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Accurately estimating the capacity degradation of lithium-ion (Li-ion) batteries is vital in ensuring their safety and 
reliability in electric vehicles and portable electronics. Future capacity estimation using machine learning (ML) 
models allow battery lifetime predictions with minimal cycling data in the train set, well before capacity 
degradation occurs within the cell. The use of ML methods removes the need for prior knowledge of cell 
chemistry and the physical and chemical behaviors of batteries. In this paper, the data-driven ML models 
Gaussian process regression (GPR) and recurrent neural network – long short-term memory (RNN-LSTM) 
estimated the charge capacity of Li-ion batteries from the Oxford Battery Dataset, using only the battery's cycle 
index and capacity as input. With only 15 % of the battery’s lifetime as training data, the GPR model achieved 
a mean average percent error (MAPE) of 8.335 % and an R2 of 0.9755, while the LSTM model achieved a 
MAPE of 9.984 % and an R2 of 0.9898. These results indicate the goodness of fit and are comparable to results 
from similar models in the literature (MAPE = 9.1 to 15 %). The methodology may be applied to different features 
to help establish the relationship between health indicators and capacity fade and can be used in applications 
that require early capacity prediction such as in space technologies where lifetime and capacity are crucial in 
ensuring success and safety. This successful estimation highlights the promise and potential of accurately 
predicting Li-ion battery capacity degradation using a single-feature approach.  

1. Introduction 
In the shift towards the widespread application of renewable energy technologies, the role of battery energy 
storage systems (BESS) has expanded in terms of power generation, the progress of electric vehicles, and 
high-capacity mobile devices. Specifically, the technology of rechargeable Li-ion batteries positioned it on the 
frontline of mobile consumer electronics. Its features include high energy density in compact packaging, allowing 
its use in various mobile applications, such as in electric vehicles, aerospace, consumer electronics, and 
industrial applications (Severson et al., 2019). Apart from its expansion in the market, Li-ion batteries are 
continuously the subject of competitive research because of promising technology, with rapid developments in 
the areas of efficiency, reliability, safety, and management systems. However, Li-ion is still restricted by limited 
lifespan, high costs, and safety issues. These factors affect the overall performance and applicability of Li-ion 
batteries (Park et al., 2020). Understanding and predicting the capacity fade will aid in the mitigation of battery 
degradation. Furthermore, the study may also give an insight into improving battery design.   
Though several approaches such as experimental and model-based estimation models have been explored to 
predict battery capacity, they are barred by limitations, such as the large amounts of calculation required, that 
make them unsuitable for real-time capacity estimation. Some of these difficulties and restraints are evident in 
acquiring the required parameters, the knowledge of aging mechanisms, and the high dependence of the 
accuracy on the model. Data-driven machine learning methods can be used to overcome these limitations and 
estimate battery capacity with no prior knowledge of the battery chemistry. The advanced capabilities of the ML 
algorithms allow it to build analytical models that will allow the prediction of the capacity fade of the battery. 
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However, ML models typically rely on large data and multiple input features to accurately estimate the capacity 
of the battery. In this study, the potential of using a single-feature approach was explored. While this would limit 
the descriptors of the dataset, this would also greatly reduce the amount of data required to conduct capacity 
estimation. A study by Wang et al. (2018) extracted the geometrical feature in the constant voltage profile and 
suggested a strong relationship between the remaining capacity of the battery and the extracted aging profile, 
which was mapped out using support vector regression. In this work, battery capacity degradation was 
performed on the Oxford Battery Dataset using the Gaussian process regression (GPR) and recurrent neural 
network – long short-term memory (RNN-LSTM) models. The findings suggest the competitiveness of using a 
single input feature in accurately estimating the capacity of the battery with existing benchmark studies utilizing 
multiple input features. It highlights the potential of conducting similar studies requiring the minimum amount of 
data and computational power.  

2. Methodology 
This work (Figure 1) demonstrates the potential of single-feature capacity estimation. The cycle index and 
charge capacity of the chosen dataset were extracted from the available cycle data and were used in the ML 
models. At a specified train to test split, the generated models predicted the future capacity of the cell. The 
results were then evaluated and compared with those of related publications. 

2.1 Battery Dataset 

The Oxford Battery Degradation Dataset was taken from the Battery Archive website (2021) which contains 
long-term battery aging data from eight Kokam (SLPB533459H4) 740 mAh lithium cobalt oxide (LCO) pouch 
cells tested using the Bio-Logic MPG-205, 8-channel battery tester. The cells were tested in a Binder thermal 
chamber at 40 ⁰C and were exposed to a constant-current-constant-voltage charging profile followed by a drive 
cycle discharging profile. Cycle-aging measurements were taken every 100 cycles (Birkl et al., 2017). The 
repository included cycle data and time-series data. From the cycle data, the cycle index and charge capacity 
were taken to be the input and output of the generated model.  

2.2 Prediction Method 

Future capacity estimation, or direct learning, uses data from early cycles to estimate the capacity of the same 
cell for future cycles. The method splits data in a singular cell into training and testing sets. To observe the 
performance of the models at different train to test splits, sequential fitting was performed. This enabled errors 
to be obtained per split from a 5 %: 95 % to a 90 %: 10 % train to test split. The main objective of direct learning 
is to achieve low errors despite small train sets. This will make capacity estimation before degradation within 
the cell occurs possible. For purposes of comparability, the results shown are at 70 %: 30 % and 15 %: 85 % 
train to test splits to determine the effectivity and capacity of the models for early capacity prediction. Specifically, 
the training set was reduced to 15 % of the dataset to show the capability of the model for early capacity 
prediction.  

2.3 Prediction Models 

A Gaussian process model is a probabilistic supervised machine learning method that is capable of performing 
either regression or classification tasks. Gaussian processes define a probability distribution over a set of 

Figure 1: Summary of the methodology flow in this work 
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functions and are fully specified by a mean function, 𝑚𝑚(𝑥𝑥), and a covariance function, 𝜅𝜅(𝑥𝑥, 𝑥𝑥′), as shown in 
Eq(1).   

𝐹𝐹(𝑥𝑥) = 𝐺𝐺𝐺𝐺�𝑚𝑚(𝑥𝑥), 𝑘𝑘(𝑥𝑥,𝑥𝑥′)� (1) 

GPR models are capable of making predictions and providing uncertainty measures over these predictions. It 
is a non-parametric Bayesian approach to solving regression problems. To select an appropriate model, non-
parametric methods allow models to grow with an increase or decrease with the available data, as opposed to 
parametric models which have a fixed number of parameters (Orbanz and Teh, 2010). Additionally, as with any 
Bayesian method, Gaussian processes begin with a prior distribution, or a probability distribution of possible 
values for a certain prediction and update this distribution as more data points are introduced and observed. 
The non-parametric and probabilistic approach of GPR are factors that cause it to be an ideal prediction method 
to approximate non-linear systems, where the parametric forms of unknown processes are difficult to obtain. In 
this paper, the Gaussian process regression was implemented using the scikit-learn package. The Gaussian 
process regressor application programming interface (API) is used to implement regression methods involving 
Gaussian processes. For this API, the prior mean, 𝑚𝑚(𝑥𝑥) is assumed to be zero or equal to the mean of the 
training data. The covariance, 𝑓𝑓(𝑥𝑥, 𝑥𝑥′) can be specified using a kernel. Table 1 summarizes the settings used in 
this paper to perform the capacity estimation using GPR. 

Table 1: Summary of the settings used for GPR  

Parameter  Setting 
Kernel Matern (ν = 3/2) 
Restarts optimizer 10 to 100 
Confidence interval 95 % 
 
A long short-term memory network is a type of recurrent neural network that determines the order dependence 
in problems involving sequence predictions, making it a suitable tool for time-series predictions. An advantage 
of using deep-learning algorithms such as LSTM for complex problems requiring real-time calculations such as 
battery capacity estimation is that they are capable of efficiently extracting features directly from raw data even 
in relatively smaller datasets. LSTM is described by the Eqs (2-7), see (Park et al., 2020). 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑤𝑤𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (2) 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (3) 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (4) 
�̃�𝐶𝑡𝑡 = tanh(𝑤𝑤𝐶𝐶 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶) (5) 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡∗𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡∗�̃�𝐶𝑡𝑡 (6) 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡∗ tanh(𝐶𝐶𝑡𝑡) (7) 

where 𝜎𝜎 is the sigmoid activation function, 𝑡𝑡𝑡𝑡𝑡𝑡ℎ is the hyperbolic tangent activation function, 𝑤𝑤 consists of a set 
of matrices containing the different weights, 𝑥𝑥𝑡𝑡 is the input at the current timestep. The LSTM architecture used 
in this paper was developed using Python 3 environment, using TensorFlow 1.14 as the backend, and using the 
Keras API to create the layers for the deep learning environment. The API used in this paper utilizes the “Adam” 
optimizer to make the predictions more accurate. Additionally, the mean absolute error (MAE) is used to compile 
the algorithm. Other parameters such as learning rates, train to test splits of the training dataset, number of 
epochs, and dropout value are pre-configured and are summarized in Table 2. 

Table 2: Summary of the settings used for LSTM using TensorFlow and Keras API 

Parameter  Setting 
Training loss MAE 
Learning rate 0.0001 
Number of epochs 75 % 
Dropout value 20 % 
 

2.4 Performance Evaluation Tools 

To quantitatively evaluate the performance of the ML model, it is necessary to ensure the comparability of the 
results with other similar studies using error metrics and performance evaluation tools. The mean absolute 
percentage error (MAPE) is an indicator used as a loss function for regression problems. It is given by Eq(8). 
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𝑀𝑀𝐴𝐴𝐺𝐺𝐴𝐴 =  
1
𝑡𝑡
��

𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑦𝑦𝚤𝚤�

�
𝑛𝑛

𝑖𝑖=1

 (8) 

where n is the number of observations, 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝚤𝚤�  are the actual and the predicted values. The root mean square 
error (RMSE) is the difference between the actual and predicted values where larger absolute values are 
penalized as they contribute more weight to the RMSE (Li et al., 2020). The RMSE is given by Eq(9). 

𝑅𝑅𝑀𝑀𝑀𝑀𝐴𝐴 = �
1
𝑡𝑡

 �(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

 

 

(9) 

Additionally, the predicted data is plotted against the actual data to easily visualize the predictive performance 
of each machine learning model. The correlation of these data will be measured using the coefficient of 
determination, R2. Given the actual capacity 𝑦𝑦𝑖𝑖, the coefficient of determination is given by Eq(10).  

𝑅𝑅2 = 1 −
∑(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2 
∑(𝑦𝑦� − 𝑦𝑦𝑖𝑖)2

 (10) 

3. Results and Discussions 
With a 70 %: 30 % train to test split, the GPR model accurately predicts the future capacity trajectory of each 
cell using only a single feature as the input data as shown in Figure 2a. Regression analyses show an average 
RMSE and MAPE across all cells of 0.0133 Ah and 1.633 %, indicating a good prediction performance. Similarly, 
the LSTM model using the same split accurately predicts the future capacity of each cell. The model obtained 
an average RMSE and MAPE of 0.0074 Ah and 1.134 %. Both prediction errors for the GPR and LSTM models 
are within the range of errors from various benchmark studies, which use multiple features to predict the battery 
capacity. These findings present the capability of the model to predict the battery capacity using minimal data. 
 

  

Figure 2: (a) Future capacity prediction for GPR and LSTM and (b) Predicted vs actual capacity plot for 70 %: 
30 % train to test split 

Moreover, the predicted capacities were plotted against the actual measured capacities available in the dataset 
to determine the correlation between the two capacities. Good prediction performance is indicated by a good fit 
between the predicted and actual capacities (i.e., with a R2 value close to 1). At the same split, the average 
calculated R2 for all cells using the GPR and LSTM model are 0.9948 and 0.9943, indicating that the predictions 
highly correlate to the measured capacities in all cells (Figure 2b).  
The training set was further reduced to 15 % of the dataset, as shown in Figures 3a and 3b to determine how 
changing the length of the training set affects the prediction performance of the model. The anticipated trend is 
that decreasing the training set will increase the errors in the model due to a higher possibility of overfitting. 
Regression analysis of the GPR model revealed an average RMSE and MAPE of 0.0598 Ah and 8.355 %. 
Similarly, the LSTM model obtained an average RMSE and MAPE of 0.0625 Ah and 9.894 % (Figure 3a). Figure 
3b confirms that a smaller training set provides a lesser accurate prediction of the battery capacity, as their 
errors are relatively larger than those from their 70 %: 30 % train to test split counterpart. The R2 of the GPR 
and LSTM models for this split also reveal a relatively weaker correlation between the predicted and the actual 
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capacities, which further supports the trend for each split. This is anticipated as the length of the training set 
increases the ability of the model to map out the relationship between the battery capacity and the different 
health indicators. Despite this, the values of R2 achieved by the models, 0.9755 and 0.9898 by the GPR and 
LSTM models still indicate a good fit. 
 

  

Figure 3: (a) Future capacity prediction for GPR and LSTM and (b) Predicted vs actual capacity plot for 15 %: 
85 % train to test split 

Summarized in Table 3 are the average errors using various metrics for each prediction method at 70 %: 30 % 
and 15 %: 85 % train to test splits. It can be observed that the errors garnered by the two ML models do not 
vary much and similar trends can be observed even with the use of different error metrics. This validates the 
performance of the models and their efficiency through different train to test splits. To further confirm the validity 
of the results, benchmarking was also performed. 

Table 3: Summary of errors and benchmark studies for comparison of errors 

Authors Battery Dataset Regression method Train to Test 
Split (%) RMSE (Ah) MAPE (%) R2 (predicted 

vs actual) 

This work 
(2022) Oxford Dataset 

GPR 70:30 0.0133 1.633 0.9948 
15:85 0.0598 8.355 0.9755 

LSTM 70:30 0.0074 1.134 0.9943 
15:85 0.0625 9.894 0.9898 

Guo et al. 
(2019) NASA Dataset RVM Regression 70:30 0.010222 - - 

Garg et al. 
(2018) 

18650 Li-ion 
batteries 

GP hybrid with NN, 
SVM 70:30 - 1.96 to 6.0 - 

Severson et al. 
(2019) Severson et al. 

(2019) 
124 Li-ion cells 

Elastic Net 12.5:87.5 - 9.1 - 

Attia et al. 
(2018) 

Elastic Net, RFR, 
AdaBoost regression 12.5:87.5 - 10 to 15 - 

 
Overall, the predictions from the generated models are comparable with results found in other published works. 
At a 70 %: 30 % train to test split, the group of Guo et al. (2019) and Garg et al. (2018) achieved an RMSE of 
0.0102 Ah and a MAPE of 1.96 to 6.0 %. At the same split, the generated models in this work achieved an 
RMSE and MAPE as low as 0.0074 Ah and 1.134 %. Meanwhile, the group of Severson et al. (2019) and Attia 
et al. (2018) worked on the same dataset with a training set of 12.5 % and achieved a MAPE of 9.1 % and 10 
to 15 %. With a training set of 15 %, the generated models using GPR and LSTM were able to achieve an 
average MAPE of 8.355 % and 9.894 %. The comparability of the obtained results with that of other published 
works confirms the validity of the models and their generated results. This also suggests the competitiveness of 
using only a single-feature approach in estimating battery capacity with ML methods, as it minimizes the input 
data required to accurately estimate the capacity of the battery. 

4. Conclusion 
Battery capacity estimation is essential in improving the design, safety, performance, and efficiency of Li-ion 
batteries; however, it requires a large amount of data and several battery features to accurately estimate the 
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capacity of the battery. This paper investigates the potential of ML models with only a single input feature to 
accurately estimate the capacity of Li-ion batteries. Future capacity estimation was successfully performed on 
the Oxford Battery Dataset using GPR and RNN-LSTM. The results from the generated models are that of the 
70 %: 30 % and 15 %: 85 % train to test splits with errors presented as averages across all cells in the dataset. 
In terms of the error metrics, the LSTM model performed better with a 70 % training set with an RMSE and 
MAPE of 0.0074 Ah and 1.134 %. The GPR model produced less error with a 15 % training set as it incurred 
an RMSE of 0.0598 Ah and a MAPE of 8.355 %. The acceptable errors achieved prove the prospect of early 
capacity prediction with minimal input data. The results obtained were also found to be comparable and 
competitive with those of other related published works which validate the potential of ML models to estimate 
the capacity of the battery using the single-feature approach. These models may be further developed through 
hyperparameter tuning to improve prediction accuracy. Additionally, the methodology may be applied to different 
features to help establish the relationship between health indicators and capacity fade. 

Nomenclature 

API – application programming interface 
BESS – battery energy storage systems 
GP – Genetic programming 
GPR – Gaussian process regression 
LCO – lithium cobalt oxide 
Li-ion – lithium-ion  
MAE – mean absolute error, Ah 
MAPE – mean absolute percentage error, % 

ML – machine learning 
R2 – coefficient of determination  
RFR – random forest regression 
RMSE – root mean square error, Ah 
RNN-LSTM – recurrent neural network – long 
short-term memory 
RVM – Relevance Vector Machine 
SVM – support-vector machine 
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