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Non-fossil biomass gradually becomes a promising raw material in energy consumption structure for achieving 
carbon neutrality. Most of existing process modelling works mainly focus on fossil streams, challenges in 
molecular composition determination and digitalization restrain the application of existing works to biomass-
derived materials. In this work, a molecular level molecular composition reconstruction framework is proposed, 
the framework covers representation of molecules and transformation between fraction information and mixture 
bulk properties. Molecular fingerprint method is introduced for structure description and a data-driven pure-
component estimation method is integrated in the framework. Statistical method is implemented for parameter 
reduction in model optimisation. The accuracy and potential application of the methodology is evaluated by 
composition reconstruction of a diesel and a bio-oil sample, deviation between most of the typical measured 
and predicted properties are within 1 %. In addition, detailed molecular information is retained using the 
molecular fingerprint method, which makes it easier to integrate the proposed framework with existing 
frameworks. 

1. Introduction 
Emerging environmental pressure and responding protection policy are prompting refineries transform toward 
intelligent and digitalized plants. On the one hand, fossil feedstock quality is deteriorating as heteroatom doped 
heavy oil dominants (Pinho et al., 2017), in the meantime sustainable biomass derived oil as an alternative 
energy source gradually gets more attention (Wang et al., 2015). On the other hand, car manufacturers’ strategy 
of switching to emissions-free cars results in a decline of fossil fuel demand. Predictably, with vehicle fuel 
consumption expected to wane, dominate routine of petrochemical industry would be crude-to-chemicals 
complexes by the 2020s (Tullo, 2019). Existing refining technology roadmap should be upgraded to achieving 
carbon neutrality by the 2050s. The ‘molecular management’ concept, which is ‘targeting the right molecules to 
be at the right place, at the right time and at the right price’, is highly fitted with objectives of modern refineries 
(Wu, 2010). Process modelling and optimisation are effective ways of achieving the object. However, one 
prerequisite is in-depth understanding and digitalization of feedstock molecular composition.  
Progresses in analytical techniques enable a better understanding of the complex mixtures, as well as the 
computer science advancement boosted the modelling of chemical processes. Though chromatography or 
spectrometry techniques can identify most of molecules in light oil, structural information or quantification result 
of heavy oil are difficult to obtain. In order to address the limitation of experimental approach, computer-aided 
molecular composition interpretation of petroleum steams based on available information is a practical way 
(Klein et al., 2005). Various molecular level framework has been developed to digitalize molecular composition 
at different period. Generally, developed molecular composition modelling methods consist of representation of 
molecular structure information using string/symbol and determination the abundance of representatives 
(Glazov et al., 2021). Highlighted framework including stochastic reconstruction (SR) (Neurock et al., 1990), 
reconstruct by entropy maximization (REM) (Hudebine and Verstraete, 2004), Structural-Oriented Lumping 
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(SOL) (Quann and Jaffe, 1992) and molecular-type homologous series (MTHS) (Peng, 1999) method. 
Technically, a composition modelling framework mainly comprises composition representation and fraction-
property transformation, while analytical composition information, pure-component and mixture property 
estimation, model optimisation are indispensable for a unified framework.  
Molecules are the basic unit of feedstock composition, property correlation, reaction kinetics. Therefore, 
information consistency is the governing principle in developing a unified framework (Bojkovic, 2021). However, 
accuracy of existing framework is limited due to the uneven development of each segment, which could be 
explained by the Cannikin Law that a bucket's capacity is determined by its shortest stave. One example is 
property estimation, most widely used method in above frameworks are simple correlation-based approaches 
which is not accurate enough. Though the Group Contribution (GC) methods are more accurate, but the ‘groups’ 
are usually incompatible with the structure attributes of the most of molecular composition reconstruction 
frameworks. For example, naphthalene’s structure consists of a fused pair of benzene rings, it can be 
represented using a string ‘A6 = 1, A4 =1’ by the SOL method, which means one 6-member aromatic ring, 
attached with a 4-carbon aromatic ring increment (Quann and Jaffe, 1992). But in GC method, naphthalene is 
represented as a string ‘aCH = 8, aC = 2’, which means eight carbon atoms are connected with one hydrogen, 
while the other two carbon atoms without hydrogen connected (Marrero and Gani, 2002). This kind of information 
inconsistency reduces modular accuracy which further perturbs overall modelling results. Molecules are lumped 
to some degree in existing composition reconstruction frameworks, which makes the explored reaction 
mechanism difficult to be integrated, and even harder to predict the products. To overcome these challenges, 
in this work, a framework that is compatible between composition representation and property prediction, 
modular designed is developed, the unified information consistency framework would be flexible and easily 
adapted to different streams.  

2. A novel framework for composition reconstruction of fuel streams 
The proposed composition reconstruction framework comprises of two main sections, a) qualitative 
determination of molecules in streams, which includes structural characteristics representation and property 
estimation. b) quantitative determination of molecules in streams, which is transformation of the bulk properties 
into molecular composition by minimizing the differences between experimental properties and predicted 
properties implementing optimisation methods. 

2.1 Molecule representation and property estimation 

The simplified molecular-input line-entry system (SMILES) method was implemented to represent molecular 
structures explicitly (Weininger, 1988). Molecular characteristics such as molecular graph, bond connection 
information was extracted subsequently. Basic characteristics such as molecular weight, atom number or atom 
ratio (e.g. H/C), number of aromatic rings, number of aliphatic carbon cycles, etc., were directly calculated from 
molecular structure. Property estimation was implemented by an Artificial Neural Network (ANN) model, the 
ANN model was developed by fragmenting molecules into basic units according to the ‘graph theory’ using a 
novel molecular connectivity matrix transformation method, then model was trained on top of structural units 
and experimental property database. Evaluated using the largest normal boiling point property database 
(Alshehri et al., 2021), the developed ANN model has a better performance as compared with the GC method. 
Figure 1 shows the process of generating homologous series molecules of methylbenzene.  

  

Figure 1: Proposed molecular representation method 

974



Universal structure attributes were viewed as core structures, sidechains with different length were connected 
to core structures to form intact molecules, connecting sites were randomly selected according to both the 
available bond position and steric effects. It should be noted, only one sidechain was considered in this work 
due to the lack of carbon atom environment information from NMR analysis.  
Physical properties such as normal boiling points of assembled molecules were estimated by the developed 
ANN model. Since normal boiling points increases over length of sidechains, normal boiling point range was 
used to constrain the upper and lower bound of sidechain length. Other molecules of various homologous series 
were generated similarly. The size of determined molecules is undoubtedly far below the sizes of the actual 
samples and is considered as a representative model. 

2.2 Transformation between bulk properties and molecular composition 

There are two findings that greatly reduce uncertainty of molecular composition reconstruction of oil fractions, 
the first is the content distribution of molecules in one homologous series subject to statistical functions. Another 
one is mixture properties can be calculated from pure-component properties based on mixing rules, note mixing 
can be nonlinear. Figure 2 shows a flowchart of molecular composition reconstruction process. Properties of 
each molecule were predicted by calling the trained ANN models. The Gamma probability density function (PDF) 
written as Eq.(1) and Eq.(2), were used to mathematically quantify fraction distribution of homologous series 
(Ren et al., 2019).  

 

Figure 2: Flowchart of molecular composition reconstruction process 

𝑓𝑓(𝑥𝑥) =  
(𝑥𝑥 − 𝛾𝛾)𝛼𝛼−1𝑒𝑒−(𝑥𝑥−𝛾𝛾)/𝛽𝛽

𝛤𝛤(𝛼𝛼)𝛽𝛽𝛼𝛼  (1) 

𝛤𝛤(𝛼𝛼) =  � 𝑡𝑡𝑧𝑧−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡
∞

0
 (2) 

Where 𝛼𝛼 ,  𝛽𝛽  and  𝛾𝛾  are shape, scale and location factors. Bulk properties were calculated from the pure-
component properties based on the mixing rules. Experimentally available bulk properties were used for the 
optimization of the quantification. The objective function (Eq 3) was minimisation of differences between the 
calculated properties and experimental properties. Weight factors were used to convert the multi-objective 
optimisation to one-objective optimisation.  
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𝑂𝑂𝑂𝑂𝑂𝑂 = � 
𝑘𝑘

𝑎𝑎𝑂𝑂𝑎𝑎 �𝑤𝑤𝑘𝑘 ×
𝐶𝐶𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚

𝐶𝐶𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 � (3) 

Where superscripts msd and pred denote the measured and the predicted. Subscripts stands for the measurable 
properties usually comprised of a) temperature points of a distillation profile, b) measurably distinguished 
homologous series (PIONA), c) elemental content (in petroleum fractions and biomass, generally CHNOS are 
considered, while other elements like heteroatoms usually excluded because of their low content). d) other 
properties available such as specific gravity, molecular weight. 𝑤𝑤𝑖𝑖 is the weighting factor of each item, items 
with higher priority were given larger weighting factor. Molar fraction 𝑥𝑥𝑖𝑖,𝑗𝑗𝑚𝑚  was taken as the basis, mass fraction 
𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤  and volume fraction 𝑥𝑥𝑖𝑖,𝑗𝑗𝜈𝜈  were calculated as follows: 

𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤 =
𝑥𝑥𝑖𝑖,𝑗𝑗𝑚𝑚/𝑀𝑀𝑊𝑊𝑖𝑖,𝑗𝑗

∑  𝑖𝑖𝑖𝑖 ∑  𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑚𝑚 /𝑀𝑀𝑊𝑊𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗
 (4) 

𝑥𝑥𝑖𝑖,𝑗𝑗𝜈𝜈 =
𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤 /𝑆𝑆𝐺𝐺𝑖𝑖,𝑗𝑗

∑  𝑖𝑖𝑖𝑖 ∑  𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑤𝑤 /𝑆𝑆𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗
 (5) 

𝑥𝑥𝑗𝑗𝑤𝑤 = � 
𝑖𝑖

𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤  (6) 

� 
𝑗𝑗

𝑥𝑥𝑗𝑗𝑤𝑤 = 1 (7) 

𝑆𝑆𝐺𝐺𝑖𝑖,𝑗𝑗, 𝑀𝑀𝑊𝑊𝑖𝑖,𝑗𝑗 stand for specific gravity and molecular weight of the molecule 𝑂𝑂 of core structure 𝑖𝑖 in the molecular 
repository. 
A genetic algorithm is selected for an optimal solution searching, trade-off between minimizing the objective 
function and the computation power should be considered. Weight factors, variable space and parameters of 
the optimiser are defined heuristically. 

3. Case study 
To illustrate the capability and accuracy of the proposed framework, molecular composition of petroleum fraction 
and biomass derived oil are reconstructed. Universal molecular structure attributes in most samples are used 
as core/seed structures. Then molecule library of the sample to be modelled is generated by assembling core 
structures with sidechains following the proposed procedure. Based on reported molecular structure information 
obtained using GC, NMR and MS techniques, 37 seed molecules cover above oxygenates and hydrocarbons 
are used as core/seed structures, homologous series of each core were generated within the boiling point range 
of 323.15 -873.15 K. Consequently, 952 molecules were generated to represent the bio-oil sample. Similarly, 
217 molecules within the boiling point range of 473-623 K were generated for the diesel sample. Molecular 
compositions are optimised, then mixture bulk properties of bio-oil sample and diesel sample are calculated and 
further compared with experimentally measured properties as presented in Table 1 and Table 2. 

Table 1: Experimental and predicted bulk properties of the bio-oil sample 

Properties  Measured Predicted ARE (%) 
Element (wt.%) C 0.72 0.72 0.01 
 H 0.09 0.09 0.21 
 O 0.20 0.20 0.00 
Specific gravity  1.21 1.05 13.23 
TBP Curve (ºC) 10 96.59 96.34 0.26 
 30 115.82 119.29 3.00 
 50  207.79 206.39 0.67 
 70  292.24 292.73 0.17 
 90  426.86 427.05 0.05 

The predicted elemental contents and distillation results are in good agreements with results measured 
experimentally. Most of the absolute relative error (ARE) are within 1 %, the predicted specific gravities of the 
two samples have a greater deviation, one possible reason is the size of database is limited used in ANN 
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property estimation model training, although we used the largest database reported in literature. In addition, 
non-linear mixing behaviour of the specific gravity should not be neglected, but addressing the problem requires 
a lot of experimental data which is challenging at present.  

Table 2: Experimental and predicted bulk properties of the diesel sample 

Properties  Measured Predicted ARE (%) 
Distillation Curve  10 267.96 266.41 0.58 
(ASTM D86, ºC, v%) 30  275.98 276.51 0.19 
 50  287.15 286.51 0.22 
 70   299.49 299.82 0.11 
 90 313.81 313.03 0.25 
 100 325.58 328.90 1.02 
Element (wt.%) C 0.8715 0.8715 0.00 
 H 0.1270 0.1270 0.04 

One significant advantage of using SMILE representation is that detailed molecular information are retained. In 
Figure 3 the Sankey diagram displays molecules flow path between different level. No matter based on structure 
characteristic such as number of carbon atoms, or chemical properties like temperature cut, each molecule can 
be grouped into one specific category. The interconnection between different categories indicates that although 
previous frameworks have their own characteristics, but they can also be intrinsically connected. One potential 
application of this feature is that reported kinetic parameters can be used as reference. 

 

Figure 3: Information flow of molecules between different categories 

4. Conclusions 
A molecular composition reconstruction framework integrating molecular representation and bulk property 
transformation, has been proposed for composition modelling of bio-oil and diesel samples. One of the main 
advantages of this method over others is the detailed structure representation method that enables the 
introduction of data-driven ANN property prediction models, modular designed framework promotes the model 
adaptability. The proposed methodology was evaluated on two different types of oil, 217 and 952 were 
reconstructed to represent the diesel and the bio-oil streams. Most of the predicted properties are within 1 % 
ARE compared with experimental measured properties. Accurate result of the case studies indicates the 
proposed unified framework composition is promising in digitalisation of refinery streams. Molecular structure 
level representation makes composition information possibly connected with existing methods such as MTHS 
and Lumping method. 
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