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Water Distribution Networks (WDN) are systems of water distribution used in industrial processes and urban 

centers. The optimal WDN design can be very effective in saving energy, specifically in pumping service, to 

carry water to nodes of demand, at appropriated velocities and pressures. Indirectly, it can contribute in reducing 

liquid pollution and accidents caused by pressure overestimation in nodes. The design of WDN can be treated 

as an optimization problem with a Mixed Integer Nonlinear Programming (MINLP) formulation. The objective 

function, to be minimized is the WDN cost, given by the product of the pipe diameters and their lengths. The 

problem constraints are the mass balances in each node, the energy balances in the WDN loops and pressure 

and velocities limits. A set of commercial diameters is available, with proper costs and rugosity coefficients. The 

majority of paper published in this research field use external hydraulic simulators and meta-heuristic methods 

to solve the optimization problem. In the current paper a mathematical model using a deterministic Mathematical 

Programming approach is proposed and all variables are simultaneously optimized, avoiding the use of external 

software for pressure and velocities calculations. Two case studies were used to test the model applicability and 

coded in GAMS, using the global optimization solver BARON. Results showed that for both cases global optima 

was achieved, proving that it is possible to solve the problem, independently of external hydraulic simulator. 

1. Introduction 

Water is the most important fluid used in industrial processes and in urban centers or irrigation systems. Water 

supply systems are fundamental in the industrial society and supply services must provide water in appropriated 

quality, pressure and velocities, in piping, pumps, valves, reservoirs, meters and other accessories. Pumping 

stations are responsible by the water network pressurization and elevated reservoirs are normally used. The 

topology heterogeneity in the zones to which water must be supplied must also be considered and systems 

working only by gravity are frequently used (Zhang et al., 2018). The network is formed by pressure nodes 

(reservoirs or points of demand) and pipes linking these nodes. Loops can exist in the WDN and looped 

problems present difficulties in solving, when flow directions are not defined.  

The design of WDN can be formulated as a constrained optimization problem, whose objective function to be 

minimized is the network cost, composed by the product of pipes and their diameter costs. The constraints are 

the mass balances in the nodes, the energy balance in the loops and pressure and velocities limits. In general, 

a set of commercial diameters is available and the network pipe diameters must belong to this set. Nonlinear 

equations are available to calculate the nodes pressures and water velocities. The problem is nonlinear and 

nonconvex and, because of this complexity, global optimization techniques are not frequently used in its 

solution. Besides, hydraulic simulators are frequently used to circumvent the nonlinearity problem.  

Stochastic approaches have been proposed, to solve the problem and the majority of the published papers 

using this type of solution uses also, hydraulic simulators. De Corte and Sorensen (2016) presented an overview 

of the metaheuristic techniques developed for the WDN design optimization problem, citing some of the most 

important works using Ant Colony Optimization (ACO), Genetic Algorithms (GA), Harmony Search (HS), Particle 

Swarm Optimization (PSO), Simulated Annealing (SA), Tabu Search (TS) among other techniques. 
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Important deterministic approaches were also proposed. Alperovits and Shamir (1977) proposed a Linear 

Programming Gradient (LPG) to the WDN optimization. Hansen et al. (1991) presented a successive linear 

programming (SLP) approach with a local search algorithm to solve the problem. Sarbu and Borza (1997) 

proposed an improved Mixed Integer Linear Programming (MILP) model, which was the extension of the model 

proposed by Costa et al. (2001) and used Branch and Bound for the solution of the problem. Good upper and 

lower bound estimates are necessary in order to find good solutions. Shamir and Howard (1968) and 

Watanatada (1973) proposed NLP models, using the Newton-Raphson method to solve the system of 

equations. Authors related difficulties in finding optimal values and problems with no solution. D’Ambrosio et al. 

(2014) presented an MINLP model and Spatial Branch and Bound and piecewise linear relaxations were used.  

In the present paper an MINLP model is proposed to the optimal design of looped WDN. A deterministic 

Mathematical Programming approach is proposed to solve the model using a global optimization solver in 

GAMS. The novelty of the paper is that it is not necessary to use hydraulic simulators to calculate pressures 

and velocities and the hydraulic equations are solved simultaneously in the optimization problem. Two examples 

from the literature were used to test the model. 

2. Optimization model  

The proposed MINLP model is based on the papers of Surco et al. (2017) and Surco et al. (2018). The objective 

function to be minimized is the WDN cost, composed by the pipes’ diameters cost. The constraints are the mass 

balances in the nodes and the energy balances in the loops, as well as pressures and velocities limits. The 

following sets, parameters and variables are defined: 

Sets:  

K   Set of nodes  

J  Set of pipes    

D  Set of diameters   

 

A 

Set of loops 

Set of pumps  

PPD 𝛾 
 

Set of positive pressure drops in a loop   

NPD 𝛾            Set of negative pressure drops in a loop   

𝐹𝐼𝑘 Set of fluid streams that enter in the node k  

𝐹𝑂𝑘 Set of fluid streams that leave the node k  

Parameters: 

L  Pipe length 

D Commercial diameter 

dmd(k) Node demand 

prmin Minimum allowed pressure 

vmin and vmax Minimum and maximum allowed velocities 

              coefficients of the Hazzen-Williams equation  

C Hazzen-Williams rugosity coefficient 

elv 

a 

Node elevation 

Pump 

Ep Pump energy 

Variables: 

CT Total cost 

hf Pressure drop 

pr Pressure in the node 

q Volumetric flow rate 

v Velocity 

x  Diameter 

y Binary variable 

Y Boolean variable 

 Rugosity 

 WDN Cost 

To each diameter is associated a cost per length, Cost (Di) and a rugosity coefficient, Ci, ∀ 𝑖 ∈ 𝐷  

The objective function must consider the sum of all tube diameters and their costs: 

𝐶𝑇 = ∑𝐿𝑗

𝑗∈𝐽

𝐶𝑜𝑠𝑡(𝑥𝑗),                  ∀ 𝑗 ∈ 𝐽 (1) 

548



The node demand is given by the difference between the inlet flow rate and the outlet flow rate.  

∑ 𝑞𝑗

𝑗∈𝐹𝐼𝑘

− ∑ 𝑞𝑗 = 𝑑𝑚𝑑(𝑘)

𝑗∈𝐹𝑂𝑘

, ∀ 𝑘 ∈ 𝑘 (2) 

The sum of the pressure drops in the links for the nodes belonging to a loop must be equal to the energy 

liberated by a pump, if it exists:  

∑ ℎ𝑓(𝑗)

𝑗𝜖𝑃𝑃𝐷

− ∑ ℎ𝑓(𝑗)

𝜖𝑁𝑃𝐷

= ∑ 𝐸𝑃
𝑎(𝛾)

𝑎∈𝐴

,                      ∀  𝛾 ∈ 𝛤 (3) 

The pressure in any point in the WDN must be less or equal to a minimum limit: 

      𝑝𝑟𝑚𝑖𝑛(𝑘) ≤ 𝑝𝑟(𝑘),              ∀ 𝑘 ∈ 𝐾 (4) 

The flow velocities must also attend minimum and maximum limits: 

  𝑣𝑚𝑖𝑛 ≤ 𝑣𝑗 ≤ 𝑣𝑚𝑎𝑥   ,            ∀ 𝑗 ∈ 𝐽 (5) 

The most used equation to the pressure drop calculations is the Hazen-Williams: 

ℎ𝑓(𝑗) =
𝜔𝐿𝑗𝑞𝑗

𝛼

𝐶𝑗
𝛼𝑥𝑗

𝛽
,          ∀ 𝑗 ∈ 𝐽 

(6) 

The parameters   and  depend on the unities system used. Savic and Walters (1977) present different 

equations and coefficients, with the most used unity systems used in this type of problem.  

To the pressure calculations it must be considered the existing pressure in each node. Considering τk a flowrate 

path, initiating in the reservoir and finishing in a node k, ∀ 𝑘 ∈ 𝐾, if the node k = kr corresponds to the reservoir, 

then its pressure is given by: 

𝑝𝑟(𝑘𝑟)  =  𝑒𝑙𝑣(𝑘𝑟)  =  𝑒𝑙𝑣(𝑟𝑒)           (7) 

For the other nodes, the pressure is defined as follows: 

𝑝𝑟(𝑘) =  −∑ ℎ𝑓(𝑗) + [𝑒𝑙𝑣(𝑟𝑒) − 𝑒𝑙𝑣(𝑘)]𝑗∈𝜏𝑘
 ,                  ∀ 𝑘 ∈ 𝐾,   k ≠ kr (8) 

The flow velocities can be calculated by: 

𝑣𝑗 =
4𝑞𝑗

𝜋𝑥𝑗
2 ,                 ∀ 𝑗 ∈ 𝐽 

(9) 

The optimization model can be described as: 

min Eq(1) 

s. t. Eq(2) to Eq(9) 

(10) 

3.1 MINLP disjunctive formulation 

Given the pipes sequence and yi,j the binary variables associated to the pipe j and diameter Di, λj and σj the cost 

and rugosity associated to the same diameter, the following disjunctions are valid: 

∨
𝑖 ∈ 𝐷, 𝑗 ∈ 𝐽  

[
 
 
 
 

𝑌𝑖𝑗

𝑥𝑗 = 𝐷𝑖

𝜆𝑗 = 𝐿𝑗𝐶𝑜𝑠𝑡(𝐷𝑖)

𝜎𝑗 = 𝑅𝑖 ]
 
 
 
 

 

(11) 

These disjunctions must satisfy the following equations: 

𝑥𝑗 = ∑𝐷𝑖𝑦𝑖,𝑗

𝑖∈𝐷

 
(12) 

𝜆𝑗 = 𝐿𝑗 ∑ 𝐶𝑜𝑠𝑡(𝐷𝑖)𝑦𝑖,𝑗

𝑖∈𝐷

 
(13) 
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𝜎𝑗 = ∑𝑅𝑖𝑦𝑖,𝑗
𝑖∈𝐷

 (14) 

Using a Big M formulation, the MINLP model is: 

min 𝐶𝑇 = ∑𝜆𝑗

𝑗∈𝐽

 (15) 

𝑠. 𝑡. ∑ 𝑞𝑗 − ∑ 𝑞𝑗

𝑗∈𝑉𝑆𝑘𝑗∈𝑉𝐸𝑘

= 𝑑𝑚𝑑(𝑘) (16) 

∑ ℎ𝑓(𝑗)

𝑗∈𝑃𝑃𝐷𝛾

− ∑ ℎ𝑓(𝑗)

𝑗∈𝑁𝑃𝐷𝛾

= ∑ 𝐸𝑃
𝑎(𝛾)

𝑎∈𝐴

 (17) 

𝑝𝑟𝑚𝑖𝑛(𝑘) ≤ 𝑝𝑟(𝑘) (18) 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑗 ≤ 𝑣𝑚𝑎𝑥 (19) 

𝑥𝑗 = ∑𝐷𝑖𝑦𝑖,𝑗
𝑖∈𝐷

 (20) 

𝜆𝑗 = 𝐿𝑖 ∑𝐶𝑜𝑠𝑡(𝐷
𝑖
)𝑦

𝑖,𝑗
𝑖∈𝐷

 (21) 

𝜎𝑗 = ∑𝑅𝑖𝑦𝑖,𝑗
𝑖∈𝐷

 (22) 

𝑥𝑗 − 𝐷𝑖 ≤ 𝑀(1 − 𝑦𝑖
𝑗
) (23) 

𝜆𝑗 − 𝐿𝑗𝐶𝑜𝑠𝑡(𝐷𝑖) ≤ 𝑀(1 − 𝑦𝑖
𝑗
) (24) 

𝜎𝑗 − 𝑅𝑖 ≤ 𝑀(1 − 𝑦𝑖
𝑗
) (25) 

3. Case studies  

3.1 Case Study 1 

Case study 1 is a well-known benchmark problem, named Too Loop WDN, proposed by Alperovits and Shamir 

(1977). Figure 1-a) presents the WDN topology with flow directions and nodes demands and elevations. The 

network presents 1 reservoir, 8 links (1,000 m length each one) and 7 nodes. The minimum pressure required 

in each node is 30 water column meters and the velocity limits are 0.3 m/s and 3 m/s. The coefficients of Hazen-

Williams equation are  = 10.674,  = 4.871 and  = 1.852 and the dimensionless Hazen-Williams roughness 

coefficient C is 130 for all pipes. A set composed by 14 commercial diameters (mm) is available, with their 

respective costs ($), between parenthesis: D = {25.4 (2), 50.8 (5), 76.2 (8), 101.6 (11), 152.4 (16), 203.2 (23), 

254.0 (32), 304.8 (50), 355.6 (60), 406.4 (90), 457.2 (130), 508.0 (170), 558.8 (300), 609.6 (550)}.  

The problem was solved using the solver BARON in GAMS, and the solution (cost of $ 419,000) was the same 

obtained in other works using single pipe, like Savic and Walters (1977), Liong and Antiquzzaman (2004), 

Mohan and Babu (2010) and Surco et al. (2017). Velocities (m/s) and pressure drops (m) calculated for each 

one of the 8 pipes are given in Table 1.   

3.2 Case Study 2 

This problem was proposed by Fujiwara and Khang (1990) and the WDN has 32 nodes (1 reservoir), 34 pipes 

and 3 loops and is presented in Figure 1 – b), jointly with node demands and elevations. The reservoir is at 100 

m and all other nodes are at the soil level. The Hazzen-Williams non-dimensional rugosity coefficient for all 

pipes is 130 and Hazzen-Williams equation parameters are  = 10.9031,  = 4.871 and  = 1.852. The set of 

available diameters (m) is: D = {.3048; .4064; .5080; .6096; .7620; 1.016}. The problem was solved using 

BARON in GAMS and the results found are better than the literature for the same parameters. Table 2 presents 
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the optimal pipes diameters (m) and a costs comparison with the literature in its last line. As it can be noted, 

there are some differences in the diameters, among the three solutions. The cost achieved in the present paper 

($ 6.183.106) is better than the values of $ 6.220.106, obtained by Liong and Atiquzzaman (2004) and of $ 

6.220.106, obtained by Savic and Walters (1997). 

Table 1: Two loop WDN velocities and pressure drops 

Pipe 1 2 3 4 5 6 7 8 

v (m/s)  1.90 1.85 1.46 1.12 1.14 1.10 1.30 0.31 

hf (m) 6.76 12.79 4.80 14.65 3.00 4.90 6.66 6.75 

 

 
 (a)  (b) 

Figure 1: a) Two Loop WDN. b) Hanoi WDN. 

Table 2: Diameters (m) comparison for the Hanoi WDN 

Pipe 

 

Savic and 

Walters 

(1997) 

Liong and 

Atiquzzaman 

(2004) 

Present 

paper 

 Pipe 

 

Savic and 

Walters 

(1997) 

Liong and 

Atiquzzaman 

(2004) 

Present 

paper 

1 1.016  1.016  1.016   18 0.6096  0.7620  0.6096  

2 1.016  1.016 1.016   19 0.6096 0.7620 0.6096  

3 1.016  1.016 1.016   20 1.016 1.016 1.016  

4 1.016  1.016 1.016   21 0.5080 0.5080 0.5080  

5 1.016  1.016 1.016   22 0.3048 0.3048 0.3048  

6 1.016  1.016 1.016   23 1.016 0.7620 1.016  

7 1.016 1.016 1.016   24 0.7620 0.7620 0.7620  

8 1.016 0.7620 1.016   25 0.7620 0.6096 0.7620  

9 0.7620 0.7620 1.016   26 0.5080 0.3048 0.6096  

10 0.7620 0.7620 0.7620   27 0.3048 0.5080 0.3048  

11 0.7620 0.7620 0.6096   28 0.3048 0.6096 0.3048  

12 0.6096 0.6096 0.6096   29 0.4064 0.4064 0.4064  

13 0.4064 0.4064 0.4064   30 0.4064 0.4064 0.4064  

14 0.4064 0.3048 0.3048   31 0.3048 0.3048 0.3048  

15 0.3048 0.3048 0.3048   32 0.3048 0.4064 0.4064  

16 0.4064 0.6096 0.3048   33 0.4064 0.5080 0.4064 

17 0.5080 0.7620 0.5080   34 0.5080 0.6096 0.6096 

Cost ($.106)      6.195 6.220 6.183 
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4. Conclusions 

Although water distribution networks design problem is not new, when it is formulated as an optimization 

problem, hydraulic calculus is complex due to the nonlinearities and nonconvexities involved in the Hazzen-

Williams equation. Most of the published papers in the literature use meta-heuristic techniques, which are not 

able to ensure global optimization and use auxiliary software in calculating pressures and velocities. In the 

present paper the synthesis of WDN was formulated as an optimization problem. An MINLP model was 

proposed and reformulated using Generalized Disjunctive Programming. Two case studies from the literature 

were used to test the model applicability. Both were solved using the global optimization solver BARON in 

GAMS. The solutions of both problems are the best found in the literature.  One can conclude that this kind of 

formulation is innovative and properly adequate to solve this type of problem, despite the difficulties present due 

to its nonlinearities and nonconvexities. Besides, by reformulating the original optimization problem using GDP, 

it is possible to achieve global optimum solutions as the problems tested in the paper. The great novelty and 

the main contribution of this paper is that the model developed is able to calculate pressure and velocities, being 

not necessary the use of additional software to the hydraulic calculus.  
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