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Cyber-attacks aimed to interfere with the Basic Process Control System (BPCS) and the SIS (Safety 
Instrumented System) of industrial facilities where large quantities of hazardous substances are stored or 
handled may have consequences comparable to those of conventional major accidents due to internal 
causes. 
While consolidated approaches exist to manage and control the cybersecurity of IT (Information Technology) 
and OT (Operational Technology) systems of a plant, there is an evident lack of operating procedures for 
assessing the actual link between malicious manipulations of the BPCS and the SIS (OT system) and the 
major accidents that can be induced. 
In the present study a specific operating systematic methodology, PHAROS, was developed to address the 
identification of major accident scenarios achievable by remote manipulation of the physical components of 
the plant (e.g. automatic valves, pumps, compressors, etc.). The methodology exploits a reverse-HazOp 
concept and it also supports the definition of the specifications for the design and management of barriers 
aimed at the prevention and mitigation of such scenarios. The application of PHAROS to a demonstrative 
case study evidenced first that both the BPCS and the SIS typically need to be attacked in order to induce 
major accidents, and second, that passive/inherent safeguards have a key role with respect to the success of 
the considered malicious attack in case they are properly designed. 

1. Introduction 
The process industry is currently undergoing a digital transition towards higher levels of automation (e.g. 
digital sensors, improved network protocols, increased interconnection with external networks, etc.). This 
ensures advantages such as efficient process control, quick and safe response to abnormal conditions, 
improvement of product quality, but also exposes the process sites to security threats. 
The consequences of malicious manipulations on the Basic Process Control System (BPCS) and the Safety 
Instrumented System (SIS) of plants handling hazardous materials may potentially be comparable to 
accidents due to internal failures (Tugnoli at al., 2019). For example, in 2008, attackers intentionally shut down 
alarm systems, cut off communications with the control room and over-pressurized a section of the BTC (Baku 
-Tbilisi-Ceyhan) crude oil pipeline. This resulted in an explosion, in the release of more than 30,000 barrels of 
oil in an area above a water aquifer, in a fire lasting more than two days, and in outage losses of $5 million per 
day (Department of Homeland Security). 
In this panorama, major accidents triggered by attacks to the OT system (BPCS plus the SIS) are becoming 
an issue that process industry can no longer disregard (Thomas and Day 2015). Due to the particular nature 
of this industrial sector, a complete security analysis requires the assessment of two parts (see Figure 1a): the 
IT/OT network (first part) and the process system (second part). The ISO/IEC 27000 series of standards on 
information security management (ISO-IEC, 2018), the standard IEC 61511 on functional safety of safety 
instrumented systems for the process industry sector (IEC, 2017) and the ISA/IEC 62443 series of standards 
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on security for industrial automation and control systems (ISA-IEC, 2018) provide approaches for the 
assessment of the IT/OT network (firs part of the assessment, see Figure 1a), requiring the evaluation of all 
the impacts that can result from attacks to the IT/OT system, including those on physical process plant. 
Nevertheless, there is an evident lack of operating procedures for assessing the actual link between malicious 
manipulations of the BPCS and the SIS (OT system) and the major accidents that can be induced. 
The methodologies dedicated to process plant security vulnerability assessment (e.g. the VAM-CF 
methodology (Jaeger, 2002), the CCPS methodology (AIChE-CCPS, 2003) and API RP 780 methodology 
(Moore, 2013)) consider attacks to the BPCS and the SIS in the evaluation, but no specific procedures for 
assessment of the link between intentional manipulations and consequences is provided (Matteini et al., 
2019). In spite of the recognized relation between safety and security (Brewer, 1993; Eames and Moffett, 
1999; Kriaa et al., 2015), the hazard assessment techniques used in the field of process safety to analyse the 
hazards in the process systems (HazOp, LOPA, fault tree analysis, etc.) do not account for these aspects. 
The present study aims at filling the gap in the availability of systematic operating procedures for security 
assessment of the link between malicious manipulations of the BPCS and the SIS (OT system) and major 
accidents in a process plant. To this aim, a rigorous methodology for hazard identification was developed 
(PHAROS: Process Hazard Analysis of Remote manipulations through the cOntrol System). The procedure 
exploits a reverse-HazOp concept: starting from the possible critical events of concern (e.g. major accidents 
as loss of containment of hazardous substances), the remote manipulations achievable through an attack to 
the BPCS and the SIS, and leading to such critical events, are identified by a systematic procedure. Physical 
safeguards preventing or mitigating the critical event are considered and rated for their effectiveness. 
In the following, the different steps of PHAROS are described. A case study on an Oil&Gas upstream plant is 
also described, to demonstrate the application of the methodology and the typical results obtained. 
 

 

Figure 1: a) Schematization of the security risk assessment for malicious manipulations of the control system 
of a process plant; b) Flowchart of the PHAROS procedure. Shaded steps can be integrated with conventional 
safety studies. Acronyms are described in section 2.2. 

2. Methodology 
2.1 Overview 

The PHAROS methodology is a systematic and formally rigorous procedure for the analysis of process 
schemes. As the methodology is concerned with the “process system” part of the security risk assessment 
(Figure 1a), it starts from the assumption that the attacker successfully managed to gain full control the BPCS 
and SIS systems (either remotely or by direct access to the site) by overcoming any possible IT-OT defense 
barrier (e.g. authentication, firewalls). Therefore, the attacker is supposed to be able to impart any instruction, 
potentially eluding alarms and active safeguards controlled by the IT-OT system.  
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The procedure should be performed by a team: the minimum technical knowledge that is required concerns 
the process plant system, the logics of the BPCS and SIS systems, and the loss prevention system. No 
specific IT-OT skills in the team are required. The input information for the application of the procedure are: 
the PFD (Process Flow Diagram) and the material balances, the P&ID (Piping and Instrumentation Diagram), 
the list of substances stored or handled and their hazardous properties, the operating conditions of each 
process unit, the logics of the BPCS and the SIS, and the data sheets of each process unit. The procedure is 
intended for application to front-end design phase as well as to the security review of operating plants. 

2.2 Detailed description of the methodology 

PHAROS consists in nine steps, all shown in the flowchart of the procedure reported in Figure 1b. 
In Step 1 the input information is collected. 
In Step 2 the plant is divided into process nodes. Only the nodes in which hazardous substances are 
processed or stored (called potentially critical nodes) are of concern in the assessment. The division in 
process nodes may be carried out by a procedure similar to that applied in the HazOp study, as described by 
the standard IEC 61882 standard (IEC, 2016). 
Step 3 consists in identifying the critical nodes (ND) among the process nodes. This step is aimed at reducing 
the number of nodes to be analyzed, focusing on those from which the more severe consequences can 
originate. Hence, the critical nodes shall be selected on the basis of the inherent hazard. Mannan (Mannan, 
2012) and Tugnoli et al. (Tugnoli et al., 2007; Tugnoli et al., 2012) provide reviews of procedures for hazard 
ranking of process units and their application for inherent safety scoring. 
The selection of the most critical nodes can be based either on absolute terms or on relative terms. Clearly 
enough, all the potential critical nodes can be selected as critical nodes if deemed necessary, making step 3 
an optional step. 
Step 4 consists in the identification, based on a review of process documentation, of the remotely manipulable 
components (RMCs), of their manipulative elements (MEs), and in the allocation of RMCs to the critical nodes. 
RMCs are the physical components in the plant whose operation is regulated by the BPCS and the SIS (e.g. 
automatic valves, pumps, compressors, etc.). The MEs are the elements of the BPCS and the SIS by which 
the manipulation action is carried out (e.g. controllers and their logics). 
The allocation of each RMC to one or more critical nodes is carried out on the basis of the influence it can 
have on that node (ND). The following guidelines can support the allocation of RMCs: 

•    if a RMC is located on a stream that directly connects process units belonging to two different NDs, it is 
allocated to both nodes; 

•    if a RMC is located on a stream internal to a critical node, it is allocated only to that node. 
Step 5 consists in identifying, for each ME, all the possible remote manipulations (RMs) that can be carried out 
through an attack to the OT system (e.g. a set-point change or signal shutdown). Next, for each ME, the local 
consequences (LCs) on the corresponding RMC are identified (e.g. the increase/decrease in the opening 
degree of the controlled valve, the increase/decrease in the rotational speed of the controlled pump). 
Step 6 consists in associating to each critical node the compatible critical events (CEs). A CE is a loss of 
containment (LOC) or a loss of physical integrity (LPI) which “unleashes” the material or physical hazards 
normally present in the system (Delvosalle et al., 2006). HazOp analysis, what-if-analysis, failure modes and 
effect analysis (FMEA), MIMAH, HazId, DyPASI are well-known techniques that can be used to identify CEs. 
Step 7 consists in identifying all the mechanisms of action (MAs) by means of which each CE can be initiated 
through an attack to the OT system. The MAs are the physical mechanisms that the attackers may use to 
initiate the CE (e.g. increase the internal pressure of a vessel). Some MAs may require actions from a nearby 
node to occur (i.e. manipulation of RMCs belonging to a nearby node is required). In these cases, the 
information is propagated from a node to another similarly to deviations propagating among different nodes in 
a traditional HazOp study. 
Step 8 consists in identifying the combinations (CMs) of LCs from the allocated RMCs by means of which 
each MA in a node can be carried out. In general, not all the RMCs present in a node need to be manipulated 
in order to carry out a MA: to limit the number of CMs to the essential ones, a CM should be selected on the 
basis of the minimum set of manipulations required. 
Step 9 consists in identifying, for each CM, the effective safeguards (i.e. safety devices) which are present in 
the node being analyzed. “Effective” means that the safeguard is able to contrast, directly or indirectly, the MA 
associated to a particular CM, avoiding the occurrence of the corresponding CEs. Effectiveness shall be 
checked case by case, as it also depends on design specifications of the barrier (e.g. matching or not the 
requirements from physical scenarios deriving from the attack).  
Safeguards can be classified in active/procedural safeguards (APSs) and inherent/passive safeguards (PSs) 
(Kletz, 1998). The first ones are automated or human-mediated actions, which involve response by the same 
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IT-OT system under attack; while the second ones are devices that provide their safety action independently 
of the IT-OT system (e.g. PSVs, rupture disks, vent systems, emergency hatches, etc.). 
Similarly to an HazOp study, once all the steps have been performed, a completeness check is required. It 
consists in verifying that all the critical nodes have been analyzed, and that all the MAs, by which the 
associated CE can be originated have been developed as combinations of LCs on the relevant RMCs. 
Moreover, for the CEs (and corresponding MAs) that require actions from a nearby ND to occur, it must be 
verified that the additional CEs have been fully developed in the relevant nodes. 

3. Case Study 
3.1 Set up of the Case Study 

An onshore upstream Oil&Gas plant for the preliminary treatment of crude oil was considered as a Case Study 
for the application of the PHAROS procedure. The main goals of the plant are the separation of the production 
water and the oil and gas processing up to specification for transport via pipeline. 
In the following, the application of the PHAROS methodology is demonstrated on the critical process node 
featuring the Slug Catcher SC001 and the Gas KO Drum GKD001. 
Both process equipment are under pressure (65 barg) and contain both liquid and gas phases. Figure 2 
reports a simplified P&ID of the considered node (named ND01 in the following). 
 

 

Figure 2: Simplified P&ID of the critical process node ND01. I1: PSD logic; I2: LSD logic; SDV: shutdown 
valves; PSV: pressure safety valves; FC: flow controller; LC: level controller; FV, LV: control valves. 

3.2 Application and results  

The total results obtained from the application of PHAROS methodology to the node ND01 are summarized in 
Figure 3. The second row (yellow shaded) shows the critical events associated to ND01: the parallel 
assessment of nearby nodes and the available HazOp study for the plant under investigation suggested for 
the addition of the additional critical events aCE01 and aCE02. In the third and fourth rows (green shaded) are 
reported the mechanisms of action that can be carried out by the attackers in order to initiate the identified 
CEs. The sets of local consequences (called combinations, CMs) on the relevant RMCs allocated to the node 
ND01 (red shaded on the left side of the table), through which each MA can be carried out, are reported in the 
body (grey shaded). Finally, the last two rows (light blue shaded) report the APSs and IPSs for each CM that 
are present in the node under assessment. 
Some general conclusions may be drawn from the analysis of the results obtained from the application of 
PHAROS methodology on the Case Study.  
The first thing to underline is that it is possible to initiate critical events by tampering with only one system 
between the BPCS and the SIS. For example, the increase in the liquid level (see Table 1) can be carried out 
by the attackers either by manipulating the BPCS only (i.e. closing the control valves FV001 and LV001 
controlled by the BPCS controllers FC and LC), or by manipulating the SIS only (i.e. by closing the shutdown 
valves SDV002 and SDV003 controlled by the programmable logic controllers of the SIS). Only the over-
pressurization of the slug catcher SC001 and the gas KO drum GKD001 (MA01) can not be carried out by 
manipulating the BPCS only. However, in order to successfully conduct an attack resulting in a major event on 
the process equipment of the target system, attackers have also to bypass the safeguards in place. If active 
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and/or procedural safeguards are present, this requires the attackers to manipulate the SIS in any case. For 
this reason, the separation between the BPCS and the SIS in the IT-OT architecture is in favour of security, 
especially for those cases in which only the infection of the BPCS allows to initiate critical events. 
Moreover, the manipulation of a single RMC (i.e. SDV004) can initiate a critical event potentially resulting in a 
major hazard. For this reason, the SIS controller (hardware and software) that manage the shutdown valve 
SDV004 requires a priority in its management at IT-OT system level. 
In the other two cases (see MA02 and MA03 in Figure 3) the manipulation of two RMCs is required. 
Obviously, the greater the number of RMCs to be manipulated, the higher the complexity of the attack and the 
higher the security level. 
It should also be remarked that a redundancy of active and procedural safeguards (APSs), is present for 
MA01 and MA03 (see Figure 3), while only a single procedural safeguard (i.e. high liquid level alarms) is 
present for MA02. 
On the other hand, the identification of the inherent/passive safeguards (IPSs) is extremely important as they 
provide a layer of protection independent from the BPCS and the SIS, whose effectiveness and likelihood of 
failure are part of the cybersecurity risk assessment (e.g. ISA/IEC 62443). Since the PSVs are typically sized 
on the basis of the relieving rates that do not include scenarios of malicious manipulation (API 2014), their 
sizing may be revised taking into account the security cases identified by the present approach and 
introducing them in the sizing procedure of API 521 RP (API 2014). 
 

 
Figure 3: Worksheet containing the results obtained from the application of PHAROS methodology for the 
node ND01. NM: no manipulation of the RMC required. 

4. Conclusions 
The PHAROS methodology aims at complementing security risk assessment of a process plant addressing 
the remote manipulation of the control system. In particular, it allows for the identification of the combinations 
of remote manipulations which can lead to critical events (hazardous material and energy releases from plant 
equipment), and the definition of the specifications for the sizing and security management of the effective 
safeguards against such combinations of manipulations. 
The application of the methodology to a representative case study highlighted that, a successful attack 
generally has to infect both the BPCS and the SIS in order to give rise to critical events. Actually, the attackers 
must not only tamper with the physical components of the plant (e.g. valves, pumps, compressors, etc.), but 
they must also bypass the active/procedural safeguards. For this reason, the separation (e.g. air gap) of the 
BPCS and the SIS in the IT-OT network architecture results to be an effective measure against cybersecurity 
risk. It has also been pointed out that it is possible to initiate major events with simple attack patterns, since 
the manipulation of a single component may be sufficient. 
Passive/inherent safeguards have a key role in protecting the system from malicious manipulations of the 
control system whenever they are able to contrast the identified mechanisms of action. This derives from the 
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fact that they are not electronic devices and so they can not be remotely affected by the attackers. An 
appropriate sizing of such devices, considering the security cases and the critical events identified by the 
present procedure is therefore important to guarantee safeguard effectiveness in protecting the system. 
The PHAROS methodology resulted an effective tool, contributing to the synergy among safety and security, 
and allowing the identification of security issues related to remote malicious manipulation of the control 
system. 
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