinates to identify a 

perceived color, on the other hand it provides a 

mathematical formalization of the space’s 

transformations under changes of the broadband 

illuminant to which the observer is adapted. This last 

aspect makes Yilmaz’s model easy to adapt for 

applicative purposes, in particular for color correction of 

digital images. 

2.1. The coordinates 

As it is well-known from (Wyszecki and Stiles, 1982), 

there are strong physiological and psychophysical 

reasons behind the statement that the space of perceived 

colors is a 3-dimensional cone. 

Thence every perceived color can be univocally identified 

by three coordinates. The wide range of color spaces 

proposed for digital and industrial applications clearly 

shows that the choice of these three parameters is far 

from being trivial. 

For Yilmaz, a trichromatic observer adapted to a certain 

illuminant I is able to identify the colors he/she perceives 

by two chromatic coordinates and an achromatic one. 

Let us fix three orthogonal axes, depicted in Fig. 1. The 

origin of the three axes corresponds to black, denoted by 

K, on each axis there is the value associated to a certain 

coordinate. Let us call these three coordinates α, β and γ. 

 

Fig. 1. Axes α, β, γ. 

 

The achromatic coordinate γ goes from black to white, 

through a grayscale, while the chromatic coordinates 

belong to the plane α, β (we will call it chromaticity plane) 

shown in Fig. 2. The first chromatic coordinate is the 

angle ɸ, called hue, the second one is the radial 

coordinate ρ, called chroma. 

 

 

Fig. 2. Chromaticity plane. 

 

The axes α and β represent respectively the hue 

oppositions red-green and blue-yellow, proposed for the 

first time by Hering. The existence of these two 

oppositions is the reason why it is impossible to perceive 

e.g. a reddish green or a yellowish blue. In this paper, we 

will follow the simplified Yilmaz framework in which well-

known perceptual effects that show interdepencence 

between chromatic attributes are ignored. As a 

consequence, the space in which we will work has 

cylindrical shape, see Fig. 3. Using the coordinates α and 

β is mathematically equivalent to using the coordinates ɸ 

and ρ, but perceptually less immediate. 

A colorimetric attribute of fundamental importance, 

dependent to the ones defined above, is the saturation σ. 

It denotes the purity level of a color and it is defined as 

the ratio between chroma and the achromatic coordinate 

σ = ρ / γ. The existence of a maximal perceivable 

saturation (i.e. a maximum attainable degree of purity 

that a perceived color can have) leads us to the exclusion 

of the points of the cylinder that do not belong to the cone 

of slope ∑ depicted in Fig. 4. 
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Fig. 3. Cylindrical coordinates.  

 

 

Fig. 4. Cone of perceived colors. Note that, when γ=1, we 

have that σ = ρ. 

 

The perception of a stimulus constituted by a 

monochromatic light (e.g. a red laser) will have maximal 

purity, hence saturation ∑. 

 

2.2. The two rooms experiments 

Yilmaz motivates the introduction of relativistic concepts in 

a colorimetric framework through three experiments. It 

must be stressed that Yilmaz did not give quantitative data 

nor apparatus description for his experiments, thus, a 

doubt about the fact that they have actually been 

implemented still remains.  

Let us consider two different broadband illuminants, we will 

denote them by I and I'. Let us call α, β, γ (α', β', γ', 

respectively) the coordinates that an observer adapted to I 

(to I' respectively) associates to the stimuli that he/she 

perceives. Yilmaz’s aim is to show how the coordinates α, 

β, γ are transformed into the coordinates α', β', γ'. 

Let us suppose we have two adjacent rooms completely 

painted in white. In each room, different kinds of light 

sources can be posed. The two rooms are separated by a 

wall with a tiny hole through which an observer placed in 

the first room is able to perceive light stimuli posed in the 

second room and vice-versa. Hence the presence of the 

hole allows the observer to perceive light stimuli belonging 

to an environment to which he/she is not adapted. 

A piece of white paper is divided into two parts, each of 

them is posed in one of the two rooms. We are going to 

introduce just the two more emblematic experiments. 

Experiment 1: the perception of white is relative 

In this first experiment, depicted in Fig. 5, I is placed in the 

first room and I' in the second one. In a first phase the 

observer is placed in the first room and adapted to I. 

He/she perceives the piece of white paper placed in 

his/her same room as white; while the other half, placed in 

the second room and enlightened by I', has greenish hue 

and small saturation σ. 

The second phase of the experiment is identical, but the 

roles of the two rooms are inverted: the observer is placed 

in the second room and adapted to I'. He/she perceives 

the piece of white paper placed in the room with him/her 

as white, while the other one, posed in the first room is 

perceived as having reddish hue and the same small 

saturation σ. 

 

Fig. 5. Experiment 1. 

         

Experiment 2: the invariance of the spectral red 

In the second room is placed a monochromatic red light 

source, while the first room is enlightened by I in a first 

phase and by I' in a second phase. In both phases the 

observer is placed in the first room and adapted to the 

broadband illuminant enlightening it. He/she observes 

that, in both cases, the piece of white paper, posed in the 

second room and illuminated by the red laser, is 

perceived as having the same red hue and the same 

maximal saturation ∑, see Fig. 6.  
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Fig. 6. Experiment 2. 

 

Formalizing the information given by the three 

experiments, the coordinate transformation (linear in the 

variables α, β, γ) that Yilmaz obtained is the following: 

 

The details needed to understand how to arrive to this kind 

of transformations are available in (Prencipe et al., 2020). 

In the same paper, the reader can find the description of 

the third Yilmaz experiment, which is more involved to 

discuss and not relevant for the present paper. 

2.3. Parallelisms with relativity 

The “relativistic jump” is attained recognizing in the 

transformation written above a so-called Lorentz boost, 

which allows us to find relativistic analogues for all the 

quantities mentioned up to now. 

In the theory of special relativity, the measure of space and 

time is relative to the observer, hence every observer has 

his/her own coordinate system with respect to which 

he/she can measure space and time. In the simplest case 

of inertial observers, i.e. observers moving with constant 

speed with respect to each other, the transformations 

converting the coordinates of one observer into the 

coordinates of another one, are the Lorentz boosts. 

Thence an observer adapted to a broadband illuminant 

corresponds to an inertial observer in special relativity 

theory. 

Consequently, there will be parallelisms between space-

time coordinates and the coordinates of the perceptual 

space described in subsection 2.1. In particular, the 

achromatic coordinate γ corresponds to time, while the 

chromatic coordinates α, β (or, equivalently, ɸ and ρ) are 

the analogous of a two-dimensional physical space. 

From the definition of saturation as σ = ρ / γ, it is easy to 

deduce its relativistic analogue. Indeed, it should be a ratio 

between a spatial and a temporal quantity, so a constant 

velocity. The maximum perceivable saturation ∑ 

corresponds to the maximum attainable velocity, i.e. the 

speed of light c. As a consequence of this, it is clear that 

Yilmaz’s second experiment is nothing but a colorimetric 

reinterpretation of the fundamental principle of special 

relativity theory stating that light speed is the same for all 

inertial observers. For further details see (Prencipe et al., 

2020). 

 

3. Resnikoff’s model and its quantum reinterpre-

tation 

As we have seen in section 1, Yilmaz’s model introduces 

in the context of color perception analysis concepts and 

tools typical of special relativity theory. In this second 

section, we will see how Resnikoff’s model allows us to 

see in color perception a quantum phenomenon. 

Resnikoff’s article (Resnikoff, 1974), gone almost 

unnoticed by the scientific community as Yilmaz’s one, is 

an extraordinary (and rare) example of something that we 

could call “theoretical psychophysics”, because he used 

the typical flow of thinking and mathematical techniques of 

theoretical physics, but applying them to the concept of 

perceived color, i.e. a psychophysical attribute. 

More precisely, he started his analysis from the so-called 

Schrödinger’s axioms (Schrödinger, 1920), adding a 

further fundamental one: the homogeneity axiom, and 

determining mathematically which geometric structures 

satisfy all the axioms. Notice that the pattern followed by 

Resnikoff, which characterizes the works of modern 

theoretical physics, is substantially different from a mere 

procedure of selection by interpolation, that is a work of 

minimization of the discrepancies with the experimental 

data. 

Resnikoff showed that only two geometric structures are 

compatible with Schrödinger’s axioms and his 

homogeneity axiom: the first one is the canonical 

Helmholtz-Stiles space that has many different practical 

expressions like LMS, RGB, XYZ, etc. all of them 

geometrically equivalent; the second one is a hyperbolic 

structure totally new in color theory. It is exactly this last 

one that allows a quantum interpretation, as we will detail 

in the following. 

3.1. The axiomatic construction of a homogeneous 

color space 

Erwin Schrödinger, well known for his works in quantum 

mechanics, dedicated many years of his scientific career 

to the study of color. In 1920 he wrote a series of very 

elegant works summarizing in a mathematically coherent 

framework the main results concerning color obtained by 

scientists like Newton, Grassmann, Maxwell and 

Helmholtz. 
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Schrödinger’s axioms can be summarized stating that the 

space of perceived colors of trichromatic observes has 

the geometric structure of a convex regular cone of 

dimension 3. 

The fact that the space of perceived colors is a cone 

means that a positive multiple of a perceived color (i.e. a 

brighter version of the color) is still a perceived color (note 

that this is an idealization, because the phenomenon of 

saturation of the photoreceptors implies that the cone is 

not infinite, but truncated at the glare threshold). The 

convexity property means that, inside the cone, the 

segment joining any couple of perceived colors is made up 

by perceived colors (this was proved by Grassmann). 

Regularity is a technical property that can be translated 

into practical terms into the statement that the cone of 

perceived colors has a vertex corresponding to black. 

Finally, the dimension of the cone is a consequence of the 

existence of 3 kinds of retinal cones which start the chain 

of neural events leading to color vision. 

Resnikoff, starting from the observation that no color is 

“special” with respect to the others and that, thanks to the 

well-known phenomenon of chromatic induction, it is 

possible to modify the perception of any chromatic 

stimulus just embedding it in an appropriate background, 

came to the conclusion that the following postulate holds: 

the space of perceived colors is locally homogeneous, 

that is it exists an invertible transformation which maps 

any color to any “sufficiently similar” other color. 

It can be easily proven that this postulate, justified by the 

induction phenomenon, together with the convexity of the 

cone, implies its global homogeneity, which is exactly the 

mathematical property characterizing the spaces where 

no point is special because we can pass from one point 

to any other one through an invertible transformation. 

This is the reason of the choice of adjective 

“homogeneous”. 

In summary, putting together Resnikoff’s axiom and 

Schrödinger’s ones, we can conclude that the space of 

perceived colors has the structure of a convex regular 

and homogeneous cone of dimension 3. There are only 

two kinds of cones of dimension 3 satisfying all these 

properties: the first, and the simplest one, let us denote it 

by P', is the set of all the nonnegative real numbers 

Cartesian to itself three times, which is exactly the 

Helmholtz-Stiles space, canonically used in colorimetry. 

The second one, more complex and interesting, denoted 

by P'', is given by the Cartesian product of the set of 

positive real numbers and a hyperbolic space which can 

be characterized in many different ways, some of them 

are easy to visualize, like the hyperboloid embedded in 

the real three-dimensional space, the upper-half plane or 

the Poincaré disk (i.e. the open unit disk in the real 

plane), others are more abstract, like, for example the 

space of the real symmetric positive-definite 2x2 matrices 

having determinant equal to 1 or the quotient space 

SL(2,R)/SO(2). For more details see (Provenzi, 2020). 

In the following subsection, we are going to show that 

this second space is the most interesting one from a 

theoretical point of view and for the consequences 

related to the quantum interpretation of color vision. 

3.2. Jordan algebras and the link with quantum 

mechanics 

In the articles (Berthier and Provenzi 2019; Berthier, 

2020) a fact of fundamental importance is stressed: the 

so-called classification theorem of Jordan-von Neumann-

Wigner states that the two structures found by Resnikoff 

for the space of perceived colors coincide exactly with the 

only two possible forms of a symmetric cone of 

dimension 3, where a cone is said to be symmetric if it is 

convex, regular, homogeneous, open and self-dual (a 

technical property which is not important to explicit here). 

Moreover, Koecher-Vinberg theorem states that every 

symmetric cone is the so-called positive cone of a 

(formally real) Jordan algebra.  

Without going into many specialized and complicated 

details of the theory of Jordan algebras, which will result 

to be merely notional, we just say that a Jordan algebra is 

a vector space endowed with a commutative, but not 

associative product called the Jordan product and that 

the Jordan algebra whose positive cone is P'' is the 

algebra A of the real symmetric 2x2 matrices with the 

Jordan product between two matrices A and B of A 

defined as: A○B=(AB+BA)/2. 

Jordan algebras have a privileged role in the modern 

quantum theories, where the objects are the quantum 

observables of a system, in duality with their quantum 

states. Once again, an exhaustive treatment of these 

concepts should deserve much more space, see e.g. 

(Berthier and Provenzi, 2021), hence we just underline 

that it is the lack of associativity of the Jordan algebra 

that gives a quantum character to the description of the 

observables and the states of the system. 

To make the theoretical ideas exposed up to now more 

concrete, let us now talk about a feature of this quantum 

model for color perception that we consider particularly 

meaningful. It is the fact that it is possible to represent, in 

a very natural way, a color state through the 

superposition of three so-called density matrices, 

indicated with , (i.e. positive definite and with unit 

trace) which represent an achromatic state and two 

states of chromatic opponencies red-green and yellow-

blue, respectively, as expressed in the following formula: 
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This kind of description, perfectly coherent with the 

human color vision, as remarked in section 1, is 

obtained in the quantum model just passing to a 

parametrization in polar coordinates of the density 

matrices. 

The color encoding performed by the human visual 

system comes out in a very natural way in the 

framework of the quantum model and there is no need 

to resort to an analysis “a-posteriori”, like it is done in 

the context of natural image statistics, where it is shown 

that the principal components of a wide dataset of 

natural images coincide with the triplet given by the 

achromatic axis and two chromatic axes having 

opponent colors. 

 

4. Conclusions 

The power of Yilmaz’s work lies in the fact that he gave 

the foundations to construct a relativistic theory of color 

perception. Clearly here we exposed just some of the 

possible aspects of special relativity theory translated in 

the colorimetric context. The analogies between the two 

theories are much more, and they hide questions 

deserving further and deeper investigations in the 

colorimetric context. Furthermore, there are numerous 

aspects that are well suited to immediate and concrete 

applications. Let us imagine we have a picture taken by 

a digital device which is not able to automatically adapt, 

like a human being, to the illuminant of the scene we 

want to capture. We can imagine that the uncorrected 

image as a light stimulus posed in the second room in 

Yilmaz’s first experiment, with an observer posed in the 

first room. Indeed, it corresponds to a perception devoid 

of adaptation, that can be easily corrected applying a 

suitable Lorentz boost. 

As regards Resnikoff’s work, we can say that the 

theoretical clarity and the lucidity of his work have been 

crowned, after more than 40 years after its publication, 

by a surprising interpretation: color perception is well 

suited to be naturally described by the algebraic 

formalism of quantum theories. 

In summary, the two “forgotten” articles of Yilmaz and 

Resnikoff, clearly posed the bases of a quantum-

relativistic color theory capable of explaining into deep 

and mathematically rigorous terms the phenomena of 

human chromatic perception. Moreover, they add a 

further step towards the use of hyperbolic geometry in 

colorimetry as also mentioned by several other authors, 

e.g. (Farup 2014 and Lenz et al. 2005). 
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