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The global mission to reduce fossil fuel consumption has led to the escalating demand for electrochemical 
energy storage (EES) devices such as fuel cells and batteries. Computational techniques like Density Functional 
Theory (DFT) have recently been coupled with Machine Learning (ML) for high-throughput material screening 
and discovery. Transition metal surfaces are popular electrocatalyst candidates, but predictive ML regression 
models have only been applied to select metals such as Pt and Cu. Additionally, characterizing the contributions 
of each feature is challenging, especially on black-box models. In this work, regression models were trained to 
predict the adsorption energies of carbon, hydrogen, and oxygen on 27 fcc (111) monometallic surfaces and 
applied model-agnostic interpretation methods to evaluate feature importance. Over 200 adsorption energies 
on transition metal surfaces were collected from Catalysis-hub.org, a surface reaction database. A dataset was 
constructed for each adsorbate, and was composed of ten surface atomic, surface electronic, and adsorbate 
properties collected from online databases and DFT calculations on adsorbate-free surfaces. Then, the fine-
tuned random forest regression, Gaussian process regression, and artificial neural network models predicted 
atomic adsorption energies while permutation feature importance calculated feature contributions. All ML model 
accuracies were found to be competitive with those from literature, with Gaussian process regression reporting 
the lowest errors of the three models. Coordination number was also found to have the largest contributions for 
all models. ML-DFT methodologies such as this can be expanded to accommodate alloys and more adsorbates 
for a wider screening of potential EES materials. 

1. Introduction 
The undeniable threat of climate change continues to be present despite the ongoing COVID-19 pandemic. A 
major contributor in anthropogenic pollution is the CO2 emissions from the energy industry, which was 
documented to be 32 x 109 t of CO2 in 2020. This is due to the world’s high reliance on fossil fuels and non-
renewable resources to provide the increasing energy demand (BP, 2020). A growing field of research is focused 
on utilizing electrochemical reactions to decarbonize the industry, especially in the areas of carbon capture and 
utilization, fuel cell reactions, and water electrolysis (She et al., 2017). 
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Efficient discovery of electrocatalytic materials with high activities is essential to provide competitive 
technologies in these applications. Quantum molecular modelling techniques such as Density Functional Theory 
(DFT) are typically used to calculate adsorption energies, which act as proxies for electrocatalytic activities 
(Greeley, 2016). However, using DFT alone to identify promising electrocatalysts from a large set of candidate 
materials is a time-consuming endeavour (Schleder et al., 2019). With the boom of the Information Age, Machine 
Learning (ML) methods have evolved to incorporate big data into material science. By augmenting DFT 
calculations with ML regression algorithms (ML-DFT), adsorption energies on multiple adsorbates and 
adsorption sites can be predicted using only DFT calculations on a smaller subset of candidate materials, as 
opposed to individually calculating each of their adsorption energies through DFT. Researchers such as Nayak 
et al. (2020) and Wang et al. (2020) used this ML-DFT approach to train regression models using material 
property databases on transition metal surfaces to predict their adsorption energies. 
However, the use of ML has limitations in terms of interpretability. Although there are existing regression models 
that have attributes that can provide property insights, deep machine learning techniques such as neural 
networks tend to be treated as a black box. This leads to difficulty in the assessment of regression models aside 
from model accuracy and observing structure-property relationships from their results (Murdoch et al., 2019). It 
is believed that this research gap can be addressed by applying post-hoc interpretation methods such as 
Permutation Feature Importance (PFI) to determine the feature contributions in the predictive model. The 
application of these techniques on transition metal surfaces for atomic adsorption is a timely novelty, as these 
surfaces have extensive material data (Winther et al., 2019), and existing DFT-ML studies have yet to apply 
these methods on these surfaces. In this work, ML models were trained to predict the adsorption energies of 
single-atom adsorbates on 27 monometallic transition metal surfaces with minimal DFT calculations. This study 
also used PFI to identify the features with the highest contributions in each ML model. With this approach, 
candidate electrocatalyst materials can be screened more efficiently and with less computational expenses. 

2. Methodology 
The methodology of this work is summarized in Figure 1 below. Three surface reaction datasets were built for 
this study, with one for each adsorbate. Data were collected through online databases and DFT calculations. 
Afterward, ML regression models were trained to predict the adsorption energies of hydrogen, carbon, and 
oxygen. Finally, their model accuracies and feature importances were calculated.  

 

Figure 1. Schematic of methodology flow in this work 

2.1 Surface reaction datasets  

The monometallic transition metal surfaces were sourced from Catalysis-hub.org (Winther et al., 2019) and 
listed as the following elements in Figure 2a below. 

 

Figure 2. a) The d-block transition metals accounted for in this work are in dark blue; The different adsorption 
sites of hydrogen (H1) on the metallic surface: (b) top, (c) bridge, (d) hollow-fcc, and (e) hollow-hcp 

The team of Mamun et al. (2019) conducted DFT calculations on these three-layered metallic slabs at the face-
centred cubic (111) plane. One surface reaction dataset for each adsorbate was constructed for the study, where 

(a (b (c

(d (e

(a) 
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each data point represents each adsorption site on a monometallic surface, as seen in Figures 2b-e. From 
Catalysis-hub.org, there are 93 recorded energies for hydrogen adsorption, 74 for carbon adsorption, and 76 
for oxygen adsorption. The features of the surface reaction dataset are listed in Table 1. These features were 
classified into three sets of properties: surface atomic, adsorbate, and surface electronic. The surface atomic 
properties were defined here as quantities that are constant given an atomic identity. On the other hand, the 
coordinate number acts as the sole adsorbate property, as described by its adsorption site.  

Table 1. Proposed features for the surface reaction dataset  

Property Set Feature Definition Source of data 

Surface 
Atomic  

Pauling Electronegativity Ability of atoms to attract electrons to itself CRC [a] 
Ionization energy Required energy to remove an electron  NIST [b] 
Atomic radius Distance from nucleus to outermost orbital WebElements [c] 
Sublimation energy Transition energy from solid to gas phase WebElements [c] 
Molar volume Volume of one mole at standard conditions WebElements [c] 
Lattice parameter One dimension in a crystal cell structure WebElements [c] 

Adsorbate Coordination number Number of neighboring atoms to the adsorbate Catalysis-hub [d] 

Surface 
Electronic 

d-Band center (ϵc) Center of d-band energy states at the top layer DFT calculations 
d-Band width (ϵw) Width of d-band energy states at the top layer DFT calculations 
d-Band filling (ϵf) Filling of d-band energy states at the top layer DFT calculations 

[a] (Rumble, 2021), [b] (NIST, 2022), [c] (WebElements, 2022), [d] (Winther et al., 2019) 

Table 2. Comparison of the three regression models and their hyperparameter tunings in this study  

Model Name RFR GPR ANN 
ML algorithm family Ensemble methods Kernel methods Neural network methods 
Working principle [a] [b] Hierarchical splitting of 

dataset for relationship 
mapping 

Non-parametric 
prediction from 
probabilistic model  

Construction of a multi-layer 
network of calculation nodes  

Advantages [a] [b] Averaging of trees 
reduce overfitting 
Robust to outliers 

Can interpolate from 
small datasets 
Calculates uncertainty 

Highly customizable 
architecture 
Can build complex models 

Disadvantages [a] [b] Black box behavior Inefficient with high-
dimensional datasets 

Computationally expensive 
and black box behavior 

Hyperparameter tuning 
technique 

Grid search CV  
(10-folds) 

Grid search CV 
(10-folds) 

Randomized search CV 
(10-folds) 

Number of combinations 
in hyperparameter tuning 

768 56 60 

Optimized 
hyperparameters 

max_depth alpha optimizer 
max_features kernel activation function 
max_leaf_nodes - first hidden layer neurons 
min_weight_fraction_leaf - second hidden layer neurons 
n_estimators -  

[a] (Theobald, 2017), [b] (Scikit-learn.org, 2022a) 

2.2 DFT calculations 

Electronic properties were the third property set, which described the d-band behaviour of the top layer of the 
surface. It is noteworthy that DFT calculations were conducted on only adsorbate-free surfaces, reducing the 
number of calculations by a factor of nine. The computational software QUANTUM ESPRESSO version 6.6 
(Giannozzi et al., 2009) was used for this purpose and the Bayesian Error Estimation Functional with van der 
Waals correlation (BEEF-vdW) was the assigned DFT functional (Wellendorf et al., 2012). The cell was set to a 
k-point mesh of 10×10×1 and a vacuum space of 20 Å. All cells were also set to a 500-eV plane-wave cutoff, 
and a 5,000-eV density cutoff, except for the cell, which was set to a 1000-eV plane-wave cutoff, and a 10,000-
eV density cutoff. Spin-unpolarized calculations were performed on the transition metals except for Fe and Co, 
which had spin-polarized calculations with starting magnetizations of 1.25 and 1. The partial density of states of 
d-states was obtained to calculate the surface electronic properties, as seen in Eqs (1-3) (Nørskov et al., 2014). 

ϵc =
∫ n(E) ∙ n(E′ − ϵc)∞
−∞

∫ n(E)∞
−∞

 (1) 
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ϵw = �
∫ n(E) ∙ n(E′ − ϵc)2∞
−∞

∫ n(E)∞
−∞

�

1
2

 (2) 

ϵf =
∫ n(E′)Ef
−∞

∫ n(E)∞
−∞

 (3) 

2.3 ML prediction models 

The completed datasets were then simplified using principal component analysis (PCA), which reduces the 
number of input parameters of the regression models with minimal information loss (i.e., a cumulative variance 
of 95 %) (Jollife and Cadima, 2016). Three regression models were then used to predict adsorption energies: 
random forest regression (RFR), Gaussian process regression (GPR), and artificial neural networks (ANN). 
Their details as well as their strengths and weaknesses are briefly discussed in Table 2. The dataset was then 
divided into a ratio of 80 % training set and 20 % testing set, where the hyperparameters of the training set were 
optimized via grid search cross-validation or randomized search cross-validation with 10 folds, as listed also in 
Table 2.  

2.4 Adsorption energy predictions and model interpretations 

After model training, the predicted adsorption energies were plotted against those from the testing set. The 
model accuracies were represented through the root mean square error (RMSE). Using PFI, feature 
importances were calculated by observing the R2 drop whenever a feature is shuffled. A higher R2 indicates a 
higher importance (Scikit-learn.org, 2022b), as seen in Eq (4):  

𝑖𝑖𝑗𝑗 = s −
1

10�𝑠𝑠𝑘𝑘,𝑗𝑗

10

𝑘𝑘=1

 (4) 

The process of hyperparameter tuning, model fitting, and accuracy and feature importance evaluations are 
repeated 50 times to account for the randomized train-test splits in the dataset. 

3. Results and Discussions 
The dimensionality of each adsorbate dataset was reduced to five principal components using PCA. With an 80 
% : 20 % train-test split and 50 trials, all regression models were able to accurately predict the adsorption 
energies of hydrogen, carbon, and oxygen, as seen in Figure 3. Out of the three models, GPR demonstrates 
the lowest RMSE for all adsorbates due to its probabilistic approach, which is advantageous in small-sized 
datasets. Regression analyses show that the average RMSEs of these models are also comparable to those 
from models constructed by Nayak, et al. (2020) – adsorption energy and Wang et al., (2020) – catalyst 
screening. 

 

Figure 3. Box plots comparing the RMSE of the trained adsorption energy models of [a] this work to [b] Nayak 
et al., 2020, and [c] Wang et al., 2020. Note that there was no indicated standard deviation in [c]. 

Additionally, the calculated feature importance levels from PFI reveal that the coordination number of the 
adsorbate provides the highest contributions to the regression models in GPR, as illustrated in Figure 4. The 
features with the next highest average contributions, such as the d-band center and the lattice parameter, vary 
based on the adsorbate dataset. Although these findings can be interpreted as the confirmation of how the d-
band model is an effective predictor of adsorbate energy (Nørskov et al., 2014), the vast difference in feature 
importance can be attributed to the lower correlation of the coordination number compared to the other two 
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property sets. Because most of the properties in the surface reaction datasets are dependent on atomic identity 
and adsorbate-free DFT calculations, the values of all the features aside from coordination number are the same 
when comparing two surface-adsorbate systems with the same composition but different adsorption sites. A 
limitation of PFI is that it assumes that features are independent of each other (Scikit-learn, 2022a). The PCA 
results confirm this, as the number of input parameters was effectively halved with 95 % of the dataset 
information retained. As a result, PFI interprets surface atomic and surface electronic properties as of similar 
importance when evaluated. These findings were also consistent with RFR and ANN models. 

  

 

 

Figure 4. The feature importance levels for a) carbon, b) hydrogen, and c) oxygen adsorption using GPR 

4. Conclusion 
In this work, the adsorption energies of carbon, hydrogen, and oxygen were predicted using surface reaction 
datasets composed of surface atomic, surface electronic, and adsorbate properties. These datasets were 
constructed through data collection from online databases and DFT calculations on adsorbate-free monometallic 
transition metal surfaces. Then the RFR, GPR, and ANN models were tuned and trained 50 times, and PFI 
evaluated the contributions of each feature per model. 
The data shows that all three regression models were as accurate as similarly constructed ML models in the 
literature. The small size of the datasets allowed Gaussian process regression to exercise the highest accuracy 
with RMSEs of 0.36±0.12 eV for carbon adsorption, 0.16±0.07 eV for hydrogen adsorption, and 0.35±0.11 eV 
for oxygen adsorption. Finally, PFI shows that coordination number is a key feature as it provides the highest 
contributions in model training. These findings serve as a successful proof of concept of ML-DFT methodologies 
for adsorption energy prediction, which can be expanded to alloys and mixtures such as High Entropy Alloys 
(HEAs) and MXenes. Future work can be focused on ML-DFT studies on these materials, provided that their 
surface reaction databases have enough DFT calculations. The material screening search space can also 
include more facets such as bcc (111) and hcp (0001), as some metals are naturally present in this form.  Finally, 
grouped interpretation methods such as the calculation of Shapley values and Grouped Permutation Feature 
Importances can be applied to account for correlations inside property sets. 

Nomenclature 

ϵc – d-Band center 
ϵw – d-Band width 
ϵf – d-Band filling 
𝐸𝐸 – energy, eV 
𝑛𝑛(𝐸𝐸) – density of states at E 
𝐸𝐸f – fermi energy, eV 
𝐸𝐸′ – energy subtracted by fermi energy, eV 

𝑖𝑖𝑗𝑗 – feature importance of feature j, - 
𝑠𝑠  – coefficient of determination (R2), -  
𝑘𝑘 – Iteration number in PFI, - 
𝑗𝑗 – feature counter, - 
𝑠𝑠𝑘𝑘,𝑗𝑗 – coefficient of determination (R2) of 𝑘𝑘th shuffling 
of variable 𝑗𝑗 
eV – electron-Volts, 1.60 x 10-19 Joules 
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