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Global warming is one of the most serious issues the world is currently facing. The major reason is attributed 
to emission of greenhouse gases and in particular carbon dioxide, CO2. The most promising methods that 
could allow significant reduction in CO2 emissions are capture and geological storage of CO2. One major 
concern against storage of CO2 is the possibility of its leakage. One process that could lead to more reliable 
trapping of CO2 is hydrate formation – that leads to trapping of CO2 in the solid form. In this study, Machine 
Learning algorithms and reservoir simulation software were used to conduct sensitivity studies on some of the 
main reservoir parameters, to understand which characteristics have most impact on stability of CO2 storage in 
the form of hydrates. The hydrate formation curve calculated by HydraFlash software was considered to be a 
benchmark for experiments conducted in this study. 

1. Introduction

Carbon dioxide (CO2) is a chief constituent of greenhouse gases and should be captured, transported and 
stored in saline aquifers or used for enhanced oil recovery (Peletiri et al., 2017). The safety assessment is a 
key aspect that should be assessed in the planning and operational step of any CO2 transportation system 
(Mocellin et al., 2019), however, this issue is not in the scope of this article. One of the possible trapping 
mechanisms for CO2 is hydrate formation. Gas hydrates are crystalline compounds of gases and water of a 
variable composition, having similar physical properties to ice. Gas hydrates are formed upon the contact of 
gas and water under certain thermobaric conditions (Malakhova, 2020). They usually exist in marine bottom 
sediments and in areas of permafrost. Hydrate is a highly condensed form of gas bound with water; one cubic 
meter of hydrate corresponds to approximately 160 cubic meters of gas at atmospheric conditions. The zone 
where gas hydrates can form is referred to as the gas hydrate stability zone (GHSz). In the marine 
environment, the GHSz is located between the sea floor and the base of the stability zone defined by the 
phase diagram. The limits of the stability zone are determined by bottom water temperature, sea level, 
geothermal gradient, gas composition and pore water salinity. Storage of CO2 as hydrates below the sea floor 
is a possible trapping mechanism but has not been widely considered. This is because the long-term behavior 
of such hydrates in shallow sediments is not well known (NPD, 2019). 

2. Current study

In this study, CO2 storage as hydrates in Saline Aquifers is modelled by STARS software (CMG STARS, 
2016). The phase behavior of CO2 hydrate and a kinetic model is incorporated in the thermal reservoir 
simulator. Norwegian Petroleum Directorate proposes possible locations for CO2 storage; one of the possible 
options for CO2 storage as hydrates is below the Barents seabed (CO2 Storage Atlas Barents Sea, NPD). 
Barents Sea depth reaches 500 meters, which in combination with low bottom water temperatures that can be 
as low as 0 ℃, provides necessary conditions for CO2 Hydrate formations, which is presented in Figure 1b.  
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Taking into account Hydrate Formation Curve of CO2 in Figure 1b, calculated by HydraFlash software 
(Hydraflash, 2020) and Hydrate Formation Zone thickness dependent on ocean depth in Figure 1a (Qanbari et 
al., 2011), seas with depths 500 – 1600 meters and bottom water temperature of 1 ℃ are considered in this 
study. 

Figure 1a: Thickness of HFZ and NBZ (Negative Buoyancy Zone), 1b: Hydrate Formation Curve calculated by 
HydraFlash 

3. Simulation model

A reservoir model is developed to simulate fluid flow, heat transfer, formation and decomposition reactions. 
Water, gaseous CO2 and solid CO2 hydrate are included in the model. Main reservoir properties and injection 
conditions are presented in Table 1. 

Table 1: Reservoir properties and injection conditions 

Property Value

Reservoir dimensions (L × W × T), m 500 · 100 · 300

 Porosity 0.2

 Permeability I, J, K, mD 20

 Sea Depth, m 1000

 Grid Top below seabed, m 0

 Number of grids (L × W × T) 50 · 1 · 30

 Top layer pressure, kPa 10000

Top layer temperature,  ℃ 1

Geothermal gradient, ℃   / 100 m 3

 Aquifer modeling method Carter-Tracy (infinite extent)

 ·Volumetric Heat Capacity, J / (m3  ℃  ) 8.0E+5

Thermal Conductivity, J / (m · day · ℃  ) 1.50E+05

 CO2 injection rate, m3 / day 5000

 Injection time, years 1

Simulation time, years 10

 Water Saturation 1.0

Vertical Calculation Equilibrium Method  Depth-Average Capillary-Gravity Method
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The simulations assume an isotropic and homogenous infinite aquifer. Figure 2 shows the reservoir model 
used in experiments. 

Figure 2: Reservoir simulation model 

CO2 hydrate forms as a result of reaction between water in the aqueous phase and the CO2 in the gaseous 
phase Eq(1) and decomposes as shown in Eq(2). The properties of the pure components are obtained using 
NIST Standard Reference Database Number 69. 7.7  (1)

2 2 8.7 2 2 (2)

4. Machine learning methods for sensitivity analysis

Machine learning (ML) – a class of artificial intelligence methods whose characteristic feature is not the direct 
solution of a problem but training in the process of applying solutions to many similar problems.
Machine Learning is widely applied to the problems of petroleum industry. 
Sobol Analysis and Effect Estimates are applied in this study since they show high results in quantifying the 
relative importance of input factors as well as their interactions. 

4.1 Sobol Analysis using RBF Neural Network 

The Sobol method is a form of global sensitivity analysis. Working within a probabilistic framework, it 
decomposes the variance of the output of the model into fractions which can be attributed to inputs. For 
example, given a model with two inputs and one output, 50% of the output variance may be caused by 
variance of the first input, 35% by the variance of the second, and 15% due to interactions between the two. 
These percentages are directly interpreted as measures of sensitivity. In this study, Radial Basis Function 
Neural Network is used as a model.  
Radial Basis Function (RBF) network in its simplest form is a three-layer feedforward neural network. The first 
layer corresponds to the inputs of the network, the second is a hidden layer consisting of a number of RBF 
non-linear activation units, and the last one corresponds to the final output of the network. Activation functions 
in RBFNs are conventionally implemented as Gaussian functions (Faris et al., 2017). 

4.2 Effect Estimates using Polynomial Regression 

Effect estimates show the correlation between the change of parameters and the output. In case of a single 
parameter, the effect estimate is called the main effect. In order to determine the influence of each parameter, 
a linear model is used as a proxy model. The greater the model parameter is, the more important it is. All 
parameters are scaled to an interval from -1 to 1 since effect estimates are highly dependent on the parameter 
scale. Quadratic model effect estimates are also specified in the same scale-invariant way. Polynomial 
Regression model is implemented in this case since polynomial regression models have been widely used for 
the analysis of physical and computer experiments due to their ease of understanding, flexibility, and 
computational efficiency. 
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5. Results and discussion

A number of simulations using CMG CMOST were conducted to understand factors that affect hydrate 
formation over 10 years. Table 2 shows the list of experiment cases where the effects of Porosity, 
Permeability, Sea Depth, Thermal Conductivity and Heat Capacity are investigated. 

Table 2: Case List 

Parameter Discrete values 

 Porosity, %  1 – 51 (step 12.5)

 Permeability I, J, K, mD  10-2010 (step 500)

 Top layer pressure (Reference Pressure), kPa  5000-17000 (step 3000)

 Thermal Conductivity, J / (m · day · ℃)  1.5E+5, 3.2E+5, 6.0E+5

· Volumetric Heat Capacity, J / (m3 ℃  )  8.0E+5, 2.0E+6, 3.5E+6

 Injection temperature  1-21 (step 5)

 Total number of successful experiments  3426

Figure 3a and Figure 3b demonstrate the effect of aforementioned parameters on CO2 Hydrate and CO2 
amount of substance change over a period of 10 years. In the next chapter the detailed analysis of each 
parameter is provided.  

Figure 3a: Amount of CO2 Hydrate throughout simulation time, 3b: Amount of CO2 Hydrate throughout 
simulation time 

5.1 Porosity 

The tornado plot in Figure 4a shows that the linear effect estimate for Porosity (0.1, 0.51) is -18.71 %. This 
means that if Porosity increases from 0.1 to 0.51, the expected hydrate amount fraction formed by the end of 
injection period of the total hydrate amount is decreased by 18.71%. Analysing Figure 4b, porosity is clearly 
the major contributor to the speed of hydrate formation. Based on the results, 40% of the output variance, on 
average, can be changed if porosity is changed. The fact that low-porosity cases are associated with more 
sensible heat per unit volume, enabling the formation of more hydrate before it rises to its equilibrium 
temperature (Zatsepina, Pooladi-Darvish, 2012), can explain the decrease in hydrate formation speed 
observed in aforementioned plots. On the other hand, analysing Figure 5a and Figure 5b, there is an opposite 
effect of Porosity on CO2 amount fraction by the end of hydrate formation. Porosity in this case remains the 
main contributor to the variance of the function but increasing porosity from 0.1 to 0.51 shows expected 
increase of residual CO2 amount, by the end of hydrate formation by 17.64%, which is a negative result in this 
study since CO2 storage is simulated in form of hydrates. 

5.2 Injection Temperature 

Figure 4b and Figure 5b shows that injection temperature has almost no effect on hydrate formation rate as 
well as on CO2 fraction by the end of Hydrate Formation. Even though lower temperatures promote hydrate 
formation rate, injection temperature in the range between 1 and 21 °C had little impact on hydrate formation. 

(a) (b)
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In this context, it is important to keep in mind the substantial difference in Heat Capacity between water and 
CO2, as well as the rock Heat Capacity that will also buffer out some temperature difference between initial 
temperature in the reservoir, and the temperature of the incoming CO2. 

5.3 Thermal Conductivity 

The effects of the Thermal Conductivity were investigated by changing a value from 1.5E+5 J/(m · day · ℃) in 
the base case to 3.2E+5 J/(m · day · ℃) and 6E+5 J/(m · day · ℃), which is the range where Thermal 
Conductivity of different rocks typically falls (Labus, Labus, 2018). The higher values of Thermal Conductivity 
cause higher rates of Heat Flow and, consequently, higher rates of Hydrate Formation (Zatsepina, Pooladi-
Darvish, 2011), that can be seen on Figure 4a. The increase of Thermal Conductivity from 1.5E+5 J/(m · day · ℃) to 6E+5      J/(m · day · ℃) leads to a 3.625% increase in hydrate fraction by the end of injection. On the 
contrary, the same increase in Thermal Conductivity shows negative effect on residual CO2 fraction by the end 
of hydrate formation. 

5.4 Heat Capacity 

The effect of Heat Capacity is similar to Thermal Conductivity. It influences the hydrate percentage by the end 
of injection and CO2 percentage by the end of hydrate formation in the same way as Thermal Conductivity 
with the only difference, Heat Capacity has much bigger impact than Rock Conductivity. By increasing Heat 
Capacity from 8.0E+5 J/(m3 · ℃) to 3.5E+6 J/(m3 · ℃), the hydrate amount percentage is increased by 
8.991% as shown on Figure 4a. It can be explained by the fact that during hydrate formation the generated 
heat needs to be buffered out and rocks with greater heat capacities are much better candidates for it. 

5.5 Permeability 

Figure 4a shows linear effect of Permeability as well as quadratic effect. By increasing Permeability from 10 to 
2010 mD, the expected decrease of hydrate fraction by the end of injection is 6.474 %. On the other hand, 
quadratic effect shows increase by 8.363 %. This phenomenon may be explained by hydrate formation being 
an exothermic reaction, and that heat needs to be transported away from the formed hydrate for further growth 
to occur. Thus, when Permeability reaches a certain value, hydrate formation may be fast enough to form 
such large amounts of hydrate. The lack of heat transport by porous media results in overall reduction of 
hydrate growth (Qorbani et al., 2016), or if Porous Media handles the heat income produced by hydrate 
formation, then positive effect of Permeability on hydrate formation can be seen. On the other hand, 
increasing Permeability from 10 to 2010 mD increases CO2 fraction by the end of hydrate formation by 
6.027%, which is unfortunate for CO2 storage as hydrates. 

5.6 Reference Pressure (Pressure of Sea Bottom) 

Figure 4a and Figure 5a show that by increasing Reference Pressure from 5000 to 17000 kPa, which roughly 
corresponds to sea depths of 500 meters and 1700 meters respectively, percentage of hydrate formed by the 
end of the injection is increased by 10.64% and percentage of CO2 remained by the end of injection 
decreased by 9.386%. At higher pressures, two factors promote hydrate formation and growth. The first is the 
solubility of CO2 which increases with increasing pressure. Moreover, at high pressures, CO2 prefers to remain 
within the hydrate structure compared to lower pressures, thus lowering hydrate dissociation rates. 

Figure 4a: Effect Estimates of CO2 Hydrates fraction by the end of injection using Polynomial Regression, 
4b: Sobol Analysis of CO2 Hydrate fraction by the end of Hydrate formation using RBF Neural Network 

(a) (b) 
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Figure 5a: Effect Estimates of CO2 fraction by the end of injection using Polynomial Regression,  
5b: Sobol Analysis of CO2 fraction by the end of Hydrate formation using RBF Neural Network 

6. Conclusions

The challenge of CO2 storage as hydrates in Saline Aquifers was investigated. It was found that the rate of 
hydrate formation varied linearly or quadratically with respect to Porosity, Permeability, Volumetric Heat 
Capacity, Reference Pressure (Sea Depth), Rock Thermal Conductivity, as well as Injection Temperature, 
within the studied ranges. Permeability had a moderate effect on hydrate formation, Injection Temperature, 
and Rock Conductivity showed almost no effect within the investigated range. However, the hydrate formation 
rate was significantly more sensitive to changes in Porosity, Reference Pressure, Heat Capacity. 
To sum up, our results indicate the possibility of long-term storage of CO2 in Saline Aquifers, although it 
depends on the reservoir characteristics. However, the results show that hydrate formation rate is strongly 
dependent on several parameters of the reservoir, which should be thoroughly considered before deciding on 
possible CO2 storage locations in the form of hydrates. 
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