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This paper presents a discrete modeling approach that is based on clusters of molecules. The aim of the 
approach is to provide the excess Gibbs function (gE) resp. activity coefficients of condensed phase mixtures, 
in particular, liquids. The modeling approach uses the probabilities of the discrete states of molecular clusters 
as its main variables. The clusters consist of four molecules. The compounds are modeled as dice-like 
molecules, giving them the option of having one to six different energetic interaction sites. A molecular 
sampling algorithm links the abstract dice-like representations to real molecules. The model results are 
compared to experimental data for mixtures of butanal + n-heptane, acetone + n-heptane, and acetone + 
methanol. The comparison shows that the deviations of this approach are similar to those of the well-known 
UNIFAC model, which indicates the approach as a promising alternative for the development of gE models. 

1. Introduction

Equations of state and activity coefficient models, which are thermodynamic approaches to calculate fluid 
phase equilibria, are being challenged to describe mixtures with pronounced interactions. These systems are 
hard to describe using traditional approaches, due to their significant divergences from random mixing 
behavior. However, due to the upcoming change towards more bio-based raw materials, the modeling of 
these systems is gaining in importance. Previous work introduced ‘discrete modeling’ as an attempt to include 
more fine-grained molecular information into thermodynamics on a fundamental level. The use of Shannon’s 
measure of information as an equivalent to the thermodynamical entropy (Pfleger et al. 2015; Wallek et al. 
2016) is the defining characteristic of this approach.  
The basis of the approach is a former paper using discrete Markov chains to model the thermodynamics of 
planar (2D) lattices for solid solutions (Vinograd and Perchuk, 1996).  This modeling concept was further 
developed towards a three-dimensional system (Wallek et al., 2018), where the compounds were modeled 
with a geometry similar to dice, providing one to six distinguishable interaction sites per molecule (Mayer and 
Wallek, 2020). The basis for thermodynamic modeling of this approach is a cluster comprising several 
molecules that is intended as a representative sub-system of the lattice and consists of four molecules and 
three pairwise contacts. In order to link this modeling approach to real molecules, the energetic interactions 
between molecules are determined using a sampling algorithm similar to the PAC-MAC approach (Sweere 
and Fraaije, 2015). 

2. Model for dice-like molecules

The modeling approach is based on a simple cubic lattice which is populated with the dice-like molecule 
representations. The core idea behind this approach based on Vinograd and Perchuk (1996) is that the 
process of inserting molecules into this lattice is sequential in nature, inserting the molecules one by one. 
Each newly inserted molecule is surrounded by a partially complete proximity of formerly inserted molecules. 
Figure 1 shows an example of such an insertion step. The insertion process itself is influenced by the 
energetic interactions between the newly inserted molecule and its immediate neighbors. Therefore, 
conditional probabilities can be assigned to each insertion step based on the selection of component type and 
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orientation of the newly inserted molecule with respect to the specific neighborhood it is placed into. The aim 
of this modeling approach is to determine the averaged probabilities for the construction of a lattice system 
that has been thermodynamically equilibrated. The probabilities are determined though a minimization of the 
free energy expressed as a function of these probabilities. The following paragraphs provide an overview of 
this modeling approach on a conceptional level. A detailed description including the full system of equations 
can be found in Mayer and Wallek (2020). 

Figure 1: Sequential assembly of a lattice by the insertion of a new molecule at the position A with neighbors 
B, C, and D already being present from previous insertions. 

2.1 Cluster as a modeling basis 

To achieve the introduced modeling concept, a small cluster is chosen from the entire lattice system and used 
as a representative modeling basis. The cluster is chosen in a way that incorporates the immediate 
neighborhood that the new molecule is placed into. An example of such a cluster is given in Figure 2. The 
cluster given in this figure can be interpreted such that dice A represents the newly inserted molecule and dice 
B, C, and D represent the next neighbors which are present at the time of insertion. With this choice of cluster, 
the probabilities of the sequential lattice insertion steps can also be modeled based on this small cluster. 
Therefore, the thermodynamic property of interest, i.e., the free energy, can be expressed by making use of 
the probabilities from the small cluster. 

Figure 2: Example of a cluster comprising four dice-like molecules where the dice color signals the component 
type. 

2.2 Entropy and internal energy 

The entropy of the model is based on Shannon entropy applied to the conditional insertion probabilities. It is 
important that the entropy of the sequential insertion step is used as the system’s entropy. If the entropy 
based only on the clusters were to be used, the described system would be an ensemble of independent 
clusters instead of the desired lattice-system. 
The system’s internal energy is assumed to be additive, and interactions further apart than nearest neighbors 
are assumed to have a negligible contribution to the entire internal energy. Considering these assumptions, 
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the internal energy of this system equals the average cluster energy, that is the sum of the energies of all 
possible clusters weighted by their respective probability of occurrence. 

Figure 3: From the cluster given in Figure 2, the contacting pairs of sites are highlighted. The contacts are 
between molecules: (a) A-B, (b) A-C, (c) A-D. 

The cluster interaction energy in turn is calculated from the sum of the interactions between the three 
contacting pairs. These pairs are highlighted in Figure 3. The model requires a pairwise interaction energy for 
every possible pair of sites, which are 78 in total, as the coefficients defining the component types used in the 
binary mixture.  

2.3 Free energy 

The Helmholtz function is used as objective function for the optimization that determines the probability 
distribution. Its minimum describes the desired thermodynamic equilibrium. Eq (1) shows the relationship 
between the free energy, a, the internal energy, u, and the entropy, s. Through this it can be immediately 
expressed as a function of the model variables, which are the cluster probabilities. = −   (1) 

Furthermore, the primary target is the determination of the excess Gibbs-energy. It can be directly determined 
from the Helmholtz function. Because the model considers all molecules to be placed at fixed positions on a 
regular lattice, the excess volume can only be zero. Therefore, the excess free energy and the excess Gibbs-
energy can be considered identical under the chosen model assumptions. 

2.4 Constraints 

Aside from the target function, there are three types of constraints that take part in the optimization. The first 
type can be summarized as mathematical constraints. They are based on the law of total probability and 
provide the model with a link between the global composition, which is a desired input of the model, and the 
optimization variables. 
The second type of constraints reflects some of the fundamental properties of the lattice system. A key part of 
the model is that the average probabilities that lead to the construction of a lattice system are independent of 
the direction that the lattice system is viewed from. This means that every local directional preference in a 
single lattice has counterparts when looking at an ensemble of lattice systems that have a similar preference 
in other directions. This property of the lattice system means that the lattice has to be considered isotropic. It 
is this isotropic property that informs this type of constraints, which is important for reducing the number of 
independent variables that the numerical optimization has to handle. 
Preliminary investigations into the modeled system have yielded the fact that additional constraints are 
necessary to fully reach the desired results. The approach chosen for these additional constraints is based on 
the considerations regarding the additivity property of the cluster energy. Figure 3 introduced the fact that the 
cluster energy is equal to the sum of the three pairwise interactions present in the chosen cluster shape. It 
seems natural to also consider this connection between the cluster and the three pairs in terms of 
probabilities. The third type of constraints is based on approximating the entire cluster by sequentially 
constructing it out of the three pairs in a fashion that is inspired by the sequential construction of the entire 
lattice-system. This type of constraints completes the optimization system that, for a specific mixture of 
components, takes the global composition as molar fractions and the desired temperature as input and returns 
the Helmholtz free energy as well as the probability distribution in equilibrium as output. 
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3. Link between dice-like and real molecules

While the consideration of abstract dice-like molecules seems like a natural intermediate step during model 
development between simple uniform, spherical molecules and more realistic molecule models, it is not 
entirely intuitive how real molecules can be linked with these abstract representations. The following sections 
introduce one methodology that shows how this can be achieved. 
For the representation of real molecules, the ‘optimized potential for liquid simulations’ in its ‘all-atoms’ version 
(OPLS-AA, cf. Jorgensen et al., 1996) is used. One orientation per component is chosen as the default 
orientation. From this point on, other molecule orientations are limited to 90 degree rotations of the default 
orientation. This is analogous to the possible 24 orientations of dice. Therefore, every component has a 
discrete set of 24 possible orientations in which they can exist in the cluster. Figure 4 illustrates three of the 
twenty-four feasible orientations for acetone. 

Figure 4: Three example orientations of acetone when modeled with dice-like geometry. 

3.1 Sampling procedure for pairwise interaction energies 

The interaction energies are input into the model as a matrix of pairwise interactions for every combination of 
dice faces. Because of this, the interaction energies can be determined by individual pairs of molecules. The 
sampling procedure for pairs of molecules is as follows: A specific orientation is selected for each molecule. 
Then, one molecule is fixed in the origin and the other one starts sufficiently far apart that overlapping cannot 
occur. The second molecule is then gradually moved closer to the first one, until a certain distance is reached. 
In the case of the example systems presented here, the second molecule is moved until the van der Waals-
surfaces touch. The interaction energy is then evaluated and stored with a reference to the orientations that 
the molecules are in. After that, a new combination of orientations is selected and the procedure starts over. 
The whole process is performed until all pairings of orientations have been sampled. For a binary mixture this 
amounts to 1728 samples. The model itself differentiates only between the interaction sites involved in the 
contact and not the specific orientations of other sites on these molecules. Therefore, all samples that have 
the same sites involved in the contact are combined to classes and the mean interaction energies of these 78 
classes are used as model input.  

4. Results

The results of the proposed modeling approach are illustrated using three example systems. They comprise 
butanal + n-heptane, acetone + n-heptane, and acetone + methanol. The model results are then compared 
with measurement data, results from the UNIFAC model, originally proposed by Fredenslund et al. (1975), as 
frequently used approach, as well as Monte Carlo simulations. The latter are based on the same dice-like 
molecule geometry as the model. The molecules are placed on a lattice and random rotations and location 
exchanges are performed using a standard Metropolis algorithm. The simulation receives the same set of 
pairwise interaction energies as the model and is used as a verification of model assumptions. 
Figure 5 gives the excess Gibbs function for a mixture of butanal + n-heptane at ambient temperature (298.2 
K). Here, the resulting curve is drawn over the molar fraction of butanal. Comparisons are made to 
experimental data which are taken from Krenzer (1985) in Redlich-Kister polynomial form. It can be seen that 
the side of the curves that is rich in butanal shows similar deviations from the experimental data for both 
UNIFAC and the model presented in this work. A higher n-heptane composition leads to noticeably larger 
deviations. An explanation for this is the fact that n-heptane has an elongated form and is therefore not that 
well described using a dice-like geometry. Beside the section between a composition of 0.5 and 0.6, the model 
returns data which is slightly larger than that for the Monte-Carlo simulations. 
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Figure 5: Excess Gibbs-energy for the mixture butanal + n-heptane is plotted over the molar fraction of 
butanal. Measurements (Krenzer 1985), UNIFAC (Fredenslund et al. 1975), and Monte Carlo data are also 
shown for comparison. 

The mixture acetone + n-heptane, shown in Figure 6 at ambient temperature (298.15 K), shows a similar 
behavior as the previous mixture. The deviations between this model and the measured data from literature 
(Krenzer 1985) are again of a similar magnitude than those of the UNIFAC model. The model calculates 
slightly larger results than the Monte-Carlo simulation. 

Figure 6: Excess Gibbs-energy for the system acetone + n-heptane is plotted over acetone composition. 
Measurements (Krenzer 1985), UNIFAC (Fredenslund et al. 1975), and Monte Carlo data are also shown for 
comparison. 

Figure 7 gives the excess Gibbs function of the system acetone + methanol plotted over the molar fraction of 
acetone at a temperature of 323.15 K. From Gmehling & Onken (2005), experimental data are taken again by 
using a Redlich-Kister polynomial expansion. For an acetone composition below 0.5, the model results are 
slightly beneath the experimental data and slightly higher at larger concentrations.  
Overall, the model is in satisfying agreement with measurement data. In comparison to results from Monte 
Carlo simulations, a slightly positive deviation can be observed. For the UNIFAC model, however, a more 
significant discrepancy from measurement data becomes evident for this two-component mixture. 
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Figure 7: Excess Gibbs-energy for a mixture of acetone + methanol, plotted over acetone composition. 
Measurement data (Gmehling & Onken 2005), results from the UNIFAC model (Fredenslund et al., 1975), and 
data from Monte Carlo simulations are also shown for comparison. 

5. Conclusions

In this work, a model based on dice-like abstractions is coupled with a molecular-sampling procedure to allow 
real molecules to be projected into this abstract form. The model assumes that several restrictions are in place 
to account for the selected shape and properties. The first assumption is that all molecules have the same 
size and shape. This means that the model yields the best results when applied to components that are of 
similar size and are fairly spherical in shape. The next assumption is that each molecule is limited to the 24 
possible orientations that can be observed from dice. Furthermore, the molecules are forced on fixed positions 
in a lattice. First results of the example systems of butanal + n-heptane, acetone + n-heptane, and acetone + 
methanol have shown that the abstract dice-like molecule representations with all the mentioned restrictions 
provide promising results regarding the underlying modeling approach. The applicability of this modeling 
approach to different mixtures consisting of a diverse variety of components is topic of ongoing research 
investigations. 
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