

VOL. 89, 2021

DOI: 10.3303/CET2189096

Guest Editors: Jeng Shiun Lim, Nor Alafiza Yunus, Jiří Jaromír Klemeš Copyright © 2021, AIDIC Servizi S.r.l. ISBN 978-88-95608-87-7; ISSN 2283-9216

Facile Synthesis of MAX Modified Graphitic Carbon Nitride Nanocomposite for Stimulating Hydrogen Production Through Photocatalytic Water Splitting

Muhammad Tahir*, Areen Sherryna, Zaki Yamani Zakaria

Department of Chemical Reaction Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia. m.tahir@utm.my/bttahir@yahoo.com

Photocatalytic hydrogen production has been considered a promising strategy for developing green, sustainable, and clean energy resources to substitute non-renewable fossil fuels. A widely studied graphitic carbon nitride (q-C₃N₄) has garnered research attention due to their commercial availability and excellent photochemical efficiency to drive hydrogen generation through water splitting process. Undesirable recombination of photocarriers, higher electrostatic potential barriers, and low solar absorbance in a single g-C₃N₄ photocatalyst impede their efficiency in the energy conversion field. Several alternatives have been proposed over decades to improve the photocatalytic efficiency of g-C₃N₄. Among them, noble metal integration has been denoted as the most promising technique to maximize solar efficiency. Less availability and noneconomical, however, limit their functionality surpasses their unique SPR characteristics. In this study, a novel composite of V₂AIC MAX/g-C₃N₄ that exhibits the same functionality as those of noble metals was fabricated via a sol-gel method, and their efficiency enhancement was investigated using a liquid slurry photoreactor system. The optimal 10% loading of V₂AIC exhibits maximum hydrogen generation up to 196.25 µmol g⁻¹ h⁻¹, which is 2.8-fold higher than pure g-C₃N₄. The photoactivity enhancement observed was due to the intimate contact formed between V₂AIC with g-C₃N₄, accelerating the migration of the photogenerated charges. The electrons confinement due to the induced Schottky junction hamper the recombination of and maximizes the separation of the photocarriers. The prepared sample was characterized by XRD, PL analysis, and SEM. The successful integration of V₂AIC with g-C₃N₄ was affirmed by XRD analysis as the characteristics peaks of both materials are present in the composite. The stacked irregular structure of V₂AlC/g-C₃N₄ highly indicates that a tight interface contact was formed between both semiconductors. This study provides new insight into newly developed V₂AIC MAX-based q-C₃N₄ for clean energy systems and unravels their potential in solar energy applications.

1. Introduction

Hydrogen energy has been regarded as the best alternative to substitute fossil fuels as a prime energy carrier, specifically for electricity generation and transportation. It was denoted that current conventional techniques which utilize fossil fuels to generate a large scale of H₂ gas, such as Steam Methane Reforming (STM) and water-gas shift reaction, are typically associated with higher energy inputs and carbon footprints emission (Chen et al., 2020). Photocatalytic water splitting by scavenging energy from the sunlight using semiconductor materials was considered as a propitious maneuver for generating a clean and renewable H₂ gas. In recent advancements, the study on photocatalytic H₂ production has been greatly extended by utilizing various kinds of semiconductors composite. A recent study by Vaiano et al. (2021) disclosed that hydrogen generation was significantly induced up to 560.5 µmol L⁻¹ h⁻¹ from the glucose solution by utilizing Ni/LaFeO₃ composite. In different studies, Basaleh and Mahmoud (2021) ascribed that the composite of CoAl₂O₄–g-C₃N₄ substantially promotes the isolation of the photogenerated charge carriers with an improved hydrogen generation rate. Xu et al. (2021) disclosed that the heterojunction formation between g-C₃N₄/Ti₃C₂ MXene favors hydrogen production and enhanced photocatalytic activity. The construction of Z-scheme heterojunction in the composite of g-

Paper Received: 2 May 2021; Revised: 14 September 2021; Accepted: 25 November 2021

Please cite this article as: Tahir M., Sherryna A., Zakaria Z.Y., 2021, Facile Synthesis of MAX Modified Graphitic Carbon Nitride Nanocomposite for Stimulating Hydrogen Production Through Photocatalytic Water Splitting, Chemical Engineering Transactions, 89, 571-576 DOI:10.3303/CET2189096

571

572

C₃N₄/TiO₂/CQDs/Au remarked an enhancement in the photocatalytic hydrogen production due to stronger redox activity and proficient charges transfer. Graphitic carbon nitride (g-C₃N₄) gained enormous reputability as a single and hybrid photocatalyst due to their abundancy, excellent photochemical properties, and commercial availability. Despite their beneficial attribution in the photocatalysis field, it was reported that the electrostatic potential barrier in g-C₃N₄ favors the recombination of the photocarriers leading to the restriction in the redox activity (Zhang et al., 2021). Lower solar absorbance exhibit by g-C₃N₄ impedes their role as an individual photocatalyst for water splitting. V2AIC, which belongs to the family of MAX phases, gained scientific interests over their excellent electrical conductivity and good optical properties (Schneider et al., 2006). Semiconductors with higher conductivity could maximize the utilization of light and facilitate photoexcitation. The presence of vanadium (V) metal in V₂AIC substantially improves the conductivity and induces the Schottky barrier formation at the metal-semiconductor interfaces (Varma et al., 2018). It was noted that hybridizing g-C₃N₄ with V₂AIC could overcome the shortcomings of a single $g-C_3N_4$ photocatalyst, augmenting the photocatalytic performance. Highly metallic V₂AIC could substitute the non-commercial noble metals and serves as trapping centres to confine electrons from recombined with holes at the semiconductor counterpart. Limited research has focused on the photoactivity enhancement by utilizing the MAX phase as a co-catalyst, while none has been reported on the utilization of V2AIC in photocatalytic hydrogen production. A novel two-dimensional V2AIC/q-C3N4 composite has been fabricated via a sol-gel method, and their photocatalytic enhancement towards hydrogen generation has been investigated.

2. Experimental Section

2.1 Materials

Melamine (Sigma Aldrich, AR \ge 99 %) for the synthesis of bulk g-C3N4, V₂AIC (Sigma Aldrich), Methanol (Merck, AR \ge 99 %).

2.2 Synthesis of g-C₃N₄ nanosheets

Bulk $g-C_3N_4$ was prepared through the hydrothermal approach by using melamine as the precursor. Typically, 5 g of melamine was placed in a crucible, covered with a lid, and heated up for 2 h at 550 °C inside the furnace. The obtained yellow colored bulk was then ground into a fine powder using mortar and pestle. The yellow powder of $g-C_3N_4$ was dispersed in methanol and stirred for 2 h, under air atmosphere at normal temperature, before drying in the oven for 24 h at 100 °C, named $g-C_3N_4$ nanosheets.

2.3 Synthesis of V2AIC/g-C3N4

The composite of V₂AlC/g-C₃N₄ sample was prepared via sol-gel method at room temperature. 0.5 g of g-C₃N₄ (sample A) and 0.025 g amount of V₂AlC (sample B) was dispersed in 20 mL of methanol and stirred for 2 h, under open environment at normal temperature. The uniformly dispersed sample B was added to sample A and stirred for another 2 h to ensure homogeneous dispersion of both samples. The obtained sample was dried in the oven at 100 °C under airflow for overnight, named V₂AlC/g-C₃N₄ composite. Different samples of V₂AlC/g-C₃N₄ with different V₂AlC loading (5 %, 10 %, 15 %, 20 %) were prepared following the same steps. Different samples of V₂AlC/g-C₃N₄, mad 20% V₂AlC/g-C₃N₄.

2.4 Characterization

The crystal structure was investigated using X-ray diffractometer (D/teX Ultra 250 Smart Lab), operated at 40 kV and 30 mA over the range 2-0 of 3° to 100° and speed of 8.255 °min⁻¹. The photoluminescence (PL) measurements were conducted using a HORIBA Scientific spectrophotometer operated at the wavelength of 325 nm. The morphologies and microstructures analysis was performed using scanning electron microscopy (SEM, Hitachi SU8020).

2.5 Photoactivity Test

The photocatalytic activity test was carried out using a liquid slurry photoreactor system equipped with a 35 W HID Xe Lamp (λ = 420 nm) with an intensity of 12,000 K as a visible light source. Specifically, 0.1 g of the photocatalyst was dispersed in a solution containing a mixture of 95 mL distilled water and 5 mL (5 %) vol of methanol as a sacrificial agent under continuous magnetic stirring. Nitrogen gas (N₂) was supplied to the reactor system to purge out air and impurities inside the system for 30 mins. After the reactor system was cleaned from other impurities, the lamp was turned on, and a hydrogen sampling bag was connected to the system under a continuous flow of N₂ gas regulated at 15 mL min⁻¹. The concentration of H₂ gas was measured every 1 h for a duration of 4 h and analyzed using a hydrogen gas analyzer manufactured by Brotie Technology (Brotie Model 100).

3. Results and Discussion

3.1 Characterization of Samples

XRD analysis has been performed to validate the crystal structure of the prepared samples and to determine the successful fabrication of the V₂AlC/g-C₃N₄ composite. The intense peak at 13.42 ° and 41 ° in Figure 1a are ascribed to the MAX phase of V₂AlC based on the previous literature (Gorshkov et al., 2020). The sharp peak inherently indicates the higher crystallinity structure of V₂AlC. A pronounced peak at 13.1 ° and 27.3 °, corresponding to (001) and (002) facets, signifies the structural packing and interplanar stacking of g-C₃N₄. The diffraction peaks are in accordance with JCPDS No. 87-1526. For 10 % V₂AlC/g-C₃N₄, both characteristics peaks of g-C₃N₄ and V₂AlC are present, indicating a successful integration.

PL test has been performed on the samples to acquire details on the photocarriers separation efficiency with corresponding results shown in Figure 1b. Typically, lower intensity highly indicates an efficient separation of the electron-hole pairs. It was noted that higher separation of the photoinduced charges profoundly impacts the photocatalytic performances. It can be observed that the composite of V₂AlC/g-C₃N₄ exhibits a higher peak depression with lower intensity compared to pure g-C₃N₄. Higher PL intensity by g-C₃N₄ was believed due to higher recombination rates of the photogenerated charges. On the other hand, V₂AlC does not show any prominent peaks due to their metallic nature and non-semiconducting properties. It was further affirmed that the formation of the Schottky barrier induced by highly conductive V₂AlC notably confines the electrons and prevents the backward recombination of the charge carriers. The trapped electrons at the V₂AlC surfaces and holes at the g-C₃N₄ are spatially separated, elucidate the lower intensity peak observed in V₂AlC/g-C₃N₄.

The morphological structure of pristine g-C₃N₄, V₂AlC, and composite of 10 % V₂AlC/g-C₃N₄ were investigated using SEM analysis. As denoted in Figure 2a, pristine g-C₃N₄ synthesized through the thermal decomposition of melamine exhibits irregular clumps with compact crumple sheet morphology, where the sheets of the g-C₃N₄ can be observed to be agglomerated and stacked onto each other. Whereas V₂AlC in Figure 2b shows a prominent non-exfoliated MAX phase suggesting that aluminum was attached at the layered V₂AlC as they exhibit a compact, dense structure (Hu et al., 2008). The successful integration of g-C₃N₄ with V₂AlC can be observed in Figure 2c, as it was evident that the smooth surfaces of V₂AlC were covered with the irregular structure of g-C₃N₄ forming an intimate contact with each other. Close interfaces contact between g-C₃N₄ and V₂AlC promotes an efficient transfer of photocarriers as shorter electrons transmission and lower transfer resistances can be achieved.

Figure 1: (a) XRD patterns (b) PL analysis of pristine g-C₃N₄, V₂AIC and composite of 10 % V₂AIC/g-C₃N₄

Figure 2: SEM images of (a) pristine g-C₃N₄, (b) V₂AIC, and (c) composite of 10 % V₂AIC/g-C₃N₄

3.2 Bandgap of g-C₃N₄ and V₂AIC/g-C₃N₄

The energy band gap of g-C₃N₄ and V₂AlC/g-C₃N₄ were estimated from the Tauc plot and calculated based on Kubelka–Munk (KM) function through the relationship between $(\alpha hv)^2$ and photon energy Tauc plots. As indicated in Eq(1), α was referred to as the absorption coefficient of the material, while r was defined as the nature of the semiconductor. The band energies of 2.95 eV and 2.84 eV were obtained for g-C₃N₄ and V₂AlC/g-C₃N₄, respectively. The band gap energies obtained suggest that the addition of V₂AlC does not significantly impact the band gap of the g-C₃N₄. The relationship between E_g, CB and VB is denoted in Eq(2), while the CB calculation can be obtained from Eq(3) by which coefficient X stands for semiconductor electronegativity (EN), E was denoted as energy-free electron, and E_g is the band gap of semiconductor.

$$E_{g} = (\alpha h v)^{\overline{r}}$$
⁽¹⁾

$$E_g = VB - CB$$
(2)

$$CB = X - E - 0.5E_g$$
(3)

Figure 3: Tauc plot of (a) pristine g-C₃N₄, (b) composite of 10 % V₂AlC/g-C₃N₄

3.3 Photocatalytic Hydrogen Production

The photocatalytic performances of pristine g-C₃N₄, V₂AlC and V₂AlC/g-C₃N₄ with different percentage loading of V₂AlC (5 %, 10 %, 15 %, 20 %) are demonstrated in Figure 4a. The obtained results were calculated as according to Eq(4) :

$$\text{Yield } \left(\frac{\mu \text{mol}}{\text{g of catalyst}}\right) = A\left(\text{ppm}\left(\frac{\text{mg}}{\text{L}}\right)\right) \times V\left(\text{mL}\right) \times \frac{C_{1}\left(1\text{L}\right)}{1,000 \text{ mL}} \times \frac{M\left(1 \text{ mol}\right)}{2,000 \text{ mg}} \times \frac{C_{2}\left(10^{6} \mu \text{mol}\right)}{1 \text{ mol}} \times \frac{\text{Catalyst weight}}{\text{mass of } V_{2}\text{AlC/g-}C_{3}N_{4}\left(\text{g}\right)}$$
(4)

Where A is the hydrogen yield in ppm, V denotes as the volume of the liquid, 2,000 is the molecular weight of hydrogen gas in mg. C_1 stands for the conversion unit from mL to L, and C_2 stands for the conversion from mol to µmol. M is the molecular weight of hydrogen in mg/mol.

It is apparent that H₂ generation is improved on V₂AlC/g-C₃N₄ composite compared to pristine g-C₃N₄. Pristine g-C₃N₄ exhibited poor H₂ generation performances with the H₂ rate of 70 µmol g⁻¹ h⁻¹. The enhancement in the photocatalytic activity is highly attributed to the improved solar absorption and optical performances by the composites. It was noted that the formation of intimate contact between g-C₃N₄ and V₂AlC substantially accelerating the migration of the photogenerated charges due to the shorter transmission pathway (Reli et al., 2021). The integration of highly conductive V₂AlC renders them with an electron sink functionality, resulting in Schottky barrier formation at the metal-semiconductor interfaces. The formation of Schottky barrier improves the separation of the photogenerated charges as they confine the electrons at the V₂AlC surfaces and inhibit them from recombining with holes at the semiconductor counterpart, astoundingly improve the photocatalytic performances. It can be observed that the composite with 10 % loading of V₂AlC exhibits the highest hydrogen generation rate of 196.25 µmol g⁻¹ h⁻¹, which is 2.8-fold higher than pristine g-C₃N₄. On the other hand, excessive loading of V₂AlC results in a declined photoactivity, probably due to the light-shielding effects which hinder the absorption of light on g-C₃N₄ (Su et al., 2019). The optimal control of 10 % V₂AlC loading could hamper their accumulation on the semiconductor counterpart, favoring light to reach the semiconductor surface for photon absorption. It was noted that 10 % loading could maximize the efficiency by optimally activates the surface of g-

574

 C_3N_4 and provide sufficient catalytic active sites for driving the redox reaction. It can also be ascribed that transitional element V from V₂AlC, which exhibits a higher work function, is believed to be responsible for their highly conductive properties and one of the key criteria for fostering hydrogen generation (Mendeza et al., 2021). The utilization of MAX phases with g-C₃N₄ in the current study shows a substantial catalytic improvement with better efficiency than those reported by noble metals/g-C₃N₄ and other hybrid composites. The maximum rate of hydrogen generation of the prepared V₂AlC/g-C₃N₄ is far better than Ag₃PO₄/Ag/g-C₃N₄ (4 μ mol g⁻¹ h⁻¹) (You et al., 2017), g-C₃N₄/Ag/MoS₂ (100 μ mol g⁻¹ h⁻¹) (Lu et al., 2017), and WS₂/g-C₃N₄ (154 μ mol g⁻¹ h⁻¹) (Zhou et al., 2019).

3.4 Mechanism

The charge transfer mechanism of the V₂AlC/g-C₃N₄ composite is demonstrated in Figure 4b. It can be explicated that the difference in the work function between metallic V₂AlC and g-C₃N₄ promotes the transfer of electrons towards V₂AlC. The photocatalytic mechanism will be as follows: Under the irradiation of light, the photogenerated charges will be generated at the valence band (VB) of g-C₃N₄ as shown in Eq(5), and the photogenerated electrons will be excited to the conduction band (CB) after the photon absorption, leaving holes in the VB. V₂AlC serves as electron acceptors as they exhibit a higher work function typically associated with a lower Fermi level than g-C₃N₄. It was noted that pristine g-C₃N₄ exhibit a work function of 3.81 eV (Yang et al., 2020), while V₂AlC having a work function of 4.3 eV (Pinek et al., 2018). Therefore, the electrons will migrate from a higher Fermi level of g-C₃N₄ towards the lower Fermi level of V₂AlC until their Fermi levels attain an equilibrium by which the electrons will be trapped at V₂AlC as shown in Eq(6) (Khan et al., 2020). The strong interfacial charges at metal-semiconductor interfaces inducing the Schottky barrier confining the electrons from returning to the semiconductor counterpart and recombining with holes (Tahir, 2021). The holes that remained at the VB of g-C₃N₄ will undergo oxidation reaction with water to produce H⁺ and also will be consumed by sacrificial reagent (methanol) as denoted in Eq(7) – (8). The accumulated electrons at the V₂AlC surfaces will undergo a reduction reaction with H⁺ to generate H₂ as shown in Eq(9).

$$g - C_3 N_4 + hv \rightarrow g - C_3 N_4 (e^- + h^+)$$
 (5)

$$g - C_3 N_4(e^-) + V_2 AlC \rightarrow V_2 AlC(e^-)$$
(6)

$$H_2 0 + h^+ \rightarrow \frac{1}{2} 0_2 + 2H^+$$
 (7)

$$CH_3OH + 2h^+ \rightarrow CH_2O + 2H^+$$
(8)

$$2e^- + 2H^+ \rightarrow H_2$$

Figure 4: (a) The rate of hydrogen generation for pristine $g-C_3N_4$ and $V_2AIC/g-C_3N_4$ composite with different V₂AIC loading, (b) photocatalytic electron transfer mechanism in V₂AIC/g-C₃N₄ composite

4. Conclusion

The composite of V₂AlC/g-C₃N₄ was successfully fabricated via the sol-gel method, and their photocatalytic efficiency was tested under visible light irradiation. Hydrogen production was observed to escalate up to 196.25 μ mol g⁻¹ h⁻¹ after 10 % V₂AlC was introduced, which is 2.8-fold higher than pristine g-C₃N₄. Higher photocatalytic performances observed can be attributed to the following: (1) introduction of V₂AlC induced Schottky barrier which suppressed the recombination and imparted a facile separation of the photocarriers; (2) proficient charges

(9)

transfer due to intimate contact formed between the metal-semiconductor, shortening the transmission pathway; (3) presence of V₂AIC rendered extra catalytic active sites promoting the redox reaction. This work provides new insight into newly developed V₂AIC MAX-based g-C₃N₄ for clean energy systems and to unravel their potential in solar energy applications.

Acknowledgement

The authors would like to extend their most profound appreciation to Ministry of Higher Education for the financial support under Fundamental Research Grant Scheme (FRGS, R.J130000.7851.5F384).

References

- Basaleh A., Mahmoud M.H.H., 2021, CoAl₂O₄-g-C₃N₄ Nanocomposite Photocatalysts for Powerful Visible-Light-Driven Hydrogen Production, ACS Omega, 6(15), 10428-10436.
- Chen W.T., Dong Y., Yadav P., Aughterson R.D., Sun-Waterhouse D., Waterhouse G.I.N., 2020, Effect of Alcohol Sacrificial Agent on the Performance of Cu/TiO₂ photocatalysts for UV-driven Hydrogen Production, Applied Catalysis A: General, 602, 117703-117719.
- Gorshkov V.A., Karpov A.V., Kovalev D.Y., Sychev A.E., 2020, Synthesis, Structure, and Properties of Material Based on V₂AIC MAX Phase, Physics of Metals and Metallography, 121(8), 765-771.
- Hu C., He L., Liu M., Wang X., Wang J., Li M., Bao Y., Zhou Y., 2008, In Situ Reaction Synthesis and Mechanical Properties of V₂AIC, Journal of the American Ceramic Society, 91(12), 4029-4035.
- Khan A.A., Tahir M., Bafaqeer A., 2020, Constructing a Stable 2D Layered Ti₃C₂ MXene Cocatalyst-Assisted TiO₂/g-C₃N₄/T_{i3}C₂ Heterojunction for Tailoring Photocatalytic Bireforming of Methane under Visible Light, Energy & Fuels, 34(8), 9810-9828.
- Lu D., Wang H., Zhao X., Kondamareddy K.K., Ding J., Li C., Fang P., 2017, Highly Efficient Visible-Light-Induced Photoactivity of Z-Scheme g-C₃N₄/Ag/MoS₂ Ternary Photocatalysts for Organic Pollutant Degradation and Production of Hydrogen, ACS Sustainable Chemistry & Engineering, 5(2), 1436-1445.
- Mendeza M.S., Lemarchanda A., Traorea M., Amara M.B., Perruchotb C., Nikravecha M., Kanaeva A., 2021, Preparation and Photocatalytic Activity of Coatings based on Size-selective V-TiO₂ Nanoparticles, Chemical Engineering Transactions, 84, 19-24.
- Pinek D., Ito T., Ikemoto M., Nakatake M., Ouisse T., 2018, Electronic structure of V₂AIC, Physical Review B, 98(3), 1-9.
- Reli M., Ambrožová N., Valášková M., Edelmannová M., Čapek L., Schimpf C., Motylenko M., Rafaja D., Kočí, K., 2021, Photocatalytic water splitting over CeO₂/Fe₂O₃/Ver photocatalysts, Energy Conversion and Management, 238.
- Schneider J. M., Mertens R., Music D., 2006, Structure of V₂AIC studied by theory and experiment, Journal of Applied Physics, 99(1), 1-4.
- Su T., Hood Z. D., Naguib M., Bai L., Luo S., Rouleau C. M., Ivanov I. N., Ji H., Qin Z., Wu Z., 2019, Monolayer Ti₃C₂T_x as an Effective Co-catalyst for Enhanced Photocatalytic Hydrogen Production over TiO₂, ACS Applied Energy Materials, 2(7), 4640-4651.
- Tahir M., 2021, Investigating the Influential Effect of Etchant Time in Constructing 2D/2D HCN/MXene Heterojunction with Controlled Growth of TiO₂ NPs for Stimulating Photocatalytic H₂ Production, Energy & Fuels, 35(8), 6807-6822.
- Varma R., Yadav M., Tiwari K., Makani N., Gupta S., Kothari D.C., Miotello A., Patel N., 2018, Roles of Vanadium and Nitrogen in Photocatalytic Activity of VN-Codoped TiO₂ Photocatalyst, Photochem Photobiol, 94(5), 955-964.
- Yang C., Tan Q., Li Q., Zhou J., Fan J., Li B., Sun J., Lv K., 2020, 2D/2D Ti₃C₂ MXene/g-C₃N₄ Nanosheets Heterojunction for High Efficient CO₂ Reduction Photocatalyst: Dual Effects of Urea, Applied Catalysis B: Environmental, 268, 118738-118748.
- You M., Pan J., Chi C., Wang B., Zhao W., Song C., Zheng Y., Li, C., 2017, The Visible Light Hydrogen Production of the Z-Scheme Ag₃PO₄/Ag/g-C₃N₄ Nanosheets Composites, Journal of Materials Science, 53(3), 1978-1986.
- Zhang M., Lai C., Li B., Xu F., Huang D., Liu S., Qin L., Liu X., Yi H., Fu Y., Li L., An N., Chen L., 2021, Insightful Understanding of Charge Carrier Transfer in 2D/2D Heterojunction Photocatalyst: Ni-Co Layered Double Hydroxides Deposited on Ornamental g-C₃N₄ Ultrathin Nanosheet with Boosted Molecular Oxygen Activation, Chemical Engineering Journal, 422, 130120-130131.
- Zhou Y., Ye X., Lin D., 2019, One-pot Synthesis of Non-noble Metal WS₂/g-C₃N₄ Photocatalysts with Enhanced Photocatalytic Hydrogen Production, International Journal of Hydrogen Energy, 44(29), 14927-14937.

576