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Increasing deployment of renewable energy resources for power generation has been playing a pivotal role in 
reducing carbon emissions associated with electrical power systems. Distributed Energy Systems (DES) enable 
the integration of small-scale renewable energy resources and storage technologies within low-voltage (LV) 
distribution networks, which supply power to residential and commercial consumers. Care must be taken when 
designing these systems, as they could potentially impair the operation and infrastructure of existing power 
networks. While nonlinear balanced optimal power flow formulations have historically been incorporated into 
oversimplified Mixed-Integer Linear Programming (MILP) DES design models, these do not accurately model 
the distribution networks to which most DES are connected. Low-voltage radial distribution networks are most 
closely represented by nonconvex multi-phase formulations, which are computationally complex and difficult to 
solve. The exclusion of these constraints within DES design models could, however, lead to infeasible designs, 
i.e., designs which are incompatible with the existing network and its operations. This study proposes a novel 
optimisation algorithm, capable of solving the large-scale and combined problem of designing DES with 
multiphase optimal power flow. A large-scale Nonlinear Programming (NLP) model with full power flow 
constraints and reformulated complementarity constraints for DES operation is used to find a feasible upper 
bound, if the lower bound proposed by the MILP for DES design is infeasible. The algorithm is tested using a 
residential case study based on a section of the IEEE EU LV network. Results for this case study show that the 
proposed algorithm finds a feasible DES design and operational schedule by installing three times the battery 
capacity initially recommended by the MILP. The MILP design remains infeasible with respect to the multiphase 
power flow constraints. This framework could be used to support the increase of local renewable energy 
generation and consumption, and the subsequent reduction of carbon intensity in existing power networks. 

1. Introduction 
Countries, organisations, and individuals around the world are pledging their commitment to achieving Net Zero 
goals by 2050, to minimise the negative impacts of anthropogenic emissions on the natural environment and 
climate. In light of this, the integration of low-carbon distributed energy resources (DERs) is gaining more 
attention as a feasible alternative to the existing carbon-intensive centralised power systems. This has led to 
the increased uptake of small-scale low-carbon generation and storage technologies, such as solar 
photovoltaics (PVs) and battery systems, especially in residential settings, which operate symbiotically with 
existing power networks. A collection of such technologies is known as a DES. Note that DES may be connected 
to a variety of networks to meet different demands, such as electricity, heating, and/or cooling. DES could be 
used to combat rising energy costs, as consumers could contribute low-carbon power to the electrical grid and 
earn an income in the process. Optimal design of DES is paramount to ensure a symbiotic relationship between 
the centralised grid and DES, where adverse impacts on power quality and network longevity are reduced.  
The design of DES has been historically modelled and solved as Mixed-Integer Linear Programming (MILP) 
problems, which capture a multi-faceted set of constraints related to design and operation, as well as the socio-
economic and environmental impacts of implementing them. Previous work has illuminated that most MILP 
models in literature have oversimplified the representation of the underlying distribution network associated with 
grid-connected DES by using the linear DC approximation (De Mel et al., 2022). This is due to the increasing 
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emphasis on achieving globally optimal solutions, often at the cost of feasibility of the design and operational 
schedule with respect to the distribution network. The active and reactive power flows in low-voltage (LV) 
distribution networks are most closely represented by multi-phase formulations, which are used in a separate 
class of models known as Multiphase Optimal Power Flow (MOPF) (Araujo et al., 2013). These are nonlinear, 
nonconvex, and cumbersome to solve on their own, so they do not include detailed constraints related to energy 
storage and generation technologies. Combined with the discrete and continuous decision-making structure of 
DES design, the complexity of the combined DES and MOPF problem grows rapidly. The absence of these 
complex power flow constraints in DES frameworks could lead to DES designs that exacerbate network 
imbalances and reduce power quality.  
Previous work primarily focused on combining DES design models with balanced Optimal Power Flow (OPF). 
These studies primarily use either unscalable linear approximations (Mashayekh et al., 2017) and mixed-integer 
nonlinear programming methods (Jordehi et al., 2021), or use metaheuristics that produce approximate 
solutions and often require extensive tuning (Morvaj et al., 2016) to find a solution without any guarantee on 
optimality. The use of external power flow simulation tools for post-optimisation power flow checks has also 
been proposed (Morvaj et al., 2016), but such calculations do not have any influence on design decisions within 
the optimisation problem. The balanced power flow approximation used in these studies also does not hold for 
LV radial distribution networks, which are unbalanced due to unequal load connections. Dunham et al. (2021) 
propose a DES design model that uses iterative linear approximations for multiphase power flow (Bernstein and 
Dall’anese, 2017), but these require a priori knowledge of the design to feed the linear approximation with a 
feasible initial point.  
With a significant lack of DES-MOPF studies in literature, such limitations can only be overcome with a new 
framework that incorporates nonlinear MOPF within DES design, where there is no reliance on a priori 
knowledge of the solutions of the design or power flow problems. This is the contribution of this study, where a 
novel optimisation algorithm is proposed for solving the DES-MOPF problem using deterministic optimisation 
methods. This algorithm proposes complementarity reformulations for discrete decision making, which improves 
the solvability of the combined model. The battery reformulation by Nazir and Almassalkhi (2021) has inspired 
this work. Note that the reformulations proposed in this study are more general and do not simplify battery 
efficiencies as done in Nazir and Almassalkhi (2021), which could compromise accuracy. The study aims to 
support better design of DES with respect to LV distribution networks, by studying the feasibility and impacts of 
implementing DES in a residential setting and comparing results to a conventional MILP framework. 

2. Methodology 
The new algorithm for the combined DES-MOPF framework is presented in Figure 1. It solves the MILP 
formulation for the DES first, which includes the commonly-used linear DC approximation. This is followed by 
solving a NLP, which includes nonlinear MOPF constraints and linear DES design and operational constraints.  

 

Figure 1: New algorithm for solving the DES optimisation problem with MOPF 
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Binary decisions made by solving the MILP are fixed to enable the initialisation of the nonlinear programming 
(NLP) model. This provides a feasible initial point for both the design and the power flow problems without 
relying on external power flow simulation tools or any a priori knowledge from the modeller. Note that DES 
design models typically consider operational constraints related to different DERs and networks, to ensure that 
the decisions, such as capacities and locations of the technologies, can meet the operational requirements. 
Some operational constraints, such as those preventing the simultaneous electricity purchasing and selling or 
battery charging and discharging, include binary variables to avoid bilinear terms which cannot be solved in an 
MILP framework. These can be generally represented as shown in Eq(1) and Eq(2) below, where 𝑥𝑥𝑖𝑖,𝑡𝑡 and 𝑦𝑦𝑖𝑖,𝑡𝑡 
are nonnegative continuous variables, while 𝑍𝑍𝑖𝑖,𝑡𝑡 is a binary variable, with respect to sets 𝑖𝑖 ∈ 𝐼𝐼 for residences (or 
consumers) and 𝑡𝑡 ∈ 𝑇𝑇 for discretised time. Note that a𝑖𝑖,𝑡𝑡 and b𝑖𝑖,𝑡𝑡 are parameters, which either represent time-
varying demand parameters or a large value, as found in big-M constraints.  

𝑥𝑥𝑖𝑖,𝑡𝑡 ≤ a𝑖𝑖,𝑡𝑡�1 − 𝑍𝑍𝑖𝑖,𝑡𝑡� (1) 

𝑦𝑦𝑖𝑖,𝑡𝑡 ≤ b𝑖𝑖,𝑡𝑡 ⋅ 𝑍𝑍𝑖𝑖,𝑡𝑡 (2) 

Such constraints can be replaced by an equivalent nonlinear complementarity constraint, as shown in Eq(3): 

𝑥𝑥𝑖𝑖,𝑡𝑡𝑦𝑦𝑖𝑖,𝑡𝑡 = 0   (3) 

These constraints cannot be solved using commercial NLP solvers due to their numerical instability at the origin. 
A regularisation method can be used to improve the numerical stability, where a small positive parameter 𝜇𝜇 is 
introduced and iteratively driven down to zero (Stein et al., 2004): 

𝑥𝑥𝑖𝑖,𝑡𝑡𝑦𝑦𝑖𝑖,𝑡𝑡 ≤ 𝜇𝜇 (4) 

These steps are portrayed in Figure 1, where the solution obtained at each iteration is checked for feasibility 
and local optimality. If the solution obtained is infeasible, the parameter 𝜇𝜇 is perturbed and the NLP is solved 
again. The final solution is found when 𝜇𝜇 reaches a value below a pre-specified tolerance that is appropriately 
close to zero. The aim of such reformulations is to increase the degrees of freedom in the NLP, increasing the 
number of variables which the MOPF constraints can influence. This is superior to using post-optimisation 
calculations for power flow, where there are no degrees of freedom available to the power flow constraints to 
influence the design and operational decisions. It also has an advantage over linear approximations, where the 
solutions are less reliable when compared to using the original nonconvex constraints. NLPs also tend to be 
much more tractable and scalable, when compared with MINLPs.  
The DES formulation used in this study has been presented in previous work (De Mel et al., 2021), where total 
annualised cost of the system (𝑇𝑇𝑇𝑇𝑇𝑇) is minimised. This includes total investment 𝑇𝑇𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼and operational 𝑇𝑇𝐺𝐺𝑂𝑂𝑂𝑂 costs 
of the DERs (denoted by 𝐺𝐺 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷), total electricity purchasing costs 𝑇𝑇𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔, and total income 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 from power 
generation: 

min   𝑇𝑇𝑇𝑇𝑇𝑇 =  � 𝑇𝑇𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑇𝑇𝐺𝐺𝑂𝑂𝑂𝑂
𝐺𝐺∈𝐷𝐷𝐷𝐷𝐷𝐷

+ 𝑇𝑇𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (5) 

This formulation considers some of the most commonly used DERs: solar PVs for electricity generation, lithium-
ion batteries for electricity storage, and gas boilers for heat generation. Note that heat generation is decoupled 
from electricity generation and consumption in this work, but the impacts of electrifying heating systems can be 
readily studied in future work using our formulation. The formulation considers the hourly operation of these over 
24-h profiles for each season. The main multiphase power flow formulations for active power 𝑃𝑃𝑖𝑖,𝑡𝑡

𝜙𝜙  and reactive 
power 𝑄𝑄𝑖𝑖,𝑡𝑡

𝜙𝜙  at each node 𝑛𝑛 ∈ 𝑁𝑁, phase 𝜙𝜙 ∈ Φ, and time 𝑡𝑡 ∈ 𝑇𝑇 are summarised in Eq(6) and Eq(7). 

𝑃𝑃𝑖𝑖,𝑡𝑡
𝜙𝜙 =  𝑉𝑉𝑖𝑖,𝑡𝑡

𝜙𝜙 � � 𝑉𝑉𝑖𝑖,𝑡𝑡
𝜙𝜙 �gmn

𝜙𝜙𝜙𝜙 cos �𝜃𝜃𝑖𝑖,𝑡𝑡
𝜙𝜙 − 𝜃𝜃𝑖𝑖,𝑡𝑡

𝜙𝜙 � + bmn
𝜙𝜙φ sin �𝜃𝜃𝑖𝑖,𝑡𝑡

𝜙𝜙 − 𝜃𝜃𝑖𝑖,𝑡𝑡
𝜙𝜙 ��

 𝜙𝜙∈Φ

 
𝑖𝑖∈𝐼𝐼

 (6) 

𝑄𝑄𝑖𝑖,𝑡𝑡
𝜙𝜙 =  𝑉𝑉𝑖𝑖,𝑡𝑡

𝜙𝜙 � � 𝑉𝑉𝑖𝑖,𝑡𝑡
𝜙𝜙 �gmn

𝜙𝜙φ sin �𝜃𝜃𝑖𝑖,𝑡𝑡
𝜙𝜙 − 𝜃𝜃𝑖𝑖,𝑡𝑡

𝜙𝜙 � − bmn
𝜙𝜙φ cos �𝜃𝜃𝑖𝑖,𝑡𝑡

𝜙𝜙 − 𝜃𝜃𝑖𝑖,𝑡𝑡
𝜙𝜙 ��

 𝜙𝜙∈Φ𝑖𝑖∈𝐼𝐼

  (7) 

The bus voltage magnitude at each phase is represented by 𝑉𝑉𝑖𝑖,𝑡𝑡
𝜙𝜙 , while 𝜃𝜃𝑖𝑖,𝑡𝑡

𝜙𝜙  is the voltage angle. The parameters 
gmn
𝜙𝜙𝜙𝜙  and bmn

𝜙𝜙φ  are conductance and susceptance at each branch, obtained using the calculations for the 
multiphase admittance matrix. Other constraints include lower and upper bounds for voltage magnitude, as 
specified by power networks, and ensuring that there are no power injections at connecting buses that do not 
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generate nor consume power. The active and reactive powers at each bus in the MOPF formulation are also 
linked using constraints to the net power injections from the DES, which take power imports and exports into 
account. 

3. Results and Discussion 
The algorithm uses the commercial MILP solver CPLEX (IBM, 2018) and NLP solver CONOPT (Drud, 1985). 
The resulting NLP model for the combined DES-MOPF framework contains 331,420 continuous variables and 
459,064 constraints for the residential case study outlined below. The models have been formulated and solved 
on Python using Pyomo (Hart et al., 2011). 

3.1 Case study 

The residential case study has been adapted from a section of the 906-bus IEEE EU LV Test Feeder (IEEE, 
2020). The network considered here consists of 11 loads or consumers connected to one of the three phases, 
as shown in Figure 2. The slack bus is the primary tap of a Delta-Wye step-down transformer, which supplies 
power to the consumers at a line-to-line voltage of 416 V. Network-specific inputs include cable lengths and 
parameters such as resistance and reactance, which are used to calculate the three-phase admittance matrix. 
The DERs, which include PVs, batteries, and boilers, are to be installed at these consumer locations. Seasonal 
24-h demand profiles for electricity and heat consumption, discretised to hourly timestamps, have been derived 
based on the electricity profile provided for one day in 1-min intervals in the original test case (IEEE, 2020) and 
average seasonal trends for electricity and heating. Solar irradiance profiles, low-carbon generation and export 
tariffs, electricity purchasing tariffs for daytime and night-time have all been considered as deterministic inputs 
to the model. Technology parameters include the available surface area for PV installation on rooftops (35 m2), 
space available for battery installation (0.5 m3), efficiencies, rated capacities, capacity and maintenance costs, 
and battery-specific parameters such as maximum depth of discharge.  

 

Figure 2: The LV distribution network with 11 loads, extracted from the IEEE EU LV Test Feeder (IEEE, 2020) 

3.2 Results 

The results for the DES-MOPF framework obtained by using the algorithm proposed in this study are presented 
in Table 1 alongside the results for a conventional MILP formulation which includes the DC approximation in 
place of MOPF. The MILP is also tested using a post-optimisation power flow simulation for comparison, where 
the design and operational variables are all fixed (removing the degrees of freedom for the MOPF), and 
multiphase active and reactive power flows are calculated. All the costs provided in Table 1 are annualised. 
These results highlight that the MILP initially predicts the lowest total annualised cost, but the power flow 
simulation confirms that this solution is infeasible with respect to the network constraints. The DES-MOPF 
objective, on the other hand, is a mere 0.7 % higher than the initial MILP prediction, but the overall DES design 
is different to that of the MILP to ensure feasibility with respect to the distribution network. The differences in 
design are indicated in Table 1 by the lower PV investment cost and higher battery investment cost in the DES-
MOPF result. The proposed algorithm also has a higher computational expense, as shown in Table 1, resulting 
in a longer computational time compared to the MILP and the post-optimisation simulation. It is, however, 
capable of finding a feasible solution upfront, which the MILP combined with the power flow calculation fails to 
achieve in this instance. 
The reasons behind the differing designs and operational schedules are further explored and exemplified in 
Figure 3, which captures the voltages and powers exported to the grid by Bus 249 during the summer, at peak 
solar irradiation. Note that the dimensionless per-unit (p.u.) system has been used in these models as commonly 
done in electrical engineering, and the voltages are reported in p.u. In Figure 3a, the post-optimisation check 
confirms that voltage constraints are violated by the MILP design and operational schedule, while the DES-
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MOPF evades such violations due to the existence of MOPF constraints influencing the design and operational 
decisions. Note that, in the MILP solution, several other consumers violate voltage constraints as well. The MILP 
chooses to not install a battery at Bus 249, and instead profit from exporting more power to the grid, as shown 
in Figure 3b. This is ill-suited, as the network cannot accept large power exports without violating the constraints 
placed to protect the infrastructure and power quality, especially as other consumers would be exporting power 
during peak PV production times as well. The DES-MOPF model achieves a feasible solution by installing 
batteries or increasing battery capacities at these nodes and storing more power, as opposed to exporting as 
much excess power as possible. In this case study, the higher battery investment costs and lower power exports 
do not significantly increase the total annualised cost of the DES-MOPF model when compared to that of the 
MILP. This is because the stored power is used later in the day by the consumers themselves, increasing the 
proportion of renewable energy used locally and minimising high daytime electricity purchasing costs. 

Table 1: Results from a conventional MILP, followed by a post-optimisation power flow calculation (MILP+PF 
simulation), and the proposed framework (DES-MOPF) 

Breakdown  MILP MILP+PF 
simulation 

DES-MOPF 

Total annualised cost (objective) (£) 12,536 - 12,629 
Grid electricity cost (£) 2,805 - 2,683 
PV investment cost (£) 9,711 - 9,291 
PV operational cost (£) 688 - 658 
Boiler investment cost (£) 1,963 - 1,963 
Boiler operational cost (£) 8,065 - 8,065 
Battery investment cost (£) 48 - 125 
Battery operational cost (£) 20 - 52 
Electricity export income (£) 3,089 - 2,877 
Electricity generation income (£) 7,674 - 7,329 
Time taken (s) 55 1,490 2,662 
Solver termination status Optimal Infeasible Locally Optimal 
 

 

Figure 3: a) The voltages (in the per-unit system) at phase B and b) electricity exported to the grid by Bus 249 
in summer. 

The benefits of using the DES-MOPF framework and the new algorithm for designing DES are evident from 
these results. The reformulated complementarity constraints allow the MOPF constraints to have greater 
influence on the DES operation and design variables. In this instance, the algorithm is capable of finding an 
objective value very similar to that of the original MILP prediction, without violating network constraints. The 
algorithm also has a clear advantage over post-optimisation power flow checks, where the latter cannot find a 
feasible solution without a method to iteratively revise the design and operation proposed by the MILP. Although 
the results from the proposed method are not globally optimal, they are locally optimal and can guarantee 
feasibility with respect to the more complex representations of real-world physical systems, such as the low-
voltage distribution network. In summary, the framework can significantly contribute to greater generation and 
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consumption of locally generated renewable energy resources connected to low-voltage distribution networks, 
while protecting existing network infrastructure.  

4. Conclusions 
The study proposes a new algorithm for finding feasible solutions to the complex and combined problem of 
designing DES, with respect to multiphase and unbalanced power flow in low-voltage distribution networks. The 
feasibility of the design is ensured by incorporating MOPF constraints that influence DES design and operational 
decisions, and by using complementarity reformulations in place of binary variables for DES operational 
constraints to increase the degrees of freedom. Solutions of this framework and algorithm are compared with 
conventional methods of solving the combined problem, such as an MILP model which excludes multiphase 
power flow, and the use of power flow calculations post-optimisation. The results for a residential case study 
demonstrate that the algorithm has significant advantages over existing methods. It finds a feasible DES design 
and operational schedule without violating network constraints, where its objective value has a less than 1 % 
percentage difference to that of the MILP. The MILP solution proves to be infeasible when tested with post-
optimisation power flow calculations. The proposed method opts for greater local renewable energy 
consumption by installing 3 times more battery storage compared with the MILP for this case study, as opposed 
to exporting nearly 6 % more excess power to the network. The scalability of this method is to be tested further 
in future work, as the proposed framework has a higher computational burden due to the additional complexity. 
The framework could extensively support the achievement of Net Zero targets, as it enables greater integration 
and use of local renewable energy resources while preserving existing distribution network infrastructure. 
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