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CO2 capture is one of the most promising strategies to combat the increasing CO2 concentration in the 
atmosphere, but the high energy requirement has prevented its widespread use. A new latent heat reuse system 
based on pressure swing technology was proposed for the post-combustion CO2 capture (PCC) process, which 
can recover more than 50% of the energy from compressed flue gas. As a representative of deep eutectic 
solvents (DES), reline was adopted as an absorbent for this PCC process and was shown to be suitable for flue 
gas decarbonization. An artificial neural network (ANN) model was then trained to explore the relationship 
between the operating parameters of the designed PCC process and their capture results. The ANN model can 
provide direction for multi-parameters selection as it can quickly predict and find combinations of operational 
parameters that meet the capture objectives. The result of this work shows a 68.8 % reduction in total capture 
energy requirement after improvement (1.28 MJ/kg CO2) compared to the conventional MEA-based capture 
process (4.1 MJ/kg CO2).  

1. Introduction 
Since 2000, the global CO2 concentration has increased by about 20 ppm per decade, which is about 10 times 
faster than the average annual rise over the past 800,000 y (Bereiter et al., 2015). This rapid human-driven 
change is a major cause of global warming, with significant negative impacts on humans and natural systems 
(IPCC, 2018). In response to the rapid increase in atmospheric CO2 concentrations, governments have 
committed to achieving net-zero CO2 emissions by 2055 - 2080 (Bataille et al., 2018). Among the anthropogenic 
sources, coal-fired power plants are one of the most dominant CO2 emissions sources. Coal-fired power plants 
in Pakistan alone were reported to emit 14,500 t/y CO2 (Ali et al., 2021). Although countries are now ambitiously 
developing renewable power resources to replace traditional fossil-based power generation, fossil-based power 
generation still accounts for about 63 % of the electrical supply (Nimmanterdwong et al., 2022). It will be hard 
to fully replace coal-fired power plants within a few decades. Therefore, CO2 capture technology, especially 
post-combustion CO2 capture (PCC), has become extremely important for reducing CO2 emissions, as it can 
be installed in power plants and can be adapted to different operating conditions. 
One obstacle to the widespread usage of PCC technology is its huge energy need. When evaluating absorbents 
for PCC technology, monoethanolamine (MEA) is considered the industry benchmark because it has been used 
successfully for more than 50 y with a regeneration energy requirement of 4.1 MJ/kg CO2 (Kansha et al., 2017). 
In this work, we chose a typical deep eutectic solvent-reline, consisting of choline chloride and urea in a molar 
ratio of 1:2, as the CO2 absorbent. Deep eutectic solvents (DESs) are solutions of Lewis acids and bases that 
form eutectic mixtures and have been considered as potential CO2 absorbers due to their almost zero volatility, 
high thermal stability, high acid gas solubility, and compositional tunability (Kamgar et al., 2017). DESs have 
proven to show advantages in capturing gas streams with high CO2 concentration or high pressure, such as 
biogas and shale gas. While for flue gas, the energy requirement is large (5.12 MJ/kg CO2) due to its low CO2 
concentration and low pressure (Zhang et al., 2018). The purpose of this work is to explore the potential use of 
reline for flue gas decarbonization and to reduce the energy requirements of the PCC from process design and 
proper operating parameters selection.  
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2. Research method 
2.1 Component definition and thermodynamic specification 

In the process of decarbonization of flue gas, various components such as CO2, H2O, N2, and O2 are involved. 
Before the flue gas is decarbonized, it undergoes a pre-treatment to remove SOX, NOX, and small particles. The 
flue gas model information of a typical 100 MW coal-fired power plant (flow rate of coal-fired flue gas = 100 kg/s) 
is listed in Table 1. This PCC process uses reline as absorbent, which is one of the most common DESs used 
for CO2 separation and shows a higher CO2 solubility compared to other DESs (Sarmad et al., 2017). Since 
reline can be mixed with H2O in any ratio and is difficult to separate, the H2O should also be completely removed 
before the PCC process and be ignored in the simulation. The thermophysical properties of the components 
other than reline (i.e., CO2, N2, and O2) were calculated using the parameters from the NIST databank in Aspen 
Plus. In Aspen Plus, reline was defined as a pseudo-component and its physical properties were fitted with a 
semi-empirical equation using the experimental data. The modelling information of reline were obtained from 
the work of Ma et al. (2018) and were listed in Table 1.  

Table 1. Physical properties of reline and flue gas composition 

Property parameters Equation 

Liquid molar volume (m3/kmol) ρ=0.06358+2.427×10-5T+1.624×10-8T2  (1) 

Viscosity (Pa·s) Inη=-443.7+26670/T+62.14 lnT (2) 

Surface Tension (N/m) σ=0.09244(1-Tr)0.6043                                                                        (3) 

Molar Heat Capacity (m3/ mol·K) Vl=0.06358+2.427×10
-5T+1.624×10-8T2 (4) 

Property methods NRTL-RK 
Critical properties TB=445.6 K, TC=644.4 K, PC=4.935 MPa, VC=0.25437 m3/kmol, 

ω=0.661, MW=86.58 
  
Flue gas specification  Flue gas composition 
H2O (mol%) 7 
N2 (mol%) 75 
O2 (mol%) 5 
CO2 (mol%) 13 
Flue gas feeding temperature (°C) 50 
Flue gas feeding pressure (atm) 1 

2.2 PCC process design with Aspen Plus 

For the DESs-based PCC process, the most common capture process is depicted in Figure 1 (Luo et al., 2021). 
The coal-fired flue gas should first go through a pre-treatment to remove the small particles, SOX, NOX, and 
H2O. Then, the pressure swing technology was adopted to absorb CO2 at high pressure and desorbed it at low 
pressure, as the solubility of CO2 is different at different pressures. Typically, a multistage compressor is used 
to compress the flue gas to reach the absorption pressure which consists of compressors and coolers. By 
cooling after each compression stage, the total energy demand for flue gas compression can be reduced. Still, 
it accounts for more than 80% total energy requirement of the PCC process. To overcome this large energy 
demand, a new PCC process was proposed in this work as illustrated in Figure 2, consisting of three parts, 
including CO2 absorption, latent heat reuse, and solvent regeneration. This latent heat reuse system was 
developed based on a three-stage compressor. Instead of using coolers to cool down the flue gas after 
compression, heater exchangers 1, 2, 3 were used to collect the heat of compression. The residual flue gas 
(mainly N2, O2, and a small amount of CO2) coming out of the top of the absorber was used as a coolant to 
absorb some residual heat generated in compressors 1, 2, 3. Since this residual flue gas is already at relatively 
high pressure (above atmospheric pressure), when it is heated to high temperatures it can be expanded in the 
turbines (turbines 1, 2, 3) to regenerate electricity. After the residual gas expands in the turbines, its temperature 
decreases, which makes it a perfect coolant for the whole system. Information about the efficiency of turbines, 
compressors, vacuum pumps, etc. is also given in Figure 2. Since all compressors (compressors 1, 2, 3) and 
all turbines (turbines 1, 2, 3) were set to operate at the same efficiency, only the details of compressor 1 and 
turbine 1 are listed in Figure 2. As for the desorption process, when the solvent was regenerated in the flash 
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tank (stripper), the temperature of the reline increased slightly due to the exotherm of the desorption process. 
However, even if the temperature of the reline rises only slightly, after hundreds of cycles, the heat accumulates 
to a certain level that can cause the entire capture process to break down. Therefore, seawater was introduced 
as a coolant to keep the recycled reline running at a constant temperature. Ullah et al. (2020) investigated a 
method to produce freshwater by membrane distillation technology using waste heat from a carbon capture 
process. In this case, using seawater as a coolant is another way to reuse the latent heat. 

 

Figure 1: Typical DESs-based PCC process 

 

Figure 2: PCC process with latent heat reuse system 
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2.3 Optimize multiple operating parameters with ANN model 

In this designed PCC process, the initial molar ratio (mole amount of CO2 in the flue gas/mole amount of 
absorbent), the absorption pressure (atm), and the desorption pressure (atm) are the three main factors affecting 
the capture results and the total energy need, respectively. These three input parameters can be adjusted in 
Aspen Plus to find an operating case that achieves the capture target with a relatively low total energy need. 
The total energy requirement is calculated as Eq (5). 

Wtotal=Wpump1+Wvacuum pump+�Wcompressor i

3

i=1

+�Wturbine i

3

i=1

 (5) 

Where: Wpump1, Wvacuum pump, Wcompressor , Wturbine  represent the work of pumps, compressors, and turbines 
respectively MW. 
The calculation of the loop flow in Aspen Plus requires the calculation of its break flow first to obtain some basic 
information about the loop stream, then the calculation of the loop flow can be performed, and it is complicated 
and tedious to calculate all possible scenarios manually. To avoid overly large calculations in Aspen Plus, only 
100 random combinations of operating parameters, selected by the Randi function in MATLAB, were calculated 
to get their output parameters (CO2 removal rate, CO2 concentration, and total energy requirement). These 100 
sets of data were then used to train an Artificial Neural Network (ANN) model using ANN fitting toolbox in 
MATLAB. This ANN model which depicts the relationships between input parameters and output parameters 
was trained using a Bayesian regularization algorithm. In this case, output parameters can be predicted for any 
combination of input parameters without the necessity to calculate them in Aspen Plus. According to the U.S. 
Department of Energy recommendations, the capture goal was set to achieve more than 90 % CO2 removal rate 
and more than 90 % purity of CO2 product (Brunetti et al., 2010). The ANN model was used to quickly select 
the operational conditions that met the capture goal. The results were compared to the value calculated by 
Aspen Plus to determine the accuracy of the trained ANN model. 

3. Results and discussions 
3.1 Assessment of ANN model  

As previously described, 100 sets of data were trained using the ANN fitting toolbox in MATLAB. The ANN 
model can also give predictions for these 100 sets of input data. The coefficient of determination (R2) between 
these 100 predicted values and the values generated by Aspen Plus was used to determine the number of 
hidden neurons of the ANN. The R2 value was controlled to be above 0.99 to maintain the high reliability of the 
prediction results. The trained ANN model with a two-layer feedforward network was depicted in Figure 3 
consisting of 6 sigmoid hidden neurons and 3 linear output neurons. The prediction results of the ANN model 
and the calculated output of Aspen Plus are demonstrated in Figure 4. The R2 value for CO2 concentration, total 
energy need, and removal rate were 0.9987, 0.9996, and 0.9903. ANN models have shown their advantages in 
predicting complex processes (e.g., CO2 capture processes, biomass gasification, etc.), and previous studies 
have reported satisfactory estimation performance of ANN models (Baruah et al., 2017).  
The ANN model was used to select a set of operating conditions that satisfy the capture objective. The detailed 
operating information and the comparison of ANN prediction results and Aspen Plus results are presented in 
Table 2. The searching constrains for these three input parameters also listed in Table 2. The maximum 
deviation between the predicted and true values of the three output values is 1.22 %, so this ANN model can 
be considered reliable. 

 

Figure 3: ANN model with a two-layer feedforward network 
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Figure 4: Parity plot of predicted results and the Aspen Plus results 

Table 2. Comparison of ANN prediction results and actual results 

Operating conditions  Constrains Output results Prediction Real value Deviation 
Absorption pressure  10 atm 1-20 atm Total energy demand 22.78 MJ 22.90 MJ 1.22 % 
Desorption pressure  0.1 atm 0.1-1 atm CO2 removal rate 92.29 % 93.43 % 0.49 % 
Flow ratio 2.90 % 2-43.53 % CO2 purity 99.10 % 99.54 % 0.44 % 

3.2 Latent heat reuse system design for PCC process 

Figure 5 shows the details of each stream and equipment in the PCC process for this design under the operating 
conditions described in Table 2. The use of Reline as an absorbent shows great advantages. First, since its 
vapor pressure is almost zero, the absorbent losses during operation are negligible, which means it can be used 
repeatedly without the need for an additional refill. Also, the purity of the CO2 product after separation is high, 
as N2 and O2 are extremely difficult to dissolve in the reline. The biggest concern for the DESs-based PCC 
process would be the large energy demand. However, 53.3 % of the residual heat generated during flue gas 
compression can be reused by using this latent heat reuse system. With the help of the ANN model, it was able 
to quickly find an operation case that meets the capture target with a total energy requirement reduction to 1.28 
MJ/kg CO2, proving its potential for industrial CO2 capture applications. 

 

Figure 5: PCC process simulation results under selected condition 
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4. Conclusion 
This work demonstrated the possibility of applying reline to flue gas decarbonization in a PCC process with a 
latent heat reuse system. This system can recover over 50 % by using the remaining gas to collect latent heat 
in the heater exchangers and allowing the reheated gas to expand in the turbine to generate electricity. With the 
ANN model, it is easy to find an operating condition that meets the capture target and reduces its total energy 
demand to 1.28 MJ/kg CO2. Compared with the traditional MEA-based PCC process, this can reduce about 
68.8 % of energy demand with almost zero absorbent loss. Since flue gas compression still accounts for more 
than 70 % of the total energy demand, a considerable flow ratio is used in the selected case to reduce the 
absorption pressure. Since this PCC process with a latent heat reuse system was based on pressure swing 
technology, it can be applied to other gas decarbonization, such as biomass gas, shale gas, etc., which will 
have a lower energy demand than the flue gas decarbonization. In this work, the ANN model was certificated 
as a useful tool for predicting complex processes like the CO2 capture process. A challenging solution pathway 
arises when simulating closed process networks, which are computationally demanding and difficult to simulate 
using traditional methods. With the ANN model, many tedious calculations can be avoided, and it is easy to pre-
design the PCC process with highly reliable prediction results. 
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